Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клеточных мембран антигены

    Различные аллели t оказывают влияние на клеточную мембрану сперматозоидов, подтверждая тем самым высказанное выше предположение о том, что эти аллели влияют на клеточные мембраны ранних эмбрионов. Их воздействие на клеточные мембраны доказывается благодаря появлению новых антигенных свойств. Гетерозиготные самцы t/+ продуцируют два типа сперматозоидов, различающихся по антигенным свойствам, что предполагает активность локуса Т после мейоза, когда развивается зрелая сперма. По неизвестной причине сперматозоиды, несущие аллель t, более эффективны при оплодотворении, чем сперматозоиды t. Поэтому рецессивные аллели t имеют селективное преимущество во многих природных популяциях диких мышей, несмотря на свое вредное действие на организм. [c.262]


    Компоненты комплемента. Комплемент представляет собой набор по крайней мере десяти белковых факторов, присутствующих в свежей (неконсервированной) сыворотке крови. Их обозначают С1, С2, СЗ и т.д. Первый из них активируется антителами к соответствующим антигенам, а С1 активирует затем С4. Этот последний активирует С2 и так далее. Конечным результатом этого каскада активаций комплемента является повреждение клеточной мембраны, несущей антиген, а часто и лизис клетки. Кроме того, активированные компоненты комплемента обладают рядом других биологических свойств, таких, как хемотаксис или высвобождение гистамина. Они играют важную роль медиаторов имунного ответа организма на микробную инфекцию. [c.217]

    Процесс лизиса чужеродных клеток состоит из нескольких этапов (рис. 9.2). Первый этап — специфическое связывание примированных D8 Т-клеток с поверхностным чужеродным антигеном (пептидами вирусных, трансплантационных, раковых антигенов). Взаимодействие антигенраспознающих рецепторов цитотоксических Т-клеток с соответствующим антигеном усиливается дополнительными неспецифическими молекулярными структурами клеточной поверхности, которые обеспечивают наиболее эффективную динамическую адгезию между клетками (см. ниже). Второй этап, получивший название летального удара , представляет собой основное событие, предопределяющее гибель клетки-мишени. Механическое разобщение эффектора и клетки-мишени на этом этапе не спасает последнюю от гибели. Для этого этапа характерно повышение проницаемости клеточной мембраны, нарушение баланса натрий-калиевого насоса. Механизм, лежащий в основе летального удара , не достаточно ясен. Одним из факторов, повреждающих мембрану клетки, выступает лимфотоксин (фактор р некроза опухолей). Третий этап, приводящий к лизису клетки-ми- [c.202]

    Еще в XIX столетии, когда, по существу, ничего не было известно ни о рецепторах клеточной мембраны, ни о природе антител, П. Эрлих предложил теорию образования антител, согласно которой поверхность антителопродуцирующей клетки снабжена рецепторными антителами. Антиген, связываясь со специфическими ре- [c.35]

    Ассоциация мембранного белка МНС-1 происходит только с антигеном, погруженным в ту же самую мембрану. При этом с успехом удается создать комплекс (МНС-14-антиген), внедрив оба типа молекул в искусственную модель клеточной мембраны — липо-сому. Такой комплекс в липосоме узнается рецептором специфического Т-киллера. В отдельности не узнается ни одна из двух компонент комплекса. В отличие от комплекса пептидной детерминанты с МНС-П в комплексе с МНС-1 вирусный антиген можно легко обнаружить соответствующим антителом. [c.47]


    Фенотипический анализ обнаруживает последовательные изменения в антигенном составе клеточной мембраны при созревании Т-клеток (рис. 12.7). Изменения фенотипа упрощенно можно представить в виде трехстадийной модели. [c.222]

    Связывание IgM с антигеном изменяет конформацию 1вМ и индуцирует связывание его с первым компонентом системы комплемента и активацию этой системы. Если антиген расположен на поверхности микроорганизма, система комплемента вызывает нарушение целостности клеточной мембраны и гибель бактериальной клетки. [c.27]

