Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кривая поляризационные Поляриза

    Если полностью запассивированный металл перестать поляризовать, выключая ток, то изменение потенциала металла во времени имеет характер, аналогичный представленному на рис. 217. Спад потенциала после выключения поляризационного тока соответствует разряду двойного электрического слоя, затем на кривой появляется горизонтальный участок, соответствующий растворению пассивной пленки (активации), а затем потенциал падает до значения стационарного потенциала коррозии активного железа. [c.316]


    Рис 349. Электролизер для измерения поляризационных кривых в расплавленных солях / — кварцевый электролизер 2 — крышка на шлифе 3 — угольная трубка хлорного электрода сравнения 4 — образец (проволока а = 1 мм) 5 — термопара в кварцевом чехле 6 — вспомогательный (поляризующий) электрод 7 — трубка (кварцевая или фарфоровая) длп подачи газа в расплав 8 — резиновая трубка для уплотнения 9 — фарфоровые экраны 10 — подвески для экранов  [c.460]

    Для получения поляризационных кривых полярограмм) в этих методах пользуются в качестве катода струей ртути, непрерывно по каплям вытекающей из отверстия, а в качестве анода применяется электрод с большой поверхностью, обычно тоже ртутный. Ток применяется очень слабый, порядка 10 а. Анод, вследствие большой поверхности его и связанной с этим малой плотности тока, практически не поляризуется. Поэтому налагаемое напряжение расходуется лишь на поляризацию катода и на прохождение тока через раствор. В результате, измеряя силу тока при различных напряжениях, можно определять поляризацию на катоде. Различного вида ионам свойственны разные потенциалы их восстановления на катоде. Применяя среды кислые, нейтральные или щелочные, можно охватить все важнейшие виды ионов, выполняя как качественный, так в определенных условиях и количественный анализ раствора. Полярографический метод является очень чувствительным и дает возможность обнаружить и часто приближенно определить составные части, содержащиеся в очень малой концентрации. Полярографический метод находит применение в различных работах, где используется катодное восстановление.  [c.449]

    Обычно поляризуются как катодные, так и анодные участки. Это явление называется сл(е-шанным контролем. Следует заметить, что степень поляризации зависит не только от природы металла и электролита, но и от истинной площади корродирующего электрода. Если площадь поверхности анодных участков корродирующего металла очень мала, например из-за пористых поверхностных пленок, коррозия может сопровождаться значительной анодной поляризацией, даже если измерения показывают, что при данной плотности тока незащищенные участки анода поляризуются незначительно. Следовательно, отношение площадей поверхности анода и катода также является важным фактором в определении скорости коррозии. Если на график вместо суммарного коррозионного тока нанести плотность тока, например для случая, когда площадь анода составляет половину площади катода, мы получим поляризационные кривые, представленные на рис 4.9. [c.63]


    НЕДОСТОВЕРНЫЙ КРИТЕРИЙ. Иногда режим катодной защиты согласуют с критериями, основанными на эмпирических правилах, — например, стальные сооружения поляризуют до потенциала, лежащего на 0,3 В отрицательнее коррозионного потенциала. Этот критерий неточен и может привести к недостаточной или избыточной защите. Считается также, что поляризация сооружения должна проводиться до появления резкого подъема тока на поляризационной кривой. Однако такие подъемы могут происходить в некоторых средах не из-за роста скорости растворения, а в связи с восстановлением деполяризатора. В других случаях изменения могут быть обусловлены концентрационной поляризацией или ощутимым падением напряжения в рыхлых покровных пленках. Как показали Стерн и Гири [24], такого рода отклонения при поляризационных измерениях имеют различные причины, и их. наличие — ненадежный критерий для катодной защиты. [c.227]

    На рис. УП1-5, б приведены анодная (/ — 1 ) и катодная (1 — /") поляризационные кривые основного, более положительного металла, а также анодная (3 — 3 ) и катодная (3 — 3") поляризационные кривые более отрицательного металла (примеси). Точки пересечения катодных и анодных кривых характеризуют равновесные потенциалы е и при которых скорости катодного и анодного процессов равны и определяют равновесные токи обмена и. Если поляризовать электрод катодно до потенциала к, более отрицательного, чем равновесный потенциал (при этом сила тока /к), то поляризация металла М1 равна а [c.248]

