Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клеточная мембрана вторичная

    Во всех клетках животных и растений имеются два основных пути передачи сигнала, различающихся по вторичным посредникам -аденилатциклазный и фосфоинозитидный. Эти пути передачи сигнала имеют много общего. В обоих случаях информацию от первого звена рецептора получают и передают через мембрану в цитоплазму так называемые С-6елки, активирующиеся при связывании гуанозинтр и фосфата (ГТФ). G-белки активируют б51ЛЙтгеЛьный фермент на внутренней стороне мембраны, который способствует превращению молекул вещества-предщественника в молекулы вторичного посредника. Конечные стадии разных способов передачи сигналов сходны вторичные мессенджеры вызывают изменение структуры клеточных белков. [c.15]


    Открытие ионных каналов — это, однако, не единственный ответ на связывание медиатора. В рецепторах катехоламина, например, первичный ответ состоит в продуцировании вторичного мессенджера сАМР, который с помощью протеинкиназы регулирует не только ионную проницаемость возбудимых мембран, но также энергию метаболизма и биосинтез белка в клетке. Рецепторы, определяемые как молекулы, связывающие эндогенные лиганды, являются в действительности компонентами мембранных комплексов, состоящих из молекул разных видов одни из них связывают лиганды, а другие функционально активны в мембране. Способ, с помощью которого регулируется ионная проницаемость клеточной мембраны, можно рассмотреть на примере модели, разработанной для аксональных ионных каналов (гл. 6). [c.243]

    Клетки древесины сообщаются между собой через поры. Поры -это неутолщенные участки клеточной стенки. Пора не является свободным отверстием, так как в ней имеется тонкая мембрана (первичная стенка и межклеточное вещество), пронизанная мельчайшими отверстиями. В живых клетках через эти отверстия проходят тонкие нити цитоплазмы, соединяющие содержимое живых клеток в одно целое. Поре в оболочке одной клетки соответствует пора соседней клетки, то есть образуется пара пор (рис.8.6). Различают простые, окаймленные и полуокаймленные поры (пары пор). Простые поры (см. рис. 8.6, а) образуются в стенках двух смежных паренхимных клеток, а окаймленные поры (см. рис. 8.6, б) - в стенках двух смежных трахеид, располагаясь преимущественно на радиальных стенках у концов трахеид. Поздние трахеиды по сравнению с ранними имеют меньшее число пор меньших размеров (щелевидные поры). У окаймленной поры мембрана имеет в центре утолщение - торус, играющий роль клапана, который может перекрывать пору. Структура торуса отличается от структуры мембраны. Окаймление образуется нависающим выступом вторичной стенки. Оно может быть выражено четко или слабо заметно. Трахеиды с паренхимными клетками сердцевинных лучей сообщаются через полуокаймленные поры (см.рис. 8.б,в) в так называемых полях перекреста. Форма, размер и число пор в поле перекреста служат диагностическими признаками при определении хвойных древесных пород. [c.201]

    Функции биологических мембран. Как отмечалось, клеточные мембраны отграничивают содержимое клетки (или клеточной органеллы) от окружающей среды. Благодаря наличию специальных рецепторов они воспринимают сигналы из внешней среды (например, молекулы гормонов, называемые первичными мессенджерами, или посредниками), в ответ на которые образуются вторичные мессенджеры, высвобождающиеся внутрь клетки. Так осуществляется преобразование сигналов, изменяющих клеточный метаболизм в соответствии с изменяющимися условиями среды (см. главу 8). [c.303]


    Прокариотная клетка отличается тем, что имеет одну внутреннюю полость, образуемую элементарной мембраной, называемой клеточной, или цитоплазматической (ЦПМ). У подавляющего большинства прокариот ЦПМ — единственная мембрана, обнаруживаемая в клетке. В эукариотных клетках в отличие от прокариотных есть вторичные полости. Ядерная мембрана, отграничивающая ДНК от остальной цитоплазмы, формирует вторичную полость. Наружные мембраны хлоропластов и митохондрий, окружающие заключенные в них функционально специализированные мембраны, играют аналогичную роль. Клеточные структуры, Офаниченные элементарными мембранами и выполняющие в клетке определенные функции, получили название органелл. Ядро, митохондрии, хлоропласты — это клеточные органеллы. В эукариотных клетках помимо перечисленных выше есть и другие органеллы. [c.18]

