Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Проектирование моделирования

    Настоящая книга в основном посвящена разработке модели ступени центробежного компрессора, которая является ключевой при создании модели компрессорной системы и позволяет рассчитать ее характеристики при сжатии реальных газов с различными термодинамическими свойствами для различных режимов работы и способов регулирования производительности. Особенно большое значение это имеет при проектировании центробежных компрессоров для химической и нефтеперерабатывающей промышленности, где используются смеси реальных газов произвольного состава. Для полученных алгоритмов разработана и отлажена на ЭВМ система процедур для расчета термических и калорических параметров реальных газов, которая используется при обработке опытных данных и математическом моделировании характеристик центробежных компрессоров. Приведены эффективные методы аппроксимации и интерполяции для использования опытных данных в математической модели. В виде отработанных программ они могут сразу применяться в расчетной практике. [c.4]


    Стратегия применения метода математического моделирования для решения задач проектирования и эксплуатации химических производств [c.41]

    За последние годы стремительно развивается и совершенствуется теория математического моделирования химико-технологических процессов (ХТП) и химико-технологических систем (ХТС). Значительные успехи в области математического моделирования ХТП, разработки методов синтеза, анализа и оптимизации ХТС, появление мощных быстродействующих ЭВМ третьего и четвертого поколений позволили в настоящее время создать целый ряд автоматизированных систем проектирования (АСП) химических производств. [c.8]

    Предлагаемая читателю монография представляет восьмую книгу в единой серии работ авторов под общим названием Системный анализ процессов химической технологии , выпускаемых издательством Наука с 1976 г. Семь предыдущих монографий 1. Основы стратегии, 1976 г. 2. Топологический принцип формализации, 1979 г. 3. Статистические методы идентификации объектов химической технологии, 1982 г. 4. Процессы массовой кристаллизации из растворов и газовой фазы, 1983 г. 5. Процессы измельчения и смешения сыпучих материалов, 1985 г. 6. Применение метода нечетких множеств, 1986 г. 7. Энтропийный и вариационный методы неравновесной термодинамики в задачах анализа химических и биохимических систем, 1987 г.) посвящены отдельным вопросам теории системного анализа химико-технологических процессов и его практического применения для решения конкретных задач моделирования, расчета, проектирования и оптимизации технологических процессов, протекающих в гетерогенных средах в условиях сложной неоднородной гидродинамической обстановки. [c.3]

    В целом математическое моделирование как метод научного исследования дает возможность, с одной стороны, переходить в отдельных случаях непосредственно от результатов исследования на лабораторных и пилотных установках к проектированию промышленных реакторов, минуя опытные и полу опытные установки, а с другой — значительно сокращает время исследования. [c.14]

    Пожалуй, наиболее полной и полезной статьей для читателя, интересующегося основами системотехники, служит статья Филда , посвященная проектированию, моделированию на аналоговых машинах и расчету системы автоматического регулирования pH для агрегата утилизации промышленных отходов. [c.143]


    Взаимосвязь между проектированием, моделированием и исследованием [c.331]

    Исходными материалами для проектирования (моделирования) организации трудового процесса служат технологический регламент. [c.81]

    Анализ является важнейшим этапом проектирования процессов перегонки и ректификации и характеризуется определением оптимальных режимных параметров процесса и конструктивных размеров аппаратов при заданных технологических требованиях и ограничениях на процесс. Анализ сложных систем ректификации проводится методом декомпозиции их на ряд подсистем с де-тальным исследованием полученных подсистем методом математического моделирования. Проведение анализа сложных систем возможно также при одновременном решении всех уравнений си-стемы с учетом особенностей взаимного влияния режимов разделения в каждом элементе системы. Последний метод анализа является более перспективным для однородных систем сравнительно небольшой размерности, так как в этом методе не требуется рассмотрения сложной проблемы оптимальной декомпозиции системы. [c.99]

