Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость во внешнедиффузионной област

    Когда скорость диффузии намного меньше скорости химической реакции, скорость процесса равна скорости диффузии. Эту макрокинетическую область протекания реакции называют внешнедиффузионной областью. Константа скорости диффузии очень слабо зависит от температуры и весьма заметно — от линейной скорости потока газа. Поэтому изменением указанных условий эксперимента можно вызвать переход из одной макрокинетической области в другую. В частности, переходу во внешнедиффузионную область благоприятствуют высокие температуры и малые линейные скорости газового потока. [c.73]


    Скорость контактного процесса во внешнедиффузионной области зависит от гидродинамического режима потока газа в слое катализатора и площади внешней поверхности зерен. Сопротивление переносу массы к внешней поверхности катализатора очень редко лимитирует скорость контактного процесса. Чаще всего при разработке кинетики процесса сопротивление внешней диффузии [c.283]

    Скорость реакции, протекающей во внешнедиффузионной области, практически не зависит от температуры и зависит от скорости потока и размера частиц катализатора. Поверхность пор катализатора и его активность на скорость реакции в этом случае не влияют. [c.139]

    Экспериментально влияние внешнедиффузионного торможения легко заметить по зависимости наблюдаемой скорости реакции от линейной скорости потока газа. На протекание реакции во внешнедиффузионной области указывают также низкие значения наблюдаемой энергии активации (порядка 4 кДж/моль) [3.43]. [c.73]

    При установившемся режиме контактного процесса скорости всех последовательных этапов одинаковы. Если сопротивление диффузии реагентов и продуктов в ламинарной газовой пленке, окружающей зерно катализатора, значительно выше сопротивлений других этапов, то контактный процесс проходит во внешнедиффузионной области. [c.283]

    Зависимость (УП1-255) выражает скорость контактного процесса во внешнедиффузионной области. [c.283]

    После окисления определенной доли первоначального количества кокса при высоких температурах (900-1200"С) скорость процесса начинает меняться со временем, что, очевидно, является следствием изменения кинетического режима [3,48]. Экспериментальными данными подтверждено, что в этих температурных условиях реакция окисления кокса протекает во внешнедиффузионной области увеличение диаметра зерна кокса (следовательно, уменьшение внешней поверхности зерна), скорости газового потока и концентрации кислорода в газе приводят к увеличению скорости окисления кокса, а рост температуры, хотя и увеличивает скорость реакции, влияет на нее слабо. [c.75]

    Таким образом, локальная селективность процесса определяется только отношением константы скорости диффузии целевого продукта и константы скорости его дальнейшего превращения и тем выше, чем больше отношение Рг/> 2- При переходе реакции Aj—>-Аз во внешнедиффузионную область (хг Э Рг) целевой продукт вовсе не образуется. [c.141]


    Тогда скорость реакции во внешнедиффузионной области в расчете на единицу объема реактора равна  [c.139]

    Если реакция в кинетической области идет по порядку выше первого, то увеличение давления в наибольшей степени увеличивает скорость реакции в этой области (пропорционально Я", где п — порядок реакции), в меньшей — во внутридиффузионной и в наименьшей — скорость внешней диффузии. В результате повышение давления приводит к переходу реакции во внешнедиффузионную область. [c.152]

    Если катализатор отравляется побочным продуктом реакции, протекающей во внешнедиффузионной области, или содержащимся в сырье ядом, который реагирует с катализатором с такой скоростью, что отравление лимитируется только диффузией молекул яда, то отравляется внешний слой частицы катализатора, толщина которого увеличивается со временем работы катализатора (пропорционально т /=). Если катализатор отравляется побочным продуктом реакции, то скорость реакции снижается в результате дополнительного диффузионного торможения, связанного с необходимостью для молекул реагентов диффундировать через отравленный внешний слой частицы катализатора. Если же катализатор отравляется ядом, а реакция протекает в кинетической области, то скорость реакции снижается в результате уменьшения активной поверхности катализатора. [c.154]

    Повышать температуру крекинга имеет смысл до перехода первой стадии реакции во внешнедиффузионную область. Дальнейшее повышение температуры практически не влияет на скорость первой стадии, но ускоряет вторую, и выход бензина снижается. [c.221]