    Транспорт аминокислот через клеточные мембраны осуществляется в основном по механизму вторично-активного транспорта. В этом случае система активного транспорта приводится в действие не путем прямого гидролиза АТФ, а за счет энергии, запасенной в ионных градиентах. Перенос аминокислот внутрь клеток осуществляется чаще всего как симпорт аминокислот и ионов натрия, подобно механизму симпорта сахаров и ионов натрия. Энергия АТФ затрачивается на выкачивание Ка /К -АТФ-азой ионов натрия из клетки, создания электрохимического градиента на мембране, энергия которого опосредованно обеспечивает транспорт аминокислот в клетку. Известен ряд сходных по строению транспортных систем (транслоказ), специфичных к транспорту аминокислот нейтральных аминокислот с небольшой боковой цепью, нейтральных аминокислот с объемным боковым радикалом кислых аминокислот, основных аминокислот, пролина. Эти системы, связывая ионы натрия, индуцируют переход белка-переносчика в состояние с сильно увеличенным сродством к аминокислоте Ка" стремится к транспорту в клетку по градиенту концентрации и одновременно переносит внутрь клетки молекулы аминокислоты. Чем выще градиент Na , тем выше скорость всасывания аминокислот, которые конкурируют друг с другом за соответствующие участки связывания в транслоказе. [c.366]

    Основная структура первичной клеточной оболочки — оболочки клетки в фазе растяжения — может претерпевать различные изменения. Конечная форма стенки предопределена так же, как предопределен тип клетки, которую она будет окружать. Растительные клетки даже различают по характерным особенностям их оболочек. В первичных оболочках часто обнаруживаются так называемые первичные поры — участки, в которых стенка истончается. Назначение этих пор состоит в облегчении связи между соседними клетками. Часто в одной такой поре можно различить десять и более плазмодесм, соединяющих плазматические мембраны (и цитоплазму) соседних клеток. Первичные поры стенки обычно располагаются группами или полями. Участки поверхности стенки с такими полями постепенно, по мере разрастания клетки и созревания клеточной стенки, становятся все меньше [31 ]. Какой-либо определенной корреляции между первичными порами и образующимися позже более крупными и более выраженными образованиями для межклеточного сообщения (вторичные поры) не обнаружено. [c.92]

    Примером таких комплексов являются сложные мембранные структуры, включающие рецепторы и преобразователи сигналов, действие которых начинается с восприятия внещнего импульса (первичного посредника) на внещней стороне клеточной мембраны и заверщается образованием вторичного посредника на внутренней стороне мембраны. Рассмотрим передачу и трансформацию сигнала от первичного посредника, роль которого, как правило, выполняют разнообразные гормоны, не проникающие через клеточную мембрану (см. главу 8). [c.316]

    Все виды ионного транспорта через клеточные мембраны подразделяются на 4 группы пассивная диффузия, облегченная диффузия, первично-активный транспорт и вторично-активный транспорт. [c.101]

    В ходе эволюции кальций стал ключевым и универсальным вторичным мессенджером. Это произошло потому, что лишь тот компонент морской воды мог стать ионом-регулятором для одноклеточных организмов, возникших в первичном океане, который существует там в достаточно высокой концентрации. Действительно, только в этом случае может быть обеспечен его высокий градиент по обе стороны клеточной мембраны. Внеклеточная жидкость и плазма крови некоторых организмов, например лягушки (А. А. Болдырев, 1986), по составу весьма близки морской воде. Поэтому возможно предположить, что основные принципы ионной регуляции у первых одноклеточных были без изменений реализованы и в многоклеточных организмах. [c.15]

    У некоторых клеток, например у клеток мезофилла листа, на всем протяжении их жизни имеется только первичная клеточная стенка. Однако у большинства клеток на внутреннюю поверхность первичной клеточной стенки (снаружи от плазматической мембраны) отлагаются дополнительные слои целлюлозы, т. е. возникает вторичная клеточная стенка. В любом слое вторичного утолщения целлюлозные волокна располагаются под одним и тем же углом, но в разных слоях этот угол различен, чем и обеспечивается еще больщая прочность структуры. Такое расположение целлюлозных волокон показано на рис. 5.35. [c.205]