    Метод математического моделирования как при решении задачи проектирования, та.к н задачи эксплуатации химических производств, позволяет разработать математическую модель ХТС в целом в виде некоторого функционального оператора, осуществляющего нелинейные преобразования вида  [c.42]

    В последние годы в Советском Союзе издан ряд книг по вопросам математического моделирования, расчета и оптимизации химических реакторов. Тем не менее, перевод и издание монографии Р. Ариса, крупного американского специалиста в этой области, представляется весьма целесообразным. Предлагаемая читателю книга отличается от других книг этого направления тем, что в ней с максимальной последовательностью проводится строгий математический подход в постановке и решении рассматриваемых задач. Некоторое абстрагирование от излишних физических и химических деталей предмета и четкая формализация проблемы представляются особенно необходимыми сейчас, в период становления научных основ проектирования и эксплуатации химических реакторов и отхода в этой области техники от чисто эмпирических методов. Вероятно, наибольшую ценность такой подход имеет при обучении студентов и аспирантов, для которых автор и предназначает свою книгу. [c.5]

    Разработка новых направлений при проектировании химических процессов обусловливается развитием теории и практики таких разделов инженерной химии, как моделирование, оптимизация, техническая кибернетика и промышленная кинетика. Этим вопросам также уделено значительное внимание. Книга снабжена большим числом примеров, позволяющих приобрести необходимые навыки при решении практических инженерных задач. Она может служить учебным пособием для студентов химико-технологических вузов, а также руководством для научных и инженерно-технических работников проектных и исследовательских институтов и предприятий химической и смежных с ней отраслей промышленности. [c.5]

    Казалось бы, наличие математической модели позволяет непосредственно приступить к проектированию промышленного производства, однако создаваемые модели редко обладают требуемой для этого надежностью и, кроме того, некоторые процессы и оборудование не поддаются математическому моделированию вообще. [c.236]

    В последние годы математическим моделированием (в том числе и численным) стали пользоваться как важнейшим инструментом при проектировании и контроле за разработкой нефтегазовых месторождений [34, 21, 38, 45, 51, 77]. Применение современных ЭВМ позволяет решать гидродинамические задачи, связанные с разработкой, в очень широкой и полной постановке. [c.381]

    Вначале исследуют гидродинамическую модель процесса как основу структуры математического описания. Далее изучают кинетику химических реакций, процессов массо- и теплопередачи с учетом гидродинамических условий найденной модели и составляют математическое описание каждого из этих процессов. Заключительным этапом в данном случае является объединение описаний всех исследованных элементарных процессов (блоков) в единую систему уравнений математического описания объекта моделирования. Достоинство блочного принципа построения математического описания заключается в том, что его можно использовать на стадии проектирования объекта, когда окончательный вариант аппаратурного оформления еще неизвестен. [c.46]

    Моделирование процессов гидрокрекинга с использованием закона распределения продуктов. При моделировании процессов нефтепереработки представляется удобной характеристика нефтяной фракции на основе закона распределения ее компонентов по температуре кипения, числу углеродных атомов или молекулярной массе. Тогда нефтяную фракцию характеризуют не фракционным составом, а параметрами закона распределения. Применение такого подхода рассматривал ось и для моделирования гидрокрекинга [32, 331, однако не учитывалась неизотермичность процесса. Поэтому не представлялось возможным решение задачи оптимального проектирования и определения области устойчивых режимов. Проиллюстрируем ниже применение закона распределения для моделирования неизотермического процесса гидрокрекинга бензинов. [c.363]


    Ответ на это дает наука о проектировании технологического процесса, основывающаяся на теории эксперимента, общих технологических принципах, теории -подобия и моделирования, а также на теории оптимизации [2]. [c.8]