    На мембране моноцитов/макрофагов, в особенности активированных макрофагов, экспрессированы антигены гистосовместимости II класса (МНС II), необходимые для презентации антигена D4" Т-хелпером. Молекулы МНС II являются гетеродимерами, состоящими из двух гликопротеиновых цепей а и . Эти молекулы представляют из себя интегральные белки клеточной мембраны. В экстрацеллюлярном домене, образованном двумя цепями, располагается гипервариабельный участок связывания антигенного пептида. Молекулы МНС II у человека кодируются генами субрегиона D (II класса) комплекса HLA, который принято делить на [c.154]

    Полисахариды клеточной мембраны наряду с белками выполняют роль антигенов при развитии клеточного иммунитета, в том числе при реакции отторжения трансплантата. Они также служат местами узнавания при заражении патогенными [c.283]

    Образование комплексов фермент—субстрат и гормон—рецептор предполагает узнавание молекулами друг друга. На более высоком уровне организации такой способностью обладают клетки. Так, лейкоциты в токе крови узнают и разрушают чужеродные клетки, например бактериальные, но не нападают на собственные клетки крови. Узнавание проявляется и в контактном ингибировании некоторые клетки высших организмов (например, клетки мышечной ткани) в питательной среде продолжают делиться до тех пор, пока не придут в контакт с другими клетками, после чего их рост прекращается. Раковые клетки в тех же условиях продолжают делиться. В этих двух примерах клеточного узнавания, имею- щего важное значение в медицине, участвуют поверхностные антигены. Уникальность специфических типов клеток указывает на большое разнообразие их поверхностных антигенов, что дополнительно усложняет строение биологических мембран. Процессы клеточного узнавания зависят от подвижности компонентов мембраны, которая, по-видимому, регулируется с помощью микротрубочек, имеющихся в цитоплазме [4]. [c.108]

    Эндоцитозные пузырьки, образующиеся из окаймленных ямок, имеют относительно небольшие размеры ( 150 нм в диаметре). Фагосомы же имеют диаметр, который определяется размерами поглощаемой частицы. Иногда они почти такого же размера, как и сами фагоцитирующие клетки (рис. 6-83). Фагосомы сливаются с лизосомами и образуют фаголизосомы. Здесь происходит деградация поглощенного материала. Неперевариваемые продукты остаются в фаголизосомах, образуя остаточные тельца. Часть поглощенных компонентов собственной плазматической мембраны, как и при эндоцитозе возвращается обратно в плазматическую мембрану. В некоторых макрофагах пептиды, получившиеся при деградации поглощенных белков, возвращаются на клеточную поверхность связанными с гликопротеинами главного комплекса гистосовместимости (см. разд. 18.6.10). Поверхность этих макрофагов затем тщательно обследуется Т-лимфоцитами иммунной системы. Если пептиды происходят от чужеродного агента - они активируют Т-лимфоциты к иммунному ответу. Таким образом, макрофаги в данном случае выступают как клетки, представляющие антиген (см. разд. 18.6.10). [c.421]

    Для выявления молекул клеточной поверхности, участвующих в межклеточной адгезии, белки плазматической мембраны солюбилизируют, отделяют друг от друга и каждую фракцию испытывают на способность нейтрализовать действие фрагментов антител, блокирующее агрегацию клеток (этапы 3 и 4). Затем фракции, проявившие такую способность, очищают и вновь тестируют до тех пор, пока не будет получен чистый белок (этот процесс на схеме не показан). Другой Иммунологический подход состоит в получении большого числа моноклональных антител (разд. 4.5.4) к антигенам клеточной поверхности и их скрининге для выявления тех, которые будут блокировать межклеточную адгезию. Оба иммунологических метода основаны на важном общем наблюдении простое нанесение на клеточную поверхность антител само по себе не препятствует нормальной клеточной адгезии адгезия блокируется только тогда, когда мишенями для связывания антител служат специфические молекулы клеточной [c.518]