    Для снятия поляризационных кривых и контроля потенциала электрода в процессе электролиза используют измерительные схемы. Схема установки для измерения электродных потенциалов показана на рис. П. В цепь поляризующего тока включен реостат, играющий роль делителя напряжения постоянного тока (/ ), Для расширения интервала и более плавного регулирования тока, что необходимо для получения поляризационных зависимостей, служит реостат Лз. [c.265]

    На рис. 4.16 представлена типичная поляризационная кривая в координатах 1=[ Е) или =/( ф) (для катодного или анодного процесса на ртутном капельном электроде). При постепенном увеличении внешней разности потенциалов вначале весь ток идет на заряжение электрода (двойного электрического слоя), поэтому сила тока в цепи остается исчезающе малой, что указывает на отсутствие электрохимического процесса. После достижения определенной разности потенциалов (точка а) происходит резкое увеличение силы поляризующего тока, что указывает на начало электрохимического процесса (окисления или восстановления). По мере того как потенциал электрода и сила тока увеличиваются, концентрация восстанавливающихся или окисляющихся ионов вблизи поверхности электрода уменьшается и наступает концентрационная поляризация. При увеличении поляризации наступает момент, когда концентрация частиц у поверхности электрода практически равна нулю (сколько бы частиц ни пришло, все мгновенно реагируют и [c.106]

    Для снятия поляризационных кривых в простейшем случае применяют вращающийся коммутатор, предназначенный для замены и переключения элементов электрических цепей. Действие коммутатора состоит в попеременном, с большой частотой, переключении исследуемого электрода с поляризующей на измерительную цепь. Таким образом, потенциал электрода определяется в момент, когда в системе отсутствует ток. [c.256]

    За счет поляризующего тока в цепи II потенциал электрода 1 начнет смещаться и в цепи I регистрируется новое значение Е[. Полученные при разных значениях и полярностях I сдвиги э. д. с. АЕ = Е — , (Я — э. д. с. в условиях отсутствия, поляризующего тока) позволяют построить стационарные поляризационные кривые для изучаемого электрода и использовать их для нахождения кинетических характеристик и механизма электрохимического процесса. [c.542]

    О2 и Нг примерно равны и составляют 10- М). По виду эти кривые существенно различаются поляризующие токи 10- А-см-2 приводят для кислородного электрода к АЕ более 300 мВ для водородного электрода соответствующая величина не превыщает 1 мВ. Причем, если увеличить интенсивность перемещивания раствора, то А для водородного электрода станут еще меньше, а на поляризационные характеристики кислородного электрода в выбранном интервале поляризующих токов интенсивность перемешивания практически не влияет. Такие же поляризационные зависимости как у водородного электрода наблюдаются в тех случаях, когда наиболее медленной стадией электродного процесса является перенос электрохимически активных частиц. Он определяется скоростью массопереноса (молекулярная диффузия, конвекция и миграция ионов под влиянием электрического поля в растворе) между толщей раствора и приэлектродным слоем. [c.542]

    Методы изучения кинетики электродных процессов делятся на классические и релаксационные. Классическими называют способы снятия стационарных поляризационных кривых, т. е. зависимости величины ( к, а) поляризующего тока от стационарного значения потенциала электрода (фст). Потенциал электрода считают стационарным при равенстве числа электронов, подводимых к нему и отводимых от него в единицу времени. В том случае, когда электрохимическая реакция протекает достаточно быстро, получить кинетические параметры классическим методом затруднительно. [c.21]


