Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каналы ионные в мембране

Рис. 4.4. Метод локальной фиксации потенциала мембраны. МЭ - микроэлектрод, ИК - ионный канал, М - мембрана клетки, СФП - схема фиксации потенциала, I - ток одиночного канала Рис. 4.4. <a href="/info/1357953">Метод локальной фиксации</a> <a href="/info/101070">потенциала мембраны</a>. МЭ - микроэлектрод, ИК - <a href="/info/196203">ионный канал</a>, М - <a href="/info/187689">мембрана клетки</a>, СФП - схема <a href="/info/104895">фиксации потенциала</a>, I - ток одиночного канала

    Пока представление о потенциале действия носило феноменологический характер, в дальнейшем необходимо рассмотреть лежащие в его основе молекулярные процессы. В гл. 6 эти вопросы обсуждаются подробно, здесь же рассмотрим лишь некоторые из них. В начале 50-х гг. английские физиологи Ходжкин и Хаксли исследовали потенциал действия и заложили основы современного понимания данного явления. Они показали, что первоначально падение потенциала (деполяризация) обусловлено утечкой ионов натрия (рис. 5.7). По достижении порогового значения ионные каналы в мембране открываются и пропускают ионы натрия. Последующая реполяризация происходит благодаря открытию специальных калиевых каналов и протока ионов калия в обратном направлении, т. е. изнутри наружу, одновременно закрываются натриевые каналы (инактивация). Из рис. 5.7 следует, что первоначально реполяризация превышает значение потенциала покоя, так как при равновесном потенциале для К+ мембрана характеризуется более высоким отрицательным зарядом, чем при потенциале покоя. Это наблюдаемое различие медленно исчезает в результате закрывания калиевого канала и восстановления натриевого потенциала покоя. Инактивация [c.117]

Рис. 6.2. Модели электроуправляемого воротного механизма, а — электрические диполи т при деполяризации переориентируются (т. е. положительный заряд появляется на внутренней стороне мембраны аксона) от положения в состоянии покоя (верхний рис.) к активному состоянию (средний рис.). Следовательно, проход положительно заряженных ионов натрия через канал не блокируется положительными зарядами. После короткой паузы диполь h меняет направление и инактивирует канал (нижний рис.) б—альтернативный механизм, при котором вращающиеся диполи соответствуют конформационным изменениям в спиральной части мембранных молекул. (Воспроизведено с разрешения Keynes.) [8] в — функциональная модель натриевого канала, воротные частицы т н h — независимые подвижные заряды. Рис. 6.2. Модели электроуправляемого <a href="/info/509189">воротного механизма</a>, а — <a href="/info/7125">электрические диполи</a> т при деполяризации переориентируются (т. е. <a href="/info/17612">положительный заряд</a> появляется на внутренней <a href="/info/1388494">стороне мембраны</a> аксона) от положения в состоянии покоя (верхний рис.) к <a href="/info/301468">активному состоянию</a> (средний рис.). Следовательно, проход положительно <a href="/info/1038927">заряженных ионов</a> <a href="/info/509583">натрия через</a> канал не блокируется <a href="/info/17612">положительными зарядами</a>. После короткой паузы диполь h меняет направление и инактивирует канал (нижний рис.) б—<a href="/info/1478543">альтернативный механизм</a>, при котором вращающиеся диполи соответствуют <a href="/info/2999">конформационным изменениям</a> в спиральной части мембранных молекул. (Воспроизведено с разрешения Keynes.) [8] в — <a href="/info/50818">функциональная модель</a> <a href="/info/99932">натриевого канала</a>, воротные частицы т н h — независимые подвижные заряды.
    В—структурная константа мембраны при расчете селективности D—коэффициент диффузии Dam—коэффициент диффузии растворителя в мембране d—диаметр поры мембраны dr.a—диаметр гидратированного иона а—эквивалентный диаметр канала /о— пористость мембраны G—проницаемость мембраны АЯ—теплота гидратации I— ионная сила раствора 1—коэффициент Вант-Гоффа К—степень очистки раствора /Ср—коэффициент разделения к, La, Lp—расход концентрата, исходной жидкости и растворителя соответственно [c.11]