    Следует обратить внимание на характерные признаки протекания процесса во внешнедиффузионной области. Прежде всего, сли внешнедиффузионные ограничения существенны, то значительная конверсия сырья может быть достигнута в слое очень малой высоты или даже на отдельной грануле. Далее, поскольку механизм теплопередачи аналогичен механизму массопереноса, то во всех случаях, в которых найдено сильное внешнедиффузионное торможение, наблюдается также значительный разогрев гранул катализатора по отношению к омывающему их газу (тем больший, чем выше экзотермический эффект реакции диффундирующего компонента и чем больше разность его концентраций в потоке и у гранулы). Повышение температуры вызывает резкое увеличение наблюдаемой скорости процесса во внешнекинетической области, так как константа скорости находится в экспоненциальной зависимости от температуры а коэффициент диффузии относительно слабо зависит от температуры [Т где п = 1,5+2) именно поэтому при некоторой температуре реакции, когда начинает выполняться [c.86]

    При использовании шарикового катализатора кинетическая область горения кокса осуществляется при температурах ниже 500— 550 °С. При более высоких температурах горение кокса идет во внутридиффузионной и внешнедиффузионной областях. Повышать температуру регенерации во внешнедиффузионной области нерационально, так как скорость процесса при этом не увеличивается, а возможность местных перегревов частиц катализатора, приводя- [c.228]

    Внешнедиффузионная область. Скорость диффуции w из газового потока к поверхности описывается первым законом Фик а  [c.138]

    Как следует из рис. 49, с увеличением длительности работы катализатора энергия активации процесса крекинга резко возрастает. Низкие значения кажущейся энергии активации (10 000— 24 700 Дж/моль) соответствуют короткой длительности работы катализатора (5—10 мин) и характерны для внешнедиффузионной области. Вероятно, в начале контакта паров с гранулами катализатора молекулы сырья расщепляются с большей скоростью на активной внешней поверхности и в порах, находящихся вблизи ее, [c.112]

    Окисление аммиака до элементарного азота, глубокое окисление метанола до СО2, наличие побочных реакций при окислении нафталина и в процессе окислительного аммонолиза пропилена предъявляют довольно жесткие требования к технологическому режиму процесса. Все перечисленные факторы и обусловливают температурный режим окислительных процессов. Очевидно, для экзотермических процессов, протекающих вблизи термодинамического равновесия (окисление SOg, H l и др.), надо добиваться понижения температуры с увеличением степени превращения. Для процессов во внешнедиффузионной области (нанример, окисление СНдОН) желателен режим, близкий к изотермическому, особенно для избирательного катализа, при котором отклонение температуры на 10—20 град от заданной (нанример, нри синтезе высших спиртов) приводит к резкому возрастанию скорости побочных реакций или к снижению скорости основной. Очень часто термостойкость продуктов реакции диктует условия температурного режима. [c.138]


    Обычно массопередача внутри гранул более затруднительна, чем перенос из газового потока к поверхности гранул. Диффузия в газовой пленке может стать лимитирующей стадией только при высоких скоростях суммарной реакции (т. е. для очень активного катализатора или для высоких температур) и при низких скоростях потока газа. Стоит напомнить, что появление этого типа ограничения более вероятно при скоростях газа, используемых в испытаниях катализаторов, чем в заводских условиях, где высота реактора обычно гарантирует наличие высоких скоростей. Следовательно, необходимо выяснить, проводятся ли испытания во внешнедиффузионной области, и если это так, то должны быть приняты меры, чтобы избежать этого ограничения. При диффузионном ограничении в газовой пленке скорость реакции должна возрастать с увеличением скорости потока газа — факт, наличие которого позволяет распознать явление. Поэтому, если нужно, может быть сделано соответствующее уточнение при вычислении скорости газа, необходимой в большом масштабе. [c.50]

    В случае высоких скоростей реакции и большого внутридиффузионного торможения (Ф -> >) или для катализаторов с неразвитой пористой структурой реакция протекает на наружной поверхности во внешнедиффузионной области. Такую модель использовали для расчета реактора окисления нафталина и о-ксилола [239]. Установлено, что с переходом реакции во внешнедиффузионную область вследствие большой энергии активации желаемой реакции селективность процесса увеличивается. [c.175]

    Во внешнедиффузионной области (лимитирует 1 -я или 7-я стадия катализа) скорость процесса определяется коэффициентами диффузии реагентов и продуктов реакции. По закону Фика при постоянстве условий диффузии [c.228]

    Количественно скорость реакции, протекающей во внешнедиффузионной области, определяется законом Фика и выражается уравнением скорости реакции первого порядка. Для уменьшения внешнедиффузионного торможения необходимо увеличивать линейную скорость газового потока через слой катализатора. [c.95]