    Испытуемый медный и каломельный электроды соединяют между собой с помощью двух электролитических ключей, заполненных соответствующими электролитами и опущенных в промежуточные сосуды с насыщенным хлористым калием. Платиновый электрод прибора в течение нескольких минут покрывают в испытуемом растворе медью при к=0,01 А/см и затем измеряют его равновесный потенциал относительно каломельного электрода сравнения. Далее приступают к снятию поляризационной кривой. С этой целью включают ток в поляризующей цепи и, повышая его величину (по указанию преподавателя), измеряют катодный потенциал после каждого нового повышения амперной нагрузки. По достижении предельного тока диффузии, который нетрудно заметить по резкому смещению катодного потенциала и началу выделения порошкообразных осадков на катоде, проводят измерения при 3— [c.199]

    Свинцовый электрод поляризуют катодно при плотности тока Ю А/см2 затем, постепенно снижая поля ризующий ток до нуля, снимают кривую катодной поляризации. При поляризующем токе, равном нулю, устанавливается стационарный потенциал свинцового электрода, в этот момент изменяют направление поляризующего тока и начинают анодно поляризовать свинцовый электрод. Поляризующий ток повышают таким образом, что потенциал электрода смещается каждый раз на 10—15 мВ. В дальнейшем, когда область пассивного состояния будет пройдена, можно проводить измерения через большие интервалы смещения потенциала. При снятии поляризационной кривой вначале устанавливают задаваемое значение потенциала и затем записывают соответствующую ему величину тока. Опыт заканчивают по достижении интенсивного выделения кислорода. [c.291]

    Методы изучения электродных процессов делятся на классические и релаксационные.. Классическими называют методы снятия стационарных поляризационных кривых, основанные на определении зависимости величина поляризующего тока — стационарное значение потенциала электрода. Кинетические параметры в этом случае определяются из экспериментальной кривой Та- [c.305]

    Для снятия поляризационных кривых в простейшем случае применяют вращающийся механический коммутатор. Однако при большой скорости вращения контактные пластины коллектора коммутатора могут замкнуться через искровой разряд в момент разрыва поляризующей цепи некоторое искажение результатов возможно также из-за токов Фуко, возникающих при включении и выключении тока. [c.311]

    Скорость коррозии металла можно определить по уравнениям поляризационных кривых, связывающих перенапряжение т с плотностью поляризующего тока 1  [c.140]

    На рис. 47 представлен автоклав для электрохимических измерений при высоких температурах. Пропитанная водой деревянная пробка 4 обеспечивает электрохимический контакт и герметичность. Вода в электролитическом ключе изолирована от автоклава непроводящим материалом (трубка 6, ниппель 5, наконечник 7 изготовлены из фторопласта-4). Так как фторопласт-4 не рекомендуется применять при температурах выше 200 °С, кожух электролитического ключа охлаждается проточной водой. Поляризующий ток подается на образцы 9 через электровводы 3, изолированные слюдой 10 ох крышки 2. Существенным недостатком этой конструкции автоклава является то, что при испытаниях в дистиллированной воде катодные и анодные поляризационные кривые являются надежными на участках, где плотность тока не превышает 70 мкА/см . [c.148]

    Для определения равновесного потенциала кислородного электрода анод поляризуют в течение 30 мин при плотности тока 10 мА/см . После этого поляризующий ток выключают и определяют потенциал кислородного электрода измеренную величину (пересчитанную по водородной щкале) принимают за равновесный потенциал кислородного электрода. Затем приступают к снятию поляризационной кривой. Величину поляризующего тока повыщают постепенно, анодный потенциал измеряют спустя 3—5 мин после установления задаваемого тока и далее переходят к следующему измерению. [c.219]

    У образца из исследуемой стали замеряют рабочую поверхность. с точностьЮдо О,1 мм, зачищают ее тонко наждачной бумагой, обезжиривают растворителем и вставляют образец в электрохимическую ячейку ЯЭС-2 с агрессивной средой до соприкосновения с капилляром Лугина. Выдерживают образец без поляризации в течение 5-10 минут до установления стационарного потенциала и снимают катодную поляризационную кривую. Для этого сдвигают потенциал в сторону отрицательных значений на 20 мВ и записывают значение тока. Затем сдвигают потенциал еще на 20 мВ и снова регистрируют возникающий ток. Таким образом проводятся 20 замеров, т. е. сдвигают потенциал от стационарного значения на 0,4 В. Сняв катодную кривую, отключают поляризующий потенциал. [c.69]