    Инактивация — по-видимому, спонтанное закрывание ионных каналов, например потенциалзависимого натриевого канала мембраны клетки. [c.129]

    Установка электродиализа (рис. 7.3) представляет собой набор пакетов плоских мембран, один из которых показан на рис. 7.3. Анионо- и катионообменные мембраны в пакете чередуются. С обеих сторон пакет мембран ограничен электродами. Раствор, содержащий ионы (примем для определенности, что это ионы поваренной соли Ка и С1"), течет в плоских каналах между мембранами. Под действием внешнего электрического поля, перпендикулярного плоскости мембран, ионы Ка" проходят через катионообменные мембраны, а ионы С1 — через анионообменные мембраны. В итоге уменьшается содержание соли в канале левой пары мембран, называемом каналом диализата, и увеличивается соответственно в канале правой пары мембран, называемом каналом концентрата. Раствор соли прокачивается через оба канала, причем в процессе движения соль переходит из канала диализата в канал концентрата. Часть секции, включающая каналы диализата и концентрата с прилегающими к ним мембранами. [c.144]

    ГОДЫ быстрое развитие иммунологии, клеточной биологии и нейробиологии стало возможным именно потому, что клеточные мембраны рассматривались не только как интересные структурные образования, но и как высокоактивные кооперативные системы. Будучи извлеченной из мембраны, отдельная молекула по определению теряет важную часть своих функций, и даже ее структура сохраняется только при ограниченных условиях. Биохимик, который выделяет ионный канал или пору нервной мембраны, похож на гурмана, пытающегося добыть дырку от бублика. [c.36]