    Одно из самых значительных достижений рентгеноструктурного анализа белков последних лет, которое не может не повлиять на дальнейшее развитие биологии и становление ее новой области -молекулярной биологии клетки, состоит в начавшейся расшифровке трехмерных структур первых мембранных белков. Перед обсуждением полученных здесь результатов целесообразно кратко сообщить о том, что было известно об этих белках до исследования их с помощью рентгеновской дифракции. Если основные структурные особенности биологических мембран определяются молекулами липидного бислоя, то специфические функции мембран выполняются главным образом белками. Они ответственны за процессы превращения энергии, выступают в качестве рецепторов и ферментов, образуют каналы активного и пассивного транспорта молекул и ионов различных веществ через мембраны, охраняют организм от проникновения чужеродных антигенов и стимулируют иммунный ответ клеточного типа. В обычной плазматической мембране белок составляет около 50% ее массы. Однако в некоторых мембранах, например во внутренних мембранах митохондрий и хлоропластов, его содержание поднимается до 75%, а в других, например миелиновой мембране, снижается до 25%. Многие мембранные белки пронизывают липидный бислой насквозь и контактируют с водной средой по обеим сторонам мембраны. Молекулы этих белков, называемых трансмембранными, как и окружающие их молекулы липидов, обладают амфипатическими свойствами, поскольку содержат гидрофобные участки, взаимодействующие внутри бислоя с гидрофобными хвостами липидов, и гидрофильные участки, обращенные к воде с обеих сторон мембраны. Другая группа мембранных белков соприкасается с водой только с одной стороны бислоя [234, 235]. Одни из них погружены только во внешний или во внутренний слой мембраны, другие ассоциированы за счет невалентных взаимодействий с трансмембранными белками, третьи прикреплены к мембране с помощью ковалентно связанных с ними цепей жирных кислот, внедренных в липидный слой. [c.56]


    Присоединение углеводной единицы к белкам клеточной мембраны или к белкам, выделяемым клеткой, осуществляется под действием особых трансфераз. Приведем в качестве примера синтез антигенов, определяющих группу крови. Роль специфических гликозилтрансфераз в определении групповой принадлежности крови уже обсуждалась в гл. 5, разд. В, 1. [c.536]

    Заканчивая эту главу, отметим, что мы здесь подходили к проблеме противоопухолевой защиты только с точки зрения действия специфических иммунных сил. Из исследования моделей как будто бы следует, что против, спонтанных, слабоантигенных опухолей практически нет иммунной защиты. Однако сравнительно редкб наблюдаемое развитие неоплазмы указывает на то, что система надзора должна существовать. И действительно, в последние годы большие надежды в этом плане возлагаются на естественную резистентность , связанную с противоопухолевым действием так называемых натуральных киллеров (НК) [33]. Эти клетки, в отличие от специфически действующих Т-лимфоцитов, поражают раковые клетки всевозможной специфичности. Клетки НК пред-существуют в организме в больших количествах (I—2% всех лимфоцитов), поэтому лизис ими опухолевых клеток начинается сразу же, без латентного периода, тогда как для развития популяции Т-киллеров нужны дни и даже недели. К сожалению, возможность-этой системы защиты ограничена, она действует только против малых опухолей. При больших количествах опухолевых клеток начинается противоположная реакция — инактивация и даже лизис НК-клеток опухолевыми [34, 35]. Тем не менее, роль НК в организме значительна именно в смысле противоопухолевого надзора. Самое существенное при этом — способность НК узнавать опухолевые клетки независимо от их антигенности. По-видимому, в основе процесса узнавания клетки-мишени для НК лежит реакция на изменение свойств клеточной мембраны. В следующей главе мы как раз и будем обсуждать свойства мембран злокачественных клеток, отличающие их от нормальных. [c.138]

    В-клетки. Третьим типом клеток, способным представлять антиген в иммуногенной форме для наивных Т-клеток, являются В-лимфоциты. Если ма1фофаги поглощают в основном бактерии, дендритные клетки — различные вирусы, то активность В-клеток направлена на белковые антигены, включая бактериальные токсины. Два основных свойства В-лимфоцитов определяют их потенциальную способность выступать в качестве антигенпрезентирующих клеток наличие поверхностных, специфических, иммуноглобулиновых рецепторов (sig) и выраженная экспрессия молекул II класса МНС. При этом у покоящихся В-клеток отсутствует третий обязательный компонент клеточной мембраны — костимулятор В7, однако он начинает экспрессироваться под влиянием компонентов бактериальных стенок, таких, например, как полисахариды. [c.220]