    Одновременно с этим потенциал диффузионной стороны также становится более отрицательным. Такой переход водорода н передача потенциала с поляризационной стороны на диффузионную возможны в том случае, если образующийся в процессе разряда атомарный водород не успевает покинуть поверхность электрода. Его ко1щентрация увеличивается по сравнению с равновесной, и он начинает проникать в глубь палладия, достигая диффузионной стороны мембраны. Появление избыточного водорода на диффузионной стороне сдвигает ее потенциал в отрицательном направлении, что также указывает на медленное протекание рекомбинации. Однако, по Фрумкину, иереиапря-жение водорода на палладии нельзя приписать только замедленности рекомбинации. Если поляризовать мембрану малым током до постоянного значения потенциала, а затем выключить ток, то для каждой из ее сторон получаются различные кривые спада потенциала. На поляризационной стороне непосредственно после выключения тока наблюдается резкое падение перенапряжения, которое затем уменьшается значительно медленнее. На диффузионной стороне проявляется только второй участок, т. е. после выключения тока потенциал постепенно сдвигается к его разновесному значению в данном растворе. Быстрый спад перенапряжения объясняется замедленностью разряда, медленный спад — удалением избыточного водорода. [c.418]

    В активном состоянии металлы поляризуются анодно сравнительно слабо, что видно из пологого хода начального участка АБ анодной поляризационной кривой (рис. 14). На участке кривой АБ протекает процесс активного растворения металла с незначительным смещением потенциала в положительном иаправ- [c.34]

    Эффективность электрохимической защиты двухэлектродной системы можно установить, пользуясь поляризационной диаграммой коррозии, приведенной на рис, 200. Пусть анодная кривая— кривая Е В, а катодная — Е°С. Точка пересечения этнх кривых О указывает нам силу коррозионного тока кор и стационарный потенциал Е , который устанавливается на обоих электродах рассматриваемой системы. Если вся система будет запо-ляризована до более отрицательного потенциала, например до Ей то сила тока на аноде уменьшится до значения /ь Анодный ток (ток коррозии) в нашем элементе полностью прекратится, если система будет заполяризована до потенциала Е . В процессе катодной поляризации поляризующий ток идет, с одной стороны, на подавление анодного тока (т. е. непосредственно иа защиту от коррозии), а с другой, — на поляризацию катода от потенциала Ех до потенциала Е . Поэтому сила поляризующего тока, как правило, должна быть больше достигаемого защитного эффекта. Сила защитного тока должна быть тем больше, чем больше катодная поверхность и чем меньше поляризуемость катода, Это значит, что при малой поляризуемости катода требуется очень большая сила тока. [c.300]

    Поляризационные кривые позволяют изучить кинетику электродных процессов, величину защитного тока при электрохимической. чащите, явление пассивности и др. Существует два способа снятия поляризационных кривых гальваностатический и потенциостатический. Гальваностатический метод заключается в измерении стационарного потенциала металла при пропускании через него тока определенной плотности. По ряду значений потенциалов при соответствующих плотностях поляризующего тока строят кривые катодной или анодной поляризации, т. е. зависимости Е = /(г к) или Е = /(/,г). [c.342]

    Степень поляризации зависит от характера анодных и катодных участков, состава коррозио1шой среды и плотности коррозионного тока. Чем бо,1ьше наклон поляризационных кривых, тем сильнее поляризуется электрод и тем сильнее тормозится анодный или катодный процесс. Для снятия поляризационных кривых могут быть использованы разные схемы установок. Схема любой установки для снятия поляризационных кривых гальваностатическим способом подобна схеме для измерения электродных потенциалов компенсационным методом и отличается от нее по существу только тем, что она предусматривает подвод постоянного тока к исследуемому электроду и измерение его величины, т. е. включает источник постоянного тока, приборы для измерения силы тока и регулирования его величины и вспомогательный поляризующий электрод. Схема установки для снятия поляризационных кривых приведена на рис. 222. [c.342]