Рис. 19-26. Измерение тока через открытый канал ацетилхолинового рецептора при разных значениях мембранного потенциала. С помощью таких измерений можно установить ионную селективность каналов. Ток, переносимый через открытый канал ионами определенного вида, будет изменяться при изменении мембранного потенциала определенным образом в зависимости от вида иона и градиента его концентрации по обе стороны мембраны. Зная градиенты концентраций основных присутствующих ионов, можно определить ионную селективность канала путем простого измерения зависимости ток/напряжение более полную информацию можно получить в результате повторных измерений при других концентрациях иона. А. Зарегистрированный с помощью метода пэтч-клампа ток, проходящий через одиночный канал, находящийся в растворе с фиксированной концентрацией ацетилхолина, при трех различных значениях мембранного потенциала. В каждом случае канал случайным образом переходит из закрытого состояния в открытое и обратно, но при некотором значении мембранного потенциала, которое называют потенциалом реверсии, гок равен нулю даже тогда, когда канал открыт. В данном случае потенциал реверсии близок к О мВ. Б. Такое же явление можно наблюдать, измеряя после одиночной стимуляции нерва общий ток через больщое количество одиночных каналов с ацетилхолиновым рецептором, находящихся в постсинаптической мембране нервно-мыщечного соединения. На графиках показаны изменения этого гока, измеренного с помощью внутриклеточных электродов в условиях фиксации напряжения. Каналы открываются при коротком воздействии ацетилхолина, но если мембранный потенциал поддерживается на уровне потенциала реверсии, го ток равен нулю. Поскольку открытые каналы проницаемы как для Na . так и для К . а значения электрохимических движущих сил для этих ионов различны, нулевой ток в действительности соответствует уравновещенным и направленным навстречу друг другу токам Na и К . (Эти каналы проницаемы и для Са , но ток, переносимый ионами кальция, очень мал, так как их концентрация низка.) Рис. 19-26. <a href="/info/525557">Измерение тока</a> через <a href="/info/328083">открытый канал</a> <a href="/info/265738">ацетилхолинового рецептора</a> при разных <a href="/info/995730">значениях мембранного потенциала</a>. С <a href="/info/1474363">помощью таких</a> измерений можно установить <a href="/info/250593">ионную селективность</a> каналов. Ток, переносимый через <a href="/info/328083">открытый канал</a> <a href="/info/1795884">ионами определенного вида</a>, будет изменяться при изменении <a href="/info/1693149">мембранного потенциала определенным</a> образом в зависимости от <a href="/info/1647686">вида иона</a> и градиента его концентрации по обе <a href="/info/1388494">стороны мембраны</a>. Зная <a href="/info/25910">градиенты концентраций</a> основных <a href="/info/219998">присутствующих ионов</a>, можно <a href="/info/1645022">определить ионную селективность</a> канала путем <a href="/info/1512907">простого измерения</a> зависимости ток/напряжение более <a href="/info/1697995">полную информацию</a> <a href="/info/1715115">можно получить</a> в <a href="/info/1906133">результате повторных</a> измерений при <a href="/info/518263">других концентрациях</a> иона. А. Зарегистрированный с <a href="/info/392475">помощью метода</a> <a href="/info/1339534">пэтч</a>-клампа ток, проходящий через <a href="/info/1327510">одиночный канал</a>, находящийся в растворе с <a href="/info/380879">фиксированной концентрацией</a> ацетилхолина, при трех различных <a href="/info/995730">значениях мембранного потенциала</a>. В каждом случае канал случайным <a href="/info/1647022">образом переходит</a> из <a href="/info/857493">закрытого состояния</a> в открытое и обратно, но при некотором <a href="/info/995730">значении мембранного потенциала</a>, которое называют потенциалом реверсии, гок равен нулю даже тогда, когда канал открыт. В данном случае <a href="/info/1358081">потенциал реверсии</a> близок к О мВ. Б. Такое же явление <a href="/info/1633457">можно наблюдать</a>, измеряя после одиночной стимуляции нерва общий ток через <a href="/info/199843">больщое количество</a> одиночных каналов с <a href="/info/265738">ацетилхолиновым рецептором</a>, находящихся в постсинаптической мембране нервно-<a href="/info/187630">мыщечного</a> соединения. На графиках показаны изменения этого гока, измеренного с <a href="/info/1418904">помощью внутриклеточных</a> электродов в <a href="/info/1399694">условиях фиксации</a> напряжения. Каналы открываются при коротком воздействии ацетилхолина, но если <a href="/info/4005">мембранный потенциал</a> поддерживается на уровне <a href="/info/1358081">потенциала реверсии</a>, го ток равен нулю. Поскольку открытые каналы проницаемы как для Na . так и для К . а значения электрохимических движущих сил для этих <a href="/info/1176827">ионов различны</a>, нулевой ток в действительности соответствует уравновещенным и направленным навстречу <a href="/info/1485957">друг другу токам</a> Na и К . (Эти каналы проницаемы и для Са , но ток, переносимый <a href="/info/96992">ионами кальция</a>, очень мал, так как их концентрация низка.)
    В гл. 3 уже упоминалось, что средства, используемые для местной анестезии, увеличивают текучесть липидной мембраны. Этот процесс сопровождается латеральным расширением мембраны, что, возможно, приводит к изменению ионных каналов с последующим блокированием нервного импульса. Местные анестетики селективно снижают натриевую проводимость ыа и влияют на воротной механизм. Известно несколько гипотез, объясняющих их действие [25, 26]. Латеральное расширение может непосредственно изменить структуру натриевого канала. Однако эти же изменения могут быть обусловлены увеличением текучести мембраны функциональная конформация ионных каналов стабилизируется жидкокристаллической средой липида, состояние которой может измениться под действием препарата. [c.154]