    В промышленности процесс гидрирования окислов углерода протекает во внешнедиффузионной области. С увеличением давления скорость гидрирования возрастает. [c.403]

    При регенерации промышленного шарикового аморфного алюмосиликатного катализатора процесс протекает при низких температурах в кинетической области, при средних температурах — в переходной, а затем во внепшедиффу-зиопной области. Остаточный кокс (2% на катализатор) окисляется при высоких температурах во внутридиффузион-пой области [3.42]. При этом чем меньше расход воздуха па регенерацию, том при бо.тсс низких температурах наблюдается переход реакции из кинетической области во внешнедиффузионную. Скорость регенерации во внешнедиффузионной области практически не зависит от концентрации кислорода в газе. [c.72]

    Было установлено что теоретически облака и кильватерные зоны могут легко перекрывать друг друга. Если = 0,4 и / = = 0,5, то применительно к гидродинамическим следам искомая доля составит 0,2. Если кажупщеся константы скорости реакции, протекающей во внешнедиффузионной области, уменьшатся в 10 раз, то они все еще будут оставаться весьма значительными г например, для частиц размером 100 мкм (d = 10 см) кажущаяся константа скорости понизится от 3 -10 до 3 -10 с . В этом случае реакция будет протекать в пузыре и его гидродинамическом следе (или облаке). Какой процесс будет лимитировать скорость превращения реагента в гидродинамическом следе (или облаке) зависит от конвективного и диффузионного потоков. [c.313]

    Формально такое же уравнение справедливо и для внешнедиффузионного режима, так как в этом случае скорость процесса также пропорциональна объемной концентрации кислорода и не зависит от закоксованности катализатора. Однако если процесс протекает во внешнедиффузионной области, наблюдаемая константа скорости сильно зависит от гидродинамических условий и слабо — от температуры (см. главу VIII). [c.307]

    ТО наблюдаемая энергия активации снижается до половины истинной. Это понижение происходит постепенно в области, промежуточной между кинетической и внутридиффузионной. При дальнейшем повышении температуры реакция может перейти во внешнекинетический режим, в котором наблюдаемая энергия активации вновь возрастает до ее истинногр значения Е, либо, минуя этот режим, сразу перейти во внешнедиффузионную область, где скорость реакции практически перестает зависеть от температуры. [c.113]

    В табл. 4.3 приведены сводные данные о влиянии области протекания реакции на ее кинетические параметры. Рассмотрим, как изменяется область протекания реакции с изменением условий ее проведения. Изменение температуры в наибольшей степени влияет на скорость реакции, проходящей в кинетической области, в значительно меньшей степени — при протекании реакции во внутридиффузионной области и практически не влияет на скорость реакции, если она протекает во внешнедиф-фузиоиной области. С повышением температуры реакция, протекающая во внутренней кинетической области, в результате возрастания константы скорости начинает тормозиться диффузией в порах и переходит во внутридиффузионную область. При дальнейшем повышении температуры продолжение возрастания константы скорости приводит к торможению реакции внешней диффузией, и реакция переходит во внешнедиффузионную область. Далее повышение температуры на скорость реакции влияния практически не оказывает. На рис. 4.2 приведена зависимость константы скорости реакции первого порядка на пористом катализаторе от температуры. На непористом катализаторе осуществляются только два режима— внешнекинетический и внешнедиффузионный. Если во внутренней кинетической области реакция протекает по первому порядку, то влияние [c.151]

    Оценка влияния диффузионных эффектов в эмульсионной полимеризации. Обычно математическое описание кинетики процесса эмульсионной полимеризации сводят либо к детерминированной кинетической модели [15—22], либо к модели, основанной на вероятностных представлениях [23—281. В основе этих подходов лежит допущение о том, что скорость постзшления мономера к по-лимер-мономерным частицам превосходит скорость полимеризации в последних, т. е. процесс протекает в кинетической области. Экспериментальной и теоретической проверке этого положения в эмульсионной полимеризации уделялось сравнительно мало внимания. Влияние диффузии на скорость полимеризации может быть значительным, когда скорость полимеризации в частицах превосходит скорость поступления мономера к нолимер-моно-мерным частицам (внешнедиффузионная область) и скорость диффузии мономера и радикалов внутри частицы (внутридиффузион-ная область). Одними из немногих работ, где делается попытка получить качественные и количественные оценки диффузионных явлений в эмульсионной полимеризации, являются работы [29, 30]. Автор работы [30] получает скорость максимального диффузионного потока к поверхности частицы в виде [c.146]