    Образование АТФ является источником энергии для многих клеточных реакций, в том числе и для активного транспорта ионов через биологические мембраны, а также субстратом для синтеза вторичного посредника - цАМФ- [c.121]

    Изучение количественного распределения гемицеллюлоз по клеточной стенке показывает, что у хвойных пород концентрация глюкоманнанов возрастает в направлении от сложной срединной пластинки (ML + Р) к слою 8з(Т), а концентрация араби-ноглюкуроноксилана почти не меняется. У лиственных же пород относительное содержание глюнуроноксилана выше во вторичной стенке, чем в (ML + Р). Полисахариды бородавчатой мембраны в древесине хвойных пород представлены в основном га-лактоглюкоманнанами. [c.218]

    Объединим теперь описанные выше явления и проследим цепь событий, в результате которых адреналин стимулирует в печени распад гликогена до глюкозы, поступающей в кровь (рис. 25-11). Адреналин достигает поверхности клеток печени, где он связывается со специфическим адренорецептором. Связывание адреналина (который никогда не входит внутрь клетки) вызывает изменение рецепторного белка. Это изменение каким-то образом передается через мембрану и включает аденилатциклазу, связанную с внутренней поверхностью клеточной мембраны. Теперь активированная аденилатциклаза начинает превращать АТР в сАМР-вторичный передатчик, причем концентрация сАМР в цитозоле быстро достигает максимума, равного 10 М. Образованный сАМР в свою очередь связывается с регуляторными субъединицами протеинкиназы, что приводит к высвобождению ферментативно активных каталитических субъединиц протеинкиназы. Далее активированная протеинкиназа катализирует фосфорилирование посредством АТР неактивной дефосфорилированной формы киназы [c.791]

    Вторичные клеточные оболочки, как правило, значительно толще первичных. Они характеризуются отложением гораздо больших количеств целлюлозы и значительных количеств лигнина (о химии лигнина см. гл. 23). Полагают, что лигнин откладывается поверх микрофибрилл целлюлозы, причем этот процесс (одревеснение) начинается в области срединной пластинки и затем постененно распространяется в направлении клеточной мембраны. [c.92]

    В растительных клетках нити веретена во время телофазы начинают исчезать они сохраняются лишь в области экваториальной пластинки. Здесь они сдвигаются к периферии клетки, число их увеличивается и они образуют боченковидное тельце — фрагмопласт. В эту область перемещаются также микротрубочки, рибосомы, митохондрии, эндоплазматический ретикулум и аппарат Гольджи последний образует множество мелких пузырьков, наполненных жидкостью. Пузырьки появляются сначала в центре клетки, а затем, направляемые микротрубочками, перемещаются и сливаются друг с другом, образуя клеточную пластинку, расположенную в экваториальной плоскости (см. рис. 5.30). Содержимое пузырьков участвует в построении новой срединной пластинки и стенок дочерних клеток, а из их мембран образуются новые наружные клеточные мембраны. Клеточная пластинка, разрастаясь, в конце концов сливается со стенкой родительской клетки и полностью разделяет две дочерние клетки. Новообразованные клеточные стенки называют первичными в дальнейшем они могут дополнительно утолщаться за счет отложения целлюлозы и других веществ, таких как лигнин и суберин, образуя вторичную клеточную стенку. В определенных участках клетки пузырьки клеточной пластинки не сливаются, так что между соседними дочерними клетками сохраняется контакт. Эти цитоплазматические каналы выстланы клеточной мембраной и образуют структуры, называемые плазмодесмами. [c.150]

    Циклические нуклеотиды участвуют в регуляции процессов транспорта ионов через клеточные мембраны, распада углеводов и жиров, модификации сократительных белков мышц, что влияет на функцию скелетных мышц и других органов. Доказана регуляторная роль циклических нуклеотидов в процессах клеточной дифференцировки, секреции гормонов. Циклическим нуклеотидам принадлежит главная роль в гормональной регуляции внутриклеточных процессов в различных тканях как вторичных передатчиков. [c.215]