    Каналы пассивного транспорта ионов, проходящих через возбудимые мембраны, содержат два функциональных компонента воротный механизм и селективный фильтр. Воротный механизм, способный открывать или закрывать канал, может быть активирован электрически путем изменения мембранного потенциала или химически, например в синапсе, связыванием с молекулой нейромедиатора. Селективный фильтр имеет такие размеры и такое строение, которые позволяют пропускать ли- [c.162]

    Интересная мутантная парамеция названа пешкой по аналогии с пешкой из игры в шахматы. Дикий тип меняет направление движения на обратное, когда встречает препятствие, а пешка может плыть только вперед (рис. 12.6). Сейчас известно, что обратное движение есть результат притока ионов кальция, который следует за стимулом. Этот вход кальция воздействует на двигательный механизм жгутиков, так что некоторое время они действуют в противоположном направлении. У пешки кальциевый канал изменен и ионы Са + не попадают в него. Другой мутантный организм, как и дикий тип, меняет направление движения, но продолжает плыть в обратном направлении иногда несколько минут. Это происходит из-за мутации одного из типов ионных каналов клеточной мембраны, которых здесь идентифицировано больше, чем в нейронах. [c.360]

    Рис, 12,6. Парамеция — модельная система поведения на молекулярном уровне. Организм с измененным поведением — пешка , как и пешка в шахматах, может двигаться только вперед причиной отклонения в поведении является дефект кальциевого канала. После возбуждения мембраны путем столкновения с препятствием эти каналы не открываются, как у дикого типа. Таким образом, необходим вход кальция в клетку для обращения движения жгутиков. Были открыты и другие мутантные организмы с дефектными ионными каналами. [c.361]

    Ка (дефосфорилированная форма АТФ-азы). При переходе в конформацию Е происходит переориентация комплекса в мембране, канал открыт на наружную сторону мембраны и фермент специфично связывает ионы К+ (фосфорилированная форма АТФ-азы). [c.312]

    Описаны два конформационных состояния АТФ-азного комплекса с различным энергетическим уровнем, которые принято обозначать и Е2. Конформация имеет канал, открытый внутрь клетки, и участки, специфично связывающие ионы Ма+ (дефосфорилирован-ная форма АТФ-азы). При переходе в конформацию Е2 происходит переориентация комплекса в мембране, канал открыт на наружную сторону мембраны и фермент специфично связывает ионы К+ (фосфорилированная форма АТФ-азы). [c.59]

    Согласно Пасечнику, элементарным механочувствительным устройством служит ионный канал клеточной мембраны. Его ре- [c.419]

    Организмы с точечными мутациями появляются в результате мутации единичного гена, и, таким образом, отдельного белка. Следовательно, сложное поведение может быть анализировано на уровне белков. Кроме хорошо изученной генетики дрозофила имеет следующие преимущества короткое время воспроизводства, легкость селекции, они достаточно дешевы (маленькие организмы, необходима малая площадь), безвредны и имеют несколько, но огромных хромосом. Из них уже был выделен ацетилхолиновый рецептор. Нейроны дрозофилы слишком малы для электрофизиологических исследований, но мышечные волокна позволяют изучать нейромышечную синаптическую передачу. Один мутант при анестезии делает необычные ритмические движения лапкой. Причина кроется в изменении потенциалзависимого калиевого канала, который обычно реполяризует мотонейрон после потенциала действия, блокируя передачу импульса. Здесь снова, как и в случае мутанта парамеции пешки , в основе изменения поведения лежит модификация белка ионного канала возбудимой мембраны. [c.362]