    Описанный выше способ развития процесса на основе теории подобия имеет существенные недостатки. В лучшем случае мы можем рассчитывать на получение в промышленной установке таких же показателей, как и в опытной. Если даже эти показатели являются оптимальными для установки меньшего масштаба, они не обязательно должны быть оптимальными для большего масштаба. Теория подобия не может сформулировать правила определения оптимальных условий работы образца по результатам исследований на модели. Другой недостаток моделирования — необходимость применения небольших промежуточных изменений масштаба при разработке сложных операций и процессов, что не позволяет значительно сократить время доведения технологического процесса до промышленного внедрения. Продолжительные исследования и проектирование могут привести к тому, что продукт устареет к моменту его выпуска. [c.472]

    Значительная часть предыдущего изложения была посвящена принципам и методам, которые полезны при проектировании реакторов путем перехода от процессов, осуществляемых в малых масштабах, к промышленным процессам. В настоящей главе будут рассмотрены вопросы, которые не затрагивались раньше, но являются интересными и важными при разработке методов моделирования. В каждом отдельном случае могут быть применены те или иные методы моделирования, как индивидуальные, так и общие. Опишем кратко эти методы следующим образом. [c.340]

    При этом достигается выигрыш по трем направлениям а) становится возможным снизить затраты времени на исследование и конструирование, поскольку моделирование происходит быстрее и оказывается дешевле, чем проведение эксперимента б) определение экономических затрат оказывается более точным, так как процессы проектируются на основе фундаментальных кинетических данных для оптимальных условий работы в) при совершенствовании метода проектирования устраняется чрезмерное увеличение размеров установки, снижаются капитальные затраты, выбираются наилучщие возможные характеристики оборудования и режимов, а также выравнивается качество продукта. [c.14]

    Автор считает, что системотехника внесет значительный вклад в практику и развитие химической промышленности. Пересечение границ химической технологии и других инженерных дисциплин, а также использование прогресса математики для изучения механизмов основных процессов само по себе недостаточно, хотя и является весьма плодотворным. Исследование динамических характеристик, несомненно, вызовет радикальные изменения методов проектирования и их результатов. Применение вычислительных машин и развитие математического моделирования процессов может привести к совершенно новым методам и подходам, которые оправдают себя благодаря экономическим и техническим преимуществам. [c.22]

    Данные, которые можно получить моделированием на вычислительных машинах на стадии проектирования, иногда с большой точностью могут быть получены путем прямых производственных экспериментов. Однако, приступая к экономическому анализу процесса, необходимые дополнительные сведения можно гораздо проще получить путем моделирования на машине, чем возвращаться на завод для проведения новых испытаний. Вычисления оказываются более точными, поскольку в этом случае имеется определенное количество данных для их подтверждения. [c.77]

    Специальное программно-математическое обеспечение АСП, позволяющее решать задачи технологического и конструкционного проектирования химических производств, может быть создано только под руководством и при участии инженеров химиков-техно-логов на основе использования методов математического моделирования ХТП, методов синтеза, анализа и оптимизации ХТС, методов теории эвристических решений, а также в результате глубокого изучения и формализации богатого опыта высококвалифицированных инженеров-проектировщиков. [c.12]

    Ветохин В.Н., Потапов В.И. Моделирование процессов ректификации для целей оптимального проектирования процессов нефтепереработки и нефтехимии.- М., 1981, с. 174-184. [c.101]

    Кинетические коэффициенты процессов тепло- и массообмена, а также химических реакций, базирующиеся на модели идеального противотока, характеризуют не истинные, а лишь кажущиеся скорости протекания этих процессов и не могут быть приняты ни для моделирования и масштабирования лабораторных моделей, ни для оценки эффективности действующих, а также выбора и проектирования новых промышленных аппаратов. Надежными являются лишь те кинетические параметры и зависимости, которые [c.8]

    Моделирование. И экспериментальное, и теоретическое исследования объектов обычно связаны с их моделированием, т. е. изучением моделей реально существующих предметов и явлений (и том числе и конструируемых изделий) для определения их характеристик, оптимизации нх параметров и т. д. Моделирование позволяет значительно снизить затраты на проектирование, избежать трудностей исследования иа натурном объекте, предсказать свойства и правильно выбрать параметры вновь создаваемого оборудования. [c.12]