    Вопрос о механизме действия сердечных гликозидов все еще не решен. Все они, по-видимому, действуют одинаково, различаясь лишь по эффективности при приеме внутрь, а также по длительности действия и активности. Согласно наиболее широко принятой в настоящее время теории, сердечные гликозиды подавляют или замедляют активный транспорт ионов калия и натрия через клеточные мембраны, в том числе мембраны клеток сердца, путем ингибирования мембранной АТФазы. Это приводит к накоплению натрия в клетках и потере калия, а также (вторичный эффект) к росту внутриклеточной концентрации свободных ионов кальция, что сопровождается повышением сократимости миофибрилл. Эта теория находит подтверждение в результатах клинических наблюдений так, наиболее частой причиной непереносимости препаратов наперстянки служит диурез, приводящий к гипо-калиемии. Гиперкальциемия часто усугубляет токсические реакции на препараты наперстянки, так как кальций- потенцирует их гипокалиемическое действие. Лучшим способом борьбы с аритмиями, возникающими при приеме сердечных гликозидов (если главное нарушение — самопроизвольные разряды в клетках сердечной мышцы), служит введение солей калия. [c.96]

    Внешний сигнальный агент, называемый первичным мессенджером, как правило, не проникает внутрь клетки, а специфически взаимодействует с рецепторами наружной клеточной мембраны. В качестве первичных мессенджеров выступают различные химические соединения (гормоны, нейромедиаторы) или физические факторы (квант света). Однако гидрофобные стероидные и тиреоидные гормоны способны диффундировать через липидный бислой внутрь клетки и связываться с растворимыми рецепторными белками. Если внешняя сигнальная молекула воздействует на рецепторы клеточной мембраны и активирует их, то последние передают полученную информацию на систему белковых компонентов мембраны, называемую каскадом передачи сигнала. Мембранные белки каскада передачи сигнала подразделяют на белки-преобразователи, связанные с рецепторами, и ферменты-усилители, связанные с белками-преобразователями и активирующие вторичные внутриклеточные мессенджеры, перено- [c.64]

    Клеточные мембраны претерпевают различные изменения в течение и после трансформации клеток в злокачественные. Изменение состава гликопротеидов — всего лишь одно из многих изменений, которые определяются в мембранах трансформированных и злокачественных клеток. Необходимо приложить значительные усилия специалистов различных областей исследования прежде, чем станет понятна роль обнаруженных изменений мембран в процессе малигнизации. Первичные повреждения, возможно, причинносвязанные с трансформацией нормальных клеток в злокачественные, необходимо выделить из вторичных, появляющихся в процессе роста и прогрессии опухолей. Должны быть определены функциональные и структурные последствия в молекулах мембран. Наконец (вероятно, наиболее важное), должны быть разъяснены молекулярные основы ненормальных клеточных взаимодействий, служащих характеристикой и определяющих поведение злокачественных клеток. [c.114]

    В настоящее время не вызывает сомнений тот факт, что биологические мембраны играют ключевую роль в процессах приема, переработки и передачи информации в клетке, обеспечивающих согласованное протекание множества биохимических реакций целостного организма. Изучение молекулярных механизмов регуляции клеточного метаболизма с помощью внешних (первичных) и внутриклеточных (вторичных) сигналов (проблемы клеточной сигнализации) является предметом пристального внимания биофизиков, биохимиков, молекулярных биологов, иммунологов. Эта стремительно развивающаяся область мембранологии как комплексной научной дисциплины начала развиваться во второй половине XX века после открытия Е. Сазерлендом (Нобелевский лауреат, 1971) циклического аденозин-3,5-монофосфата (сАМР) и создания концепции вторичных сигналов (мессенджеров). Рассмотрим более подробно основные принципы функционирования систем получения и переработки информации в клетке. [c.64]

    Как и все клеточные органеллы, лизосомы не только содержат уникальный набор ферментов, но и окружены необычной, непохожей на остальные, мембраной. Эта мембрана, например, содержит транспортные белки, позволяющие продуктам расщепления макромолекул покидать лизосому, после чего они могут либо выделяться из клетки, либо использоваться внутри нее вторично. Кроме гого полагают, что в мембране лизосомы находится специальный белок, использующий энергию АТР для накачки ионов Н в лизосому. Именно это поддерживает в полости данной органеллы pH около 5 (рис. 8-69У Большинство белков лизосомной мембраньг необычно сильно гликозилированы. что. возможно, защищает их от действия протеаз в полости органеллы. [c.67]