    Каналы. Биологическая мембрана содержит ионные каналы, представляющие собой липопротеиновые комплексы сложной структуры. В узких каналах (натриевый 3,1x5,1 А, калиевый 4,5х4,5 А) возможно однорядное движение ионов, которые могут взаимодействовать друг с другом и с молекулярными группами канала. При поступлении иона в канал происходит замещение молекул воды гидратной оболочки иона на полярные группы полости канала. Увеличение свободной энергии иона при дегитрации с избытком компенсируется энергией его взаимодействия с полярными группами канала. В результате общая энергия иона снижается, что и облегчает его прохождение через канал. Наличие полярных групп, а также фиксированных анионных центров в канале приводит за счет их кулоновских взаимодействий с ионом к снижению энергетического барьера перехода иона из раствора в канал. Лучше всего проходят через канал ионы, которые прочно связываются электростатическими силами с анионным центром. Например, с небольшим отрицательным анионным центром более прочно после потери гидратной оболочки будет связываться меньший по размеру катион Ыа по сравнению с катионом К. В то же время радиус гидратированного иона Ыа больше, чем К, и без потери гидратной оболочки ион Ыа хуже проходит через относительно широкие поры в мембране. Наличие в канале фиксированных анионных центров, притягивающих катионы, облегчает их прохождение через канал, снижая энергию иона. На рис. 15.1 и 15.2 приведены энергетические профили Ыа - и К -каналов. Скорость проведения Ыа - [c.148]

    Для грамицидина А, представляющего собой линейный пентадекапептид, путем анализа двумерных спектров Н-ЯМР была установлена пространственная структура (рнс. 67) а мицеллах додецилсульфата натрия. Такие мицеллы хорошо моделируют свойства липидного бислоя мембраны, в которых грамицидин А образует трансмембранный ионный канал. Канал построен из двух правых [c.117]

    Он образует цилиндрический канал, который с одной стороны выступает на 65 А в синаптическую щель, а с другой - пронизывает липидный бцслой мембраны, входя на 15 А внутрь клетки. Этот узкий канал (или пора) расширяется до 20 А при "посадке" на рецептор нейромедиатора (комплекс RAX) за счет резкого уменьшения вращательного (конформационного) движения субъединиц. Увеличение размера канала облегчает прохождение ионов К+ и Na+ через мембрану против электрохимического фадиента. При этом изменяется мембранный потенциал покоящегося нейрона 2, и в нем генерируется нервный импульс. После этого нейромедиатор гидролизуется ацетилхолинэстера-зой до неактивного холина, и ионофорныи канал закрывается. [c.31]

    Проницаемость одиночных каналов и их число, приходящееся на единицу поверхности, определяются по связыванию токсинов, блокирующих каналы,— прежде всего тетродотоксина и сакситоксина, а также с помощью анализа флуктуаций ионных токов. Число каналов, приходящихся на 1 мкм мембраны, составляет несколько сот. Каждый открытый канал имеет проводимость 1—10 пСм. Пропускная способность Ка -канала - 10 ионов в 1 с, К -канала 10 ионов в 1 с. Схема строения канала, согласно современным представлениям, показана на рис. 11.21. Роль канала выполняет макромолекула некоего белка, создающая пору в двухслойной липидной мембране. У входа в канал снаружи имеется узкий селективный фильтр для ионов, у внутренней, выходной стороны расположены так называемые ворота , управляемые конформационно-лабильным сенсором. Изменение конформации этой части белка контролируется внутримембран-ным электрическим полем. Сенсор открывает или закрывает ворота . Для поведения системы определяющую роль играют электростатические заряды. Внутренняя поверхность канала, по-видимому, выстлана гидрофильными группами, благодаря чему канал проницаем для ионов. Можно думать, что для функционирования канала существенны и конформационные события в билипидной части мембраны — кинки (см. с. 339). [c.378]