    Рациональная организация производства предполагает преимущественную ориентацию на прогрессивные формы организации производства (концентрацию, специализацию, кооперирование и комбинирование) и их наиболее широкое исиользование как при проектировании новых предприятий (в частности при моделировании их организации), так и в процессе развития, изменения действующих предприятий. [c.29]

    Монография посвящена одной из самых актуальных проблем современной химической технологии — расчету аппаратуры каталитических процессов на основе количественного описания физико-химических явлений в реакторах. В книге подробно рассмотрены теория и методы расчета химических реакторов для контактных процессов, вопросы использования математического моделирования и методов теории подобия при оптимальном проектировании и проектировании конкретных аппаратов для процессов синтеза аммиака, окисления двуокиси серы, каталитического крекинга нефтяных фракций и др. [c.4]

    В связи с тем, что преимущества использования метода математического моделирования при решении задачи эксплуатации ХТС В настоящее время широко известны, более подробно дадим характеристику основных аспектов и преимуществ использования этого метода при проектировании ХТС. [c.51]

    Уровень требований к расчету и проектированию промышленного оборудования для осуществления контактно-каталитических процессов, интенсивное развитие вычислительной техники и расширение областей ее применения оказывают существенное влияние на задачи математического моделирования гетерогенно-каталитических процессов они становятся намного сложнее, а их решение требует введения новых понятий, методов и средств реализации. Изменяется и сам подход к решению задач математического моделирования. Если до недавнего времени исследователь ставил задачу, исходя из физической сущности каталитического процесса, а затем представлял ее решение математику-вычислителю, то теперь традиционное разделение труда исследователя-химика и математика-вычислителя меняет свой характер, приобретая качественно новые формы. Последнее связано с тем, что построение расчетной модели гетерогенно-каталитического процесса настолько тесно переплетается с разработкой вычислительного алгоритма, что отделить эти стадии друг от друга зачастую невозможно. Для математического моделирования в настоящее время характерна машинно-ориентированная формализация и автоматизация как самой постановки задачи, так и всех процедур, связанных с ее реализацией на ЭВМ. [c.219]

    Решение задач оптимизации и сопутствующих им задач математического моделирования связано, как правило, с выполнением довольно значительного объема расчетов. Этим до некоторой степени объясняется то, что до создания вычислительных машин, способных быстро и точно производить большой объем вычислительной работы, методы оптимального проектирования практически не имели широкого распространеЕ1ия. Появление вычислительных машин позволило качественно изменить отношение исследователя к задачам оптимизации, где от него теперь требуются предельно точная формулировка задачи и разработка алгоритма, ее решения. [c.28]

    Рассмотрим сравнительную характеристику общих стратегий решения задач проектирования и эксплуатации ХТС, особо выделяя -специфику -использования при их осуществлении метода математического моделирования, принципов -синтеза, анализа и оптимизации ХТС. Блок-схемы общих -стратегий решения задач проектирования и эксплуатации представлены соответственно на рис. П-4 и П-5. [c.49]

    При решении задачи проектирования ХТС наряду с методом математического моделирования широко применяется метод физического моделирования. Метод физического моделирования используется для нахождения границ деформации коэффициентов уравнений априорной математической модели (в ряде случаев определяются и границы деформации функционального вида этих уравнений). Тем самым указанный метод применяется для масштабирования технологических процессов и аппаратов реальной ХТС, созданной на основе принятой априорной математической модели, и для установления адекватности этой математической [c.50]