    Еще одной существенной особенностью макрокинетики рассматриваемых реакций является изменение соотношения между скоростями различных макростадий по мере протекания процесса и соответственно возможность перехода из одной макрокинетической области в другую в ходе процесса. Так, внешнедиффузионная область макрокипетики реализуется в окрестности максимума скорости реакции, а при перемещении реакционной зоны вглубь гранулы полимера в этой же окрестности возможна реализация и [c.335]

    Если реакция проходит со значительным положительным тепловым эффектом, то при протекании ее во внешнедиффузионной области температура поверхности частиц значительно больше температуры газового потока. Разогрев поверхности частиц катализатора (распространяющийся в результате теплопроводности в их объем) происходит потому, что процессы переноса тепла и вещества подобны и движущие силы их (С — с) и (Гпов—Т об) пропорциональны. Разница температур газового потока и поверхности частиц катализатора, как и концентраций реагента в объеме и на поверхности, при протекании реакции во внешнедиффузионной области максимальна. На скорость реакции это явление влияния не оказывает, так как она определяется скоростью диффузии, но оно может сильно изменить селективность процеоса. [c.140]

    Температуры, при которых первая стадия крекинга переходит из кинетической во внутридиффузионную область и из внутри- во внешнедиффузионную, зависят от свойств сырья, активности катализатора, размера его пор и частиц. Для данного катализатора утяжеление сырья, повышая скорость реакции и снижая скорость диффузии, уменьшает температуры перехода. Для сырья заданного фракционного состава повышение в нем концентрации олефиновых и ароматических углеводородов, крекирующихся с большой скоростью, дает такой же эффект. При сырье заданного состава и катализаторе заданной активности переход реакции из кинетической области во внутридиффузионную осуществляется тем при меньшей температуре, чем меньше средний диаметр пор. На температуру пере.хода из внутридиффузионной области во внешнедиффузионную размер пор влияния Не оказывает. Этот переход осуществляется при катализаторе данной активности для данного сырья тем при, меньшей температуре, чем больше размеры частиц катализатора. Таким образом, максимально допустимая температура крекинга, при которой достигается переход первой стадии реакции во внешнедиффузиопную область, зависит от свойств сырья, активности катализатора и размера его частиц. На микросфериче-ском катализаторе при крекинге сырья, выкипающего в пределах 300—500 °С, внешнедиффузионная область достигается при 540— 560°С, на шариковом катализаторе зернением 3—5 мм —при 480—510°С. В кинетической области первая стадия крекинга имеет энергию активации около 30 ккал/моль. [c.221]

    Экспериментальные данные свидетельствуют о том, что при принятых размерах зерна промышленного катализатора (не более 1,5 мм) тормозящим действием внутренней диффузии можно пренебречь для всех реакций, кроме реакций дегидрирования нафтенов, наиболее быстрых, протекающих во внешнекинетической области. При понижении линейной скорости газового потока только последние могут перейти во внешнедиффузионную область. С учетом этого строгое описание процесса следовало бы проводить в рамках двухфазной модели, включающей уравнения переноса массы и тепла между газовым потоком и поверхностью катализатора [319]. Однако это сильно усложнит и без того сложную модель. Кроме того, накопле- ние ошибок вследствие неточности коэффициентов снижает ценность сложной модели. Поэтому более целесообразно экспериментально определить по критерию Рейнольдса границу перехода реакций де- [c.198]

    Г1 др1 роваиия нафтенов во внешнедиффузиониую область и при конструктивном расчете реакторов обеспечивать линейную скорость выше этой границы. [c.199]

    Общая скорость гетерогенного каталитического процесса может определяться наиболее медленной стадией или их совокупностью. Если наиболее медленными стадиями являются первая или последняя, то процесс идет во внешнедиффузионной области и наиболее эффективным средством его ускорения служит перемешивание реагирующих фаз. К впутридиффузионным относят процессы, в которых лимитируют вторая или шестая стадия главными интенсифицирующими приемами при этом служат уменьшение размера зерен и увеличение размеров пор. Процесс относят к кинетической области, когда лимитируют химические стадии 3 — 5- [c.69]