    Кислый характер белков клеточной стенки и клеточных мембран у галофилов. Различия, характерные для аминокислотного состава рибосомных белков галофильных и обычных микроорганизмов, обнаружены и у других белков. Особенно демонстративно эти различия проявились при изучении белков клеточных стенок и мембран. Давно известно, что клеточная оболочка (состоящая из клеточной стенки и плазматической мембраны) у галофилов подвергается лизису, если содержание соли в среде уменьшить примерно до 5% (Na l). Вопреки естественному предположению этот лизис не обусловлен осмотическими эффектами. Высокие концентрации неионных растворенных веществ, например сахарозы, не предотвращают лизиса клеточной оболочки. Заинтересовавшись вопросом о причинах этого лизиса, Дж. Гиббонс и его сотрудники более 10 лет назад пришли к выводу, что клеточные стенки и мембраны сохраняют свою целостность благодаря слабым вторичным взаимодействиям и остаются интактнымп до тех пор, пока их отрицательные заряды блокированы высокими концентрациями Na+. Эта гипотеза по существу предсказывала, что в клеточной оболочке должны преобладать кислые белки. [c.128]

    Особо сложен подбор дрожжей для брожения игристых вин в закрытом чане, и потребностям дрожжей в питательных веществах в этих условиях было посвящено много исследований. Дрожжи должны быть толерантны к спирту, пониженным температурам, двуокиси серы и давлению. Поскольку дрожжи подвергаются неблагоприятному воздействию температур и этилового спирта, очень важна оксигенация дрожжевой культуры, степень которой подбирается так, чтобы она способствовала укреплению клеточной стенки и мембраны, а также повышала стойкость дрожжей к этиловому спирту [42]. Повышению стойкости к спирту способствует добавление к массе дрожжей липидов, что способствует также увеличению содержания в готовом вине сложных ацетат- и этилэфиров, а также сивушных масел [51]. Определяющим фактором при выборе штаммов дрожжей для вторичного брожения является их стойкость к этиловому спирту. Для повышения стойкости дрожжей к этиловому спирту традиционно применяют их разведение в условиях низких температур [58]. К дрожжам, усваивающим [c.187]

    Коппик и Фаулер [78] предложили технику окрашивания (модифицированную реакцию Толленса), при которой срезы последовательно обрабатываются насыщенной хлорной водой, 3%-ным спиртовым раствором мо-ноэтаноламина и 5%-ным водным раствором азотнокислого серебра. Структуры, содержащие много лигнина, окрашиваются в темно-коричневый цвет до черного, тогда как слабо лигнифицированные зоны окрашиваются в светло-желтый цвет до янтарного. Результаты этой цветной реакции полностью подтверждают предшествующие работы по исследованию химии клеточной стенки. Сложная срединная пластинка глубоко окрашивается, следовательно, в ней много лигнина (как показано Риттером [80], Харлоу [81.1 и А. Бейли [82]) лучевые клетки и паренхимные ткани содержат много лигнина (как показал Харлоу и Уайз [83]). Вторичные стенки волокнистых элементов у древесины лиственных пород, растущих в умеренном климате, более светлые, следовательно, они менее лигнифицированы, чем вторичные стенки хвойных пород. Стенки сосудов у лиственных пород окрашены в более темный цвет, чем окружающие волокнистые элементы, следовательно, они содержат больше лигнина мембраны пор также сильно лигнифицированы [84]. [c.103]

    Образование впячиваний происходит в результате того, что скорость роста мембраны превышает скорость растяжения клеточный стенки, а скопление ламелл и трубочек, заполняющих полость будущей мезосомы, вызывает инвагинацию цитоплазматической мембраны в сторону цитоплазмы (Rogers, 1970). Согласно этим гипотезам, трубочки и ламеллы возникают благодаря вторичному впячиванию мембраны, окружающей ме-зосому, внутрь ее полости. [c.30]