    Помимо контроля скорости реакции диффузионным процессом, характерного для обратимых реакций, существует контроль переносом заряженных частиц (электронов или ионов) через границу раздела электрод—раствор. В этом случае электродную реакцию называют необратимой. К необратимым процессам урапнепие Нернста неприменимо, поскольку на значительной части поляризационной кривой поляризация электрода при протекании тока не связана с изменением концентрации электродно-активного вещества в приэлектродной области, последнее просто отсутствует. Рассмотрение теории замедленного разряда приводит к следующему выражению, связывающему потенциал электрода и силу поляризующего тока [c.277]

    Плотность поляризующего тока может быть задана. Так как /д. ЭЛ < Уд- ЭЛ- пр концентрационная поляризация, как уже сказано, отрицательна. При /д. эл//д. эл. пр—> г)конц——оо. Зависимость Лконц =/(/д-эл) изображается поляризационной кривой с характерной областью /д. ЭЛ- пр (рис. XXV. 1). [c.292]

    Потенциометрическое титрование при постоянной силе тока с двумя поляризуемыми электрбдами. Установка для титрования аналогична приведенной выше, только вместо электрода сравнения в данном случае устанавливают также поляризующийся электрод. Так как вследствие этого протекание электрохимических процессов на обоих электродах зависит теперь от состава раствора, то на основе анодно-катодных кривых ток — потенциал для отдельных реактантов можно сделать вывод о ходе кривой титрования. При наложении тока на электродах протекает электрохимическая реакция. При помощи поляризационных кривых можно установить, какие реакции протекают, каким значениям потенциала они соответствуют и, следователь- [c.143]

    Экспериментальная часть. Схема устанозки с вращающимся электродом показана на рис. 100. Основные ее части таковы. Рабочая ячейка с вращающимся дисковым электродом, снабженная герметизирующим затвором и патрубком для поступления кислорода от лабораторного электролизера или кислородного баллона с редуктором, вспомогательным поляризующим платиновым электродом и соединительным электрическим ключом для контакта с насыщенным каломельным электродом сравнения. Кончик электролитического ключа должен находиться от забочей поверхности вращающегося электрод,а на расстоянии 0,5—1 мм. Источник поляризующего тока —высоковольтная батарея сухих элементов на 50—100 в. Регулировка силы тока осуществляется посредством электрической схемы, показанной на рис. 101. Максимально необходимое значение силы тока определяется угловиями проведения опыта, т. е. конкретно — величиной предельного диффузионного тока, который надлежит отчетливо зафиксировать. Для измерения силы тока используется многопредельный микроампермегр с ценой делений от микроампера до 1 ма. Потенциометр служит для измерения разности потенциалов цепи вращающийся дисковый электрод— каломельный электрод сравнения. При прямом методе снятия поляризационной кривой [c.175]

    Для снятия потенцисстатических поляризационных кривых применяют специальные приборы — потенциостаты, автоматически обеспечивающие постоянство потенциала поляризуемого электрода. Однако той же цели можно достигнуть, применяя очень несложную установку на рис. 124. Источником тока в этой схеме служит аккумулятор на 4 в, замкнутый на небольшое сопротивление порядка 5—10 ом. Поляризующая э. д. с. потенциометрически снимается с сопротивления и подается на ячейку. В качестве электролитической ячейки служит обычный стакан (рис. 124). Катод берется большой поверхности (около 10 см ) для уменьшения омического и поляризационного сопротивления, а анод — площадью не более 1 [c.221]