    Все эти реакции практически необратимы и выход целевого продукта (оксида зота), т. е. селективность, определяется- соотношением скоростей реакций 1)—(3). В присутствии избирательного платинового катализатора резко ускоряется реакция (1) (этот процесс служит первой стадией производства азотной кислоты). В оптимальном температурном интервале, определяемом малой скоростью побочных реакций и составляющем 850—900 °С на платиновом катали-йаторе, аммиак окисляется в оксид азота на 95—98% при весьма малом времени контакта газа с катализатором — т = 10— с. Процесс идет во внешнедиффузионной области. [c.128]

    Основные качественные характеристики областей процесса представлены в табл. 3. Следует заметить, что сочетание тех или иных внешних и внутренних областей процесса не равновероятно. Так, например, мало реальным может оказаться сочетание внешнедиффузионной области с областью внутренней диффузии, так как концентрация реагирующих веществ у поверхности зерна во внешнедиффузионной области уже настолько мала, что трудно ожидать высокой скорости реакции на внутренних порах и соответствующего внутриднффузионного торможения. При выборе наиболее выгодной макроструктуры катализатора, отвечающей максимальной его активности, следует учитывать характерные особенности каждой области протекания процесса с тем, чтобы достичь высоких скоростей реакции. [c.75]

    Результаты экспериментов на глубокое окисление изопропилового спирта (ИПС) в вихревом реакторе представлены графиками на рис. 2.26 и 2.27. Зависимость степени окисления X от температуры Т имеет характерную 8-образную форму, что подтверждает переход реакции при Т а 250°С из кинетической во внешнедиффузионную область. Как видно из рис. 2.27, на кривых изменения температуры катализаторного покрытия по длине вихревой трубы по ходу ПВС тметен резкий рост температуры на начальном участке, причем максимум температуры на кривой тем выше, чем больше скорость ввода ПВС при этом вершины кривых смешаются в сторону ввода газа. Затем температура плавно снижается. Более плавное изменение температуры вдоль трубы наблюдается в вихревом реакторе без ВЗУ, т. е. при прямоточном потоке (кривая 4). [c.130]

    Из приведенного уравнения следует, что при постоянном количестве катализатора (5к = onst) и увеличении поверхности раздела фаз Sp скорость реакции будет стремиться к пределу 11 " = Л1 5 Рн соответствующему кинетической области протекания гидрирования. При постоянной поверхности раздела фаз и увеличении количества катализатора скорость реакции стремится к другому пределу Wц = MIMkS Ph,, характерному для внешнедиффузионной области. [c.162]

    Низкие значения скорости могут наблюдаться либо во внутридиффузион-ной области, либо в области чистой химической кинетики. Первый случай отмечается, если пористость гранул катализатора мала, гранулы большие, а давление высокое (и, следовательно, коэффициент диффузии невелик). Во втором случае имеет место чистая кинетическая область. Большинство катализаторов работает во внутридиффузионной области, некоторые — на границе с внешнедиффузионной областью, другие — в области химической кинетики. Наивысшиё активности (отмеченные на кривых) находятся в верхней части графика слева, что показывает желательность высокого соотношения объема каталитического вещества и объема носителя, малых размеров кристаллов активной фазы, малого размера и оптимальной пористости гранулы катализатора. [c.36]

    Гидрирование со i. СО . 15ак уже отмечалось, в большинстве случаев процессы каталитического гидрирования вследствие низкой концентрации реагентов и высокой наблвдаемой скорости реакции на зерне протекают во внешнедиффузионной области. Некоторое влияние оказывает внутридиффузионное тормоаение. Уравнение переноса веществ о слое катализатора в предположении, что реакции гидрирования со в идут до конца и не зависят друг от друга имеют вид [c.209]

    В критерий Био входит отношение величин Р и D , характеризующих скорости внешней и внутренней диффузии. Поэтому данный критерий имеет важное значение для анализа процессов массопередачи с участием твердой фазы. При малых значениях Bi скорость массопередачи определяется скоростью внешней диффузии, или, как говорят, процесс протекает во внешнедиффузионной области, а при больших значениях Bi — скоростью внутренней диффузии (внутриди узионная область). [c.432]


Смотреть страницы где упоминается термин Скорость во внешнедиффузионной област: [c.60]    [c.78]    [c.115]    [c.268]    [c.336]    [c.143]    [c.151]    [c.202]    [c.96]    [c.228]   
Инженерная химия гетерогенного катализа (1971) -- [ c.113 ]




ПОИСК







© 2025 chem21.info Реклама на сайте