    Такие антисыворотки используются для изучения кампонен-тов смесн антигенов, а также как контрольные реагенты при определении индивидуальных молекул. При получении таких антиоывороток важно достичь максимального разнообразия иммунного ответа и такого баланса титров антител с разной специфичностью, чтобы при использовании одной концентрации можно было выявить (в ИЭФ или двумерном ИЭФ) многочисленные антигены, составляющие смесь. Применяя в качестве исходного материала экстракт бактерий или паразитов, элюат клеточной мембраны или цельную сыворотку, которые содержат антигены в разной концентрации и с различной иммуногенностью, трудно получить сбалансированную антисыворотку, выявляющую антигены небольшой мол. массы, поскольку преимущественно будут образовываться антитела к большим молекулам. Может возникнуть необходимость в раз- [c.79]

    Вирусные белки, синтезируясь на рибосомах зараженной клет ки, в составе транспортных везикул достигают внешней клеточно1[ мембраны. Здесь они дожидаются момента сборки вириона, когд 1 все белковые компоненты вируса вместе с фрагментом клеточной мембраны объединятся вокруг вирусной нуклеиновой кислоты (РНК или ДНК) и отпочкуются от клетки. Часть вирусных белков, не включившись в состав вирионов, ассоциируется с белками МНС-1, плавающими тут же в липидном бислое клеточной мембраны. Образовавшийся комплекс (вирусный антиген 4-МНС-1) узнается рецепторами предшественников Т-киллеров и зрелыми Т-киллерами. Это требует прямого контакта Т-лимфоцита с клеткой, зараженной вирусом. Рецептор Т-клетки узнает два домена молекулы МНС-1 (М и С1, т.е. наиболее удаленные домены от места прикрепления молекулы МНС-1 к мембране см. рис. 16). [c.48]

    Один из предполагаемых механизмов адъювантного действия линейных полиэлектролитов состоит в склеивании В-лимфоцитов с Т-хелперами за счет многоточечной адсорбции линейных макромолекул на клеточных мембранах. В агломерации может участвовать также и макрофаг. Липкие участки полимера могут одновременно захватывать также антиген и другие белковые факторы [172], способствуя их локализации у поверхности В-лимфоцита, где расположены рецепторы, связывающие антигенные детерминанты. В свете этой гипотезы легко понять отмеченное выше структурно-химическое разнообразие полимерных адъювантов ведь клеточные мембраны, равно как и белковые глобулы, гетерофункциональны, а, следовательно, являются достаточно универсальными партнерами для кооперативной сорбции разнообразных полиэлектролитов. На первый взгляд такой механизм стимуляции полимерными адъювантами межклеточного взаимодействия совершенно неспецифичен. Вместе с тем известно, что антиген — клеточный агломерат, необходимый для запуска биосинтетического аппарата В-лимфоцита, должен быть весьма специфичен как по составу, так и по взаимному расположению включенных в него элементов. Каждому типу антигена должен соответствовать свой В-лимфоцит и свой Т-лим-фоцит-хелпер. Более того, определенный участок молекулы антигена должен найти на поверхности В-лимфоцита адекватный рецептор и войти с ним в структурно-специфический контакт. [c.208]

    Еще одно отличие антител от ТкР заключается в том, что первые существуют в двух формах — в виде В-клеточных антигенсвязывающих рецепторов и в виде выделяемых клеткой молекул, а ТкР — это всегда сложный комплекс белков клеточной мембраны, Секретируемые клеткой антитела чаще всего представляют собой бифункциональные молекулы их У-домены предназначены для связывания с антигенами, тогда как С-доме-ны взаимодействуют с рецепторами на клетках организма-хозяина или с компонентами комплемента. [c.149]

    Индукция толерантности к собственным антигенам может приводить либо к делеции клеток, либо к их анергии. Это зависит от аффинности антигенных рецепторов В-клеток и природы соответствующего антигена, в частности от того, является ли он интегральным белком клеточной мембраны или представляет собой растворимый, циркулирующий, в основном мономерный белок. Судьба аутореактивных В-клеток прослежена в экспериментах на трансгенных животных рис. 14.10 к 14.11). [c.268]