    Хотя рабдовирусы имеют липидную оболочку, в клетку они проникают в основном с помощью эндоцитоза, а не путем прямого слияния с мембраной. В отличие от парамиксовирусов у рабдовирусов нет специального белка, ответственного за слияние с клеточной мембраной, и этот процесс удается наблюдать только при кислых значениях pH или после осаждения вирионов на клетки с помощью центрифугирования. Электронномикроскопический анализ показал, что связанный с клеткой VSV концентрируется в участках плазматической мембраны, выстланных клатрином, и обнаруживается в цитоплазматических везикулах, которые образовались в результате эндоцитоза выстланных клатрином ямок. Роль эндоцитоза в инфекционном процессе подтверждается также в опытах с использованием ингибиторов. Дансилкадаверин и амантадин, не влияющие на связывание с клеточной мембраной, но ингибирующие опосредованный рецептором эндоцитоз, крайне затрудняют проникновение вируса и последующий синтез вирусных РНК [37]. Проникшие внутрь клетки вирионы затем обнаруживаются во вторичных эндосомах, где поддерживаются кислые значения pH, при которых и VSV, и вирус бешенства могут сливаться с мембранами. Предполагают, что слияние вируса с мембраной лизосомы, вызываемое кислой средой, приводит к раздеванию виру--са и выбросу рибонуклеопротеина в цитоплазму [30]. Такой путь инфекции и на сей раз подтверждается опытами с при- менением ингибиторов. Лизосомотропные агенты — хлорид аммония и хлорохин — накапливаются в лизосомах и поднимают pH выше того уровня, при котором возможно слияние VSV с мембраной. При добавлении этих веществ на ранних стадиях инфекции не ингибируется ни связывание VSV, ни его проникновение внутрь клетки, но урожай вируса существенно уменьшается [27]. Изучая влияние других лизосомотропных аминов на синтез вирусных РНК, установили, что максимальное подавление синтеза достигается в том случае, когда ингибитор добавляют непосредственно в процессе заражения. Чем позже добавляют ингибитор, тем менее выражен эффект. Процесс ингибирования обратим и может быть приостановлен отмывкой клеток от ингибитора. Полученные данные говорят о том, что [c.424]

    Согласованная ориентация микротрубочек, расположенных у внутренней поверхности плазматической мембраны и целлюлозных микрофибрилл, образующихся на ее наружной стороне, характерна для многих клеток различного типа и разной формы. Это явление наблюдается при формировании как первичной, так и вторичной клеточной стенки (рис. 20-49), в частности при локальном отложении дополнительных слоев, когда, например, образуются утолшения в определенных участках поверхности клеток ксилемы (см. рис. 20-15). [c.421]

    В СП находятся сахара, глюкоза и фруктоза в соотношениях, близких к тем, которые свойственны данным клеткам. В цитоплазме в сферосомах происходит синтез жиров, в транслосо-мах — образование и накопление производных фенолов, в центральной вакуоли часто накапливаются вещества вторичного происхождений (органические кислоты, алкалоиды и др.) и т. д. В цитоплазме находятся многочисленные клеточные органеллы, каждая из которых окружена своей мембраной, и даже частицы, лищениые мембраны (например, рибосомы), могут играть роль своеобразных Реакционных отсеков. [c.89]

    Начальной стадией процесса является восприятие и распознание биологически активного вещества его рецептором, находящимся на поверхности клетки. Далее следует сложный процесс трансмембранной передачи сигнала с внешней стороны мембраны на внутреннюю и образование внутриклеточного эффектора (вторичный мессенджер), При возрастании концентрации вторичного мессенджера включаются фердентные ансамбли, которые в свою очередь регулируют функцию цитоскелетно-мембранной системы. И, наконец, изменение активности клеточных компонентов может модифицировать функцию ядра. Таким образом внешний сигнал через цитоскелет транслоциру- [c.103]


Смотреть страницы где упоминается термин Клеточная мембрана вторичная: [c.128]    [c.502]    [c.101]    [c.27]    [c.79]    [c.143]    [c.48]    [c.143]    [c.48]    [c.401]    [c.229]   
Жизнь зеленого растения (1983) -- [ c.67 ]




ПОИСК





Смотрите так же термины и статьи:

Мембрана клеточная



© 2025 chem21.info Реклама на сайте