    В зависимости от целей исследований можно выбрать toi или иной тип реагента. С точки зрения простоты экспериментального метода, легкости кинетической обработки результатов опытов более целесообразна постановка исследований карбоксиреащионной способности углеродистых материалов. Кинетические исследования осталь- ных, более сложных реакций можно проводить преимуцественно для установления величин кинетических констант реакций и решения вопросов проектирования, моделирования и оптимизации технологических процессов, разумеется, с учетом специфических особенностей технологии процесса и применительно к конкретно выбранному или "оптимальному" виду углеродистого сырья. [c.17]

    При проектировании, математическом моделировании, оптимизации, научных исследованиях и решении проблем ин — тенсификации химико—технологических процессов принято пользоваться кинетическими закономерностями химических реакций. [c.15]

    Книга предназначена для инженерно-техинческнх работников,. занимающихся исследованием и проектированием центробежных компрессоров, моделированием энергетических, в том числе холодильных, машии н установок. [c.2]

    Данный пакет прикладных программ успешно используется при моделировании динамических свойств технологических объектов широкого класса в химической и смежных отраслях промышленности [81]. Многофункциональный характер пакета, возможность восприятия для обработки различных форм моделей, непроцедурный характер описания заданий позволяют использовать пакет в качестве подсистемы моделирования в системах автоматизированного проектирования (САПР) и автоматизированных системах управления технологическими процессами (АСУТП). [c.254]

    В общей стратегии системного анализа проектирование промышленного гетерогенно-каталитического агрегата является основной целевой акцией, которой подчинена вся процедура принятия решений при анализе и моделировании каталитического процесса на всех уровнях его иерархии. Реализация этой генеральной заключительной акции требует переработки огромного объема накопленной в процессе исследования информации, ее переработки, фильтрации и выработки в результате оптимального проектного решения. Гарантированный успех в решении этих задач обеспечивается не просто автоматизацией процедур проектирования с привлечением вычислительной техники, а использованием развитой интеллектуальной системы проектирования, обладающей способностью на основе мощной базы знаний и функционирования экспертных подсистем активно участвовать в творческом процессе проектирования совместно с проектировщиком-пользовате-лем. Рассмотрим общие вопросы организации интеллектуальных САПР [1]. [c.255]

    Обычно методы теорий размерностей и подобия относят к методам физического моделирования. Однако они, как и любые другие методы моделирования, основаны на сочетании экспериментальных и расчетных исследований. Теория размерностей используется для постановки и обобп ения результатов экспериментальных исследований, когда по каким-либо причинам создание математического описания на основе уравнений балансов вызывает затруднения. При этом целью исследования является не нахождение оптимальных условий (оно рассмотрено в главе I), а получение уравнений для расчета коэффициентов, характеризующих гидродинамику, тепло- и массоперенос. Эти уравнения обычно предполагается использовать при проектировании подобных систем. Методы теории размерностей позволяют упростить исследование и сделать его более общим за счет перехода от размерных переменных к полученным из них безразмерным комплексам. [c.130]

    При выборе средств фильтрования выполняют сравнительные расчеты по определению удельной производительности различных фильтров или их удельной поверхности фильтрования. Такие расчеты можно производить на основании полученных опытных данных без иопользования оеновных уравнений фильтрования. После выбора средств фильтрования расчеты по определению удельной производительности или удельной поверхности фильтрования выбранного фильтра в принятых условиях разделения суспензии выполняют при проектировании новой промышленной фильтровальной установки. Для этих расчетов можно использовать основные уравнения фильтрования, предварительно определив экспериментально некоторые постоянные в указанных уравнениях, в частности удельное сопротивление осадка и сопротивление фильтровальной перегородки. В связи с этим представляется возможным высказать некоторые соображения об определении постоянных в уравнениях фильтрования и о расчете фильтров, а также о физическом моделировании процессов фильтрования. [c.20]