    Тем не менее использование мутаций Н-2 позволило совершенно по-новому подойти к решению проблемы соотношения между аллоантигенами (Н-2) клеточной мембраны, которые определяются серологически (при помощи антител), и теми, которые могут активировать клетки Т. Активность последних выявляется в реакциях отторжения трансплантатов, а также в других реакциях клеточного иммунитета. Да недавнего времени казалось, что те же самые антигены (специфичности) Н-2 выявляются как антителами, так и в реакциях клеточного иммунитета, поскольку обычно отторжение трансплантата сопровождается образованием гуморальных антител. Углубленный генетический анализ комплекса Н-2 с применением мутантов и усовершенствование иммунологических методик вызвали сомнения в правильности этого положения трансплантационной иммунологии (Ba h е. а., 1972, 1976 Egorov, 1974). Теперь известно, что отторжение трансплантатов по сильному типу в случае несовместимости по мутациям типа I (а также другие сильные реакции клеточного иммунитета) не связано с образованием антител, хотя небольшие изменения серологически определимых антигенов у му тантов все же обнаруживаются. Следовательно, специфичность рецепторов клеток Т и В, распознающих трансплантационные антигены, не идентична. [c.212]

    ПОКОЯ11ШХСЯ В-лимфоцитов синтезируются молекулы антител, одиако иэ клеток они не выделяются, а встраиваются в клеточные мембраны лимфоци-юв. Каждый В-лимфоцит продуцирует антитела, которые узнают один и только один антиген. Таким образом, антитела, узнающие белковую оболочку вирусов полиомиелита, не будут узнавать холерный токсин, мембрану клетки Е. oli или вирус гриппа. [c.94]

    Никаких доказательств того, что процесс образования пятен и шапочки имеет какое-то отношение к стимуляции синтеза антител, не существует. Тем не менее зтот процесс интенсивно изучается, поскольку, возможно, полученные при зтом сведения помогут понять причины высокой подвижности связанных иммуноглобулинов и других рецепторов в клеточных мембранах. Существует предположение, чтО рецепторные молекулы (например, гликофорин) проходят через мембрану и связываются с цитоскелетом , образованным микрофиламента-ми и микротрубочками [97]. Рецептор, находясь в одном из состояний, должен быть свободным, чтобы диффундировать в плоскости мембраны с образованием пятен , зтот процесс не требует затраты знергии. В другом состоянии рецептор должен быть связан с микрофиламента-ми и микротрубочками, движения которых могли бы обеспечивать процесс образования шапочки , требующий знергии. В некоторых случаях инициация синтеза антител в лимфоцитах может происходить при связывании лектинов. Поскольку структура конканавалина А и характер его связывания с углеводными группами (разд. В 3) уже известны, мы надеемся, что исследование взаимодействия лектинов с клеточными поверхностями приблизит нас к пониманию сложных процессов, лежа щих в основе ответа на антиген [98, 99]. [c.386]

    У грамотрицательных бактерий четко обозначается трехслой-ность клеточной стенки липополисахаридный слой (О-антиген), наружный слой (нередко обозначаемый как "внешняя мембрана"), состоящий из двух фосфолипидных листков, и подлежащий липопротеиновый слой Липополисахарид проявляет свойства эндотоксина, он занимает пограничное положение между внешней средой и подлежащим фосфолипидом (преимущественно — фосфатиди-лэтаноламином) [c.92]

    Поскольку н Т-, н В-лимфоциты встречаются во всех периферических лимфоидных тканях, нужно было найти удобные методы, которые позволяли бы различать н разделять эти два типа клеток,-только после этого можно было изучать их индивидуальные свойства. К счастью, различительными маркерами могут служить многочисленные белки плазматической мембраны, характерные только для Т- нли только для В-клеток. Один нз наиболее часто используемых шркеров-гликопротеин Thy-], который у мышей имеется на Т-, но не на В-лимфоцитах поэтому антитела к Thy-1 можно использовать для удаления нли очистки Т-клеток из смешанной популящ1н лимфоцитов мыши. Использование антигенных маркеров клеточной поверхности для различения и разделения Т- и В-клеток революционизировало клеточную иммунологию и сыграло важную роль в быстром прогрессе этой области знания в последние годы. У экспериментальных животных и у человека находят все больше и больше новых маркеров, характерных для функционально различных субпопуляций Т- и В-лимфоцитов. [c.11]