    Цель работы — ознакомление с методикой измерения потенциалов поляризованного электрода и снятие поляризационных кривых коммутаторным методом. Для выполнения работы используют установку, схема которой была представлена на рис. 5. Основные узлы установки цепь поляризующего тока с источником Б, включенным потенциометрически коммутатор (Комм) и компенсационная установка с электролитической ячейкой Э и электродом сравнения КЭ. В качестве сопротивлений / 1 и применяют ползунковые реостаты с сопротивлением соответственно 1000—2000 и 150— 200 Ом, миллиамперметр (гпА) со шкалой на 100— 150 мА. Электрод сравнения каломельный, насыщенный. Электроды электролитической ячейки платиновые с поверхностью, равной 1 м , изолированные с одной стороны наплавленным стеклом или специальным лаком. Поляризующий ток подключают через коммутатор к рабочему электроду. В схеме используют ППТВ-1. [c.251]

    Опыт начинают с измерения величины потенциалов катода и ааода при отсутствии приложенного извне тока. После этого приступают к снятию катодной и анодной поляризационных кривых, которое можно осуществлять одновременно, т. е. в течение одного опыта. Для этого включают внещний источник тока в цепь и, повышая величину тока на 0,1 мА, поляризуют электроды коррозионного элемента. Спустя 2 мин после каждого довышения величины поляризующего тока измеряют по--тенциалы катода и анода. [c.308]

    Величину катодной поляризации обсадной колонны в исследуемом интервале определяют по плотности тока в этом интервале при данном значении поляризующего тока (критерий 3) и стационарной катодной поляризационной кривой (СКПК) стали в пластовой воде этого же интервала. СКПК в пластовой воде снимают в герметичной ячейке с использованием капилляра Луггина и вспомогательного анодного электрода из углеродистой стали. Рабочий (катодно-поля-ризуемый) электрод из трубной стали до начала поляризации выдерживают в исследуемой пластовой воде в течение 10 сут для получения на нем сульфидов и установления стационарного потенциала. [c.133]

    На рис. 4.6 приведены анодная 1—1 ) и катодная 1—1") поляризационные кривые основного металла с более положительным потендиалом, а также анодн ая (5—3 ) и катодная (3—3") поляризационные кривые металла (примеси) с более отрицательным потенциалом. Точки пересечения катодных и анодных кривых характеризуют равновесные потенциалы и Ер , при которых скорости катодного и анодного процессов равны и определяют токи обмена и Если поляризовать электрод катодно до потенциала Ец, более отрицательного, чем равновесный потенциал Ер а (при этом сила тока к), то поляризация металла М] равна AJ-м,, а поляризация металла-примеси— ЛЕмц. Е> случае, изображенном на рис. 4,6, [c.367]

    Коррозионная реакция подземного сооружения может быть разложена на частные реакции, как это показано на рис. 3. Тогда электродная реакция гтротекает на каждом участке. Этот случай коррозии является простейшим, а при поляризации внешним током в равновесии с окружающим раствором на участках I—3 протекают частные реакции. Плотность тока такой реакции является достаточно точной мерой скорости реакции, поэтому поляризационная кривая может характеризовать торможение электродной реакции (рис. 6). Поляризационная кривая является зависимостью перенапряжения (отклонения потенциала поляризованного электрода от потенциала неполяризованного электрода) от плотности тока kS (12). Строго говоря, поляризационные кривые образуют суммарную поляриза- [c.16]

    В области очень малых отклонений от равновесного потенциала (когда плотность поляризующего тока изменяется в пределах 10 —10 а/с и ) поляризационная кривая почти параллельна оси абсцисс и проходит а уравне равновесного потенциала (область I). При более высокой плотности наложенного тока (область И) обнаруживается заметное отклонение поляризационной кривой от оси абсцисс в соответствии с зависимостью (3.23). Поляризациднный сдвиг тютенциала [c.55]


Смотреть страницы где упоминается термин Кривая поляризационные Поляриза: [c.303]    [c.303]    [c.47]    [c.135]    [c.643]    [c.462]    [c.416]    [c.76]    [c.176]    [c.213]    [c.277]    [c.102]    [c.135]    [c.37]    [c.58]   
Руководство по физической химии (1988) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Поляризационная кривая



© 2025 chem21.info Реклама на сайте