    Математическое описание, как основа математического моделирования, применительно к процессам фильтрования с образованием осадка отличается специфическими сложностями в связи с трудно регулируемым значительным, иногда решающим влиянием микрофакторов. Поэтому особое значение приобретает полнота математического описания, поскольку даже небольшие изменения в интенсивности микрофакторов могут изменить в несколько раз величину параметра оптимизации. В общем случае в математическое описание входят макро- и микрофакторы, причем оно отражает свойства суспензии, условия фильтрования и конструкцию фильтра. Также для определенности примем, что в математическое описание входят только макрофакторы или только микрофакторы и целью математического описания является получение информации об оптимальных условиях проведения процесса с использованием ее при проектировании установок. [c.77]

    Как будет показано ниже, гибкие автоматизированные си-стел.ы создаются главным образом иа базе оборудования периодического действия. Поэтому специалист, имеющий дело с проектированием и эксплуатацией гибких систем, должен прежде всего обладать методикой моделирования, анализа, синтеза и упр,1вления технологическими системами, основным элементом котсфых является аппарат периодического действия. Поэтому в далзиейшсм рассматриваются вопросы моделирования как от-дел) Ных аппаратов, так и систем периодического действия (гл. [c.21]

    Таким образом, как следует из изложенного, для большинства малотоннажных производств хи.мической и смежных отраслей иро.мышленности характерен обширный ассортимент продукции переменной номенклатуры. Чтобы обеспечить эффективное функционирование этих производств, необходимо сделать их гибкими , способными быстро приспосабливаться к изменению конъюнктуры рынка, т. е. следует разрабатывать и создавать гибкие автоматизированные производствеипые системы. Технологической основой ГАПС предприятий химического профиля является принцип аппаратурного подобия технологических процессов, а организационной базой — периодический способ их организации. ГАПС химического предприятия являются сложными техническими системами. Их создание возможно лишь на основе современных методов кибернетики — математического и логического моделирования, анализа и синтеза, автоматизированного проектирования и управления. Эти вопросы рассмотрены в последующих главах. [c.72]

    Одной из основных подсистем С, ПР является подсистемп технологического проектирования. К функциям подсистемы аг -томатнзнрованиого технологического проектирования гибких ХТС относятся классификация и группировка технологических процессов проектируемого производства, расчеты материальных и. энергетических балансов, автоматизироваттый выбор технологического оборудования, автоматизированное моделирование апг аратов и систем, структурно-параметрический синтез ХТС, расчет экономической эффективности производства и другие задачи. [c.157]

    В книге рассмотрены общие принципы построения и аппаратурной реализации автоматизированных систем проектирования объектов химической промышленности. Предложена общая стратегия применения метода математического моделирования для решения задач проектирования и эксплуатации химических производств, приведены математи,-ческие модели типовых процессов химической технологии как основъ автоматизированного проектирования подробно изложены принципы, методы и алгоритмы синтеза оптимальных технологических схем химических производств, приведены примеры проектирования крупнотон нажных агрегатов с использованием ЭВМ. [c.4]


Смотреть страницы где упоминается термин Проектирование моделирования: [c.147]    [c.235]    [c.155]    [c.25]   
Циклы дробления и измельчения (1981) -- [ c.166 , c.189 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимосвязь стратегий проектирования и моделирования

Законы моделирования при проектировании и эксплуатации одношнековых прессов

Имитационное моделирование применение для проектирования

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ПРОЕКТИРОВАНИЯ

Математическое моделирование как метод для проектирования

Математическое моделирование как основной метод решения задач оптимизации и проектирования химико-технологических процессов

Моделирование условий наступления предельного состояния разрушения при проектировании сварного изделия

Применение методов моделирования при исследования и проектировании центробежных машин

Проектирование и моделирование химико-технологических процессов и реакторов

Проектирование математического обеспечения систем управления Имитационное моделирование действующих производств полимеров

Проектирование на основе моделирования

Проектирование химических производств и моделирование химикотехнологических процессов

Проектирование циклов с помощью имитационного моделирования

Стратегия применения метода математического моделирования для решения задач проектирования и эксплуатации . химических производств



© 2025 chem21.info Реклама на сайте