    Функции В-клеток не столь сложны. Каждая из них распознает определенный антиген и синтезирует связываюшие его антитела. Поверхность мембраны В-клеток несет антигенные рецепторы специфической формы, идентичные образуемым ею антителам. Все мембранные рецепторы одной клетки одинаковы, так что данная клетка может распознать один-единственный тип антигена. Связываясь с ним, клетка активируется и дает клон, т. е. размножается, образуя множество своих копий. Эта активация требует присутствия лимфокинов, секретируемых Т-хелперами (см. рис. 14.40). Таким образом, отделять клеточный иммунный ответ от гуморального не вполне корректно, поскольку они взаимозависимы. [c.178]

    Одним из наиболее показательных аутоиммунных заболеваний, обусловленных антителами, является аутоиммунная гемолитическая анемия. Аутоантитела к антигенам эритроцитов либо непосредственно лизируют клетки в присутствии комплемента, либо комплекс эритроцитгантитело захватывается и разрушается фагоцитами. Разрушение ядросодержащих клеток антителами не является всеобщим явлением, может быть, потому, что эти клетки более устойчивы к действию комплемента. Однако они могут бьггь разрушены через механизм антителозависимого клеточного цитолиза, обусловленного естественными киллерными клетками. Гуморальный аутоиммунный ответ на внеклеточные молекулы матрикса — явление достаточно редкое, но, если оно встречается, то имеет крайне тяжелые последствия. Например, при сиц1фоме Гуд-пастера антитела, образующиеся к IV типу коллагена и поражающие основные мембраны почечных клубочков и сосудов, будут причиной быстро развивающегося заболевания с летальным исходом. [c.366]

    Полисахариды составляют большую и важную в биологическом отношении группу антигенов. Они входят в состав капсулы и клеточной стенки микробов, определяя их антигенную специфичность. Выраженными антигенными свойствами обладают полисахариды растительного пронсхождспия. Будучи составной частью цитоплазматической мембраны клеток животного происхождения, нолисахарнды играют важную роль в формировании их антигенной структуры. В меньшей степенн изучены антигенные свойства углеводных компонентов растворимых глобулярных белков. [c.39]

    Для изучения иммунологических реакций на молекулярном уровне необходимо создание модельных антигенных систем, в которых молекулы-мишени с известными химическими свойствами взаимодействуют с клетками иммунной системы. В случае антигенов клеточных поверхностей модельная система может включать вместо клеток искусственные носители — липосо-мы. Поскольку мембранные белки обычно нерастворимы в воде, с ними работают только в присутствии детергентов, которые способствуют солюбилизации белков, эффективно заменяя липидное окружение. В связи с тем что детергенты токсичны по отношению к живым клеткам, перед проведением опытов на клетках их необходимо удалять. После удаления детергентов в присутствии липидов могут формироваться искусственные мембраны. Когда мембранные белки включаются в образующиеся таким образом липидные пузырьки, они имитируют клеточные антигены и эффективно стимулируют иммунные реакции. [c.150]

    Выбор того или иного метода выделения антигенов клеточной поверхности определяется несколькими соображениями. Одно из них — это доступность клеток или тканей в качестве источника антигена. Культуры клеточных линий представляют собой постоянный и очень однородный источник антигенов. Мо лекулы, с которыми специфически реагируют поликлональные и моноклональные антитела, как правило, относятся к интегральным мембранным гликопротендам, поэтому первым этапом очистки этих молекул должно быть выделение мембран. Уже этот этап дает примерно 50-кратиую очистку поверхностных антигенов, так как мембраны содержат около 1% всех белков клеткн. [c.54]


Смотреть страницы где упоминается термин Клеточных мембран антигены: [c.314]    [c.162]    [c.257]    [c.162]    [c.174]    [c.120]    [c.133]    [c.93]    [c.140]    [c.216]    [c.537]    [c.215]    [c.27]    [c.392]    [c.19]    [c.182]    [c.13]    [c.29]    [c.59]   
Генетика человека Т.3 (1990) -- [ c.266 ]




ПОИСК





Смотрите так же термины и статьи:

Антигенность

Антигены

Мембрана клеточная



© 2025 chem21.info Реклама на сайте