    Проиллюстрируем явление концентрационной поляризации в электродиа-лизной ячейке [19]. Для этого рассмотрим развитие течения в каналах концентрата и диализатора (рис. 7.5) при условии равенства концентрации соли в растворе на входе в эти каналы. Это условие означает, что раствор обладает постоянной электропроводностью. Во входном сечении профиль скорости считается развитым, а профиль концентрации — однородным. Поэтому вблизи входа распределение концентрации соли близко к однородному и раствор под действием электрического поля ведет себя как среда с постоянной по сечению электропроводностью. В частности, в такой среде и в мембранах падение потенциала линейное. Дальше, вниз по течению концентрация возле мембран в канале диализата падает, а в канале концентрата растет. У поверхности образуется концентрационный пограничный слой, толщина которого растет с увеличением расстояния от входа. В канале диализата падение потенциала, вызванное градиентом концентрации у мембран, больше, чем падение в растворе с такой же однородной средней электропроводностью. Резкое падение потенциала возле поверхности мембраны имеет ту же природу, что и падение потенциала возле электрода (см. раздел 7.1). После того, как концентрационные пограничные слои достигают оси канала, концентрация ионов начинает изменяться и на осях [c.145]

    Рис. 3.13. а — схема прибора для воссоздания черных липидных мембран и их изучения. Тефлоновая ячейка разделена перегородкой с отверстием. Когда капля липида в органическом растворителе наносится на отверстие, она образует (после удаления растворителя) плоский липидный слой — черную мембрану. Если теперь в оба отделения ячейки ввести по электроду, то можно измерить электропроводность слоя. Встраивание белка в мембраны вызывает изменение в электропроводности, которое можно измерить б — получаемые данные (пример) на осциллограмме записаны флуктуации силы тока, проходящего через лецитиновую мембрану, содержащую грамицидин А — порообразующий антибиотик каждое отклонение отражает работу одного канала амплитуда отклонения регистрирует электропроводность, т. е. число ионов, пересекающих мембрану за единицу времени, период колебания — продолжитель- - ость существования канала. (Предоставлено д-ром Бамбергом, Франкфурт). [c.87]

    Долгое время электрофизиологические методы использовались для исследования наиболее значительных процессов возбуждения деполяризации и реполяризации всей мембраны, которые возникают как сумма большого числа единичных процессов — движения многочисленных ионов через множество каналов. Два современных экспериментальных подхода позволяют подробно исследовать одиночный ионный канал. При усовершенствовании электрофизиологических методов стало возможным провести измерение одиночных каналов в легко возбудимой мембране (рис. 5.11) [4]. Например, с помощью микроэлектрода (тоньше волоса) можно изучать функционирование ацетилхолинре-гулируемого Ыа+, К+-канала нейромышечной концевой пластинки (гл. 9) регистрировать его открытия и закрытия, максимальную проводимость, определять чувствительность к фармакологическим агентам и измерять мембранные потенциалы. Описательная физиология, биофизический и биохимический подходы на молекулярном уровне стали, таким образом, тесно взаимосвязаны. [c.123]

    Вновь обсудим электровозбудимые каналы, которые обеспечивают пассивный транспорт ионов Ыа+ и К+. Тщательный анализ возникновения потенциала действия гигантского аксона кальмара, проведенный Ходжкин и Хаксли [1—3], показал, что существуют по крайней мере два различных (отдельных) капала после деполяризации мембраны открывается натриевый канал, обусловливающий входящий поток ионов Ыа+ через некоторое время открывается калиевый канал и поток ионов К+ устремляется в противоположном направлении (рис. 6.1). Известно, что проницаемость мембраны для ионов Ыа+ и К+ не увеличивается одновременно. Кроме того, имеются еще два факта, которые доказывают существование двух отдельных каналов. [c.132]

    Как сейчас можно считать установленным, и в растворах, и в мембране грамицидин А участвует в сложном конформационном равновесии, наиболее важными компонентами которого являются одно- и двутяжевые спиральные димеры. Диаметр осевой полости как однотяжевых, так и двутяжевых спиралей около 0,3 нм, т. е. достаточен для внедрения ионоа металлов, а длина димера (3 нм) близка толщине углеводородной зоны липидного бислоя. По-видимому, оба типа димеров способны образовывать ион-проводяш> е каналы. Отметим, что производительность одиночного канала грамицидина А весьма высока, до 10 ионов в секунду, что значительно превышает соответствующий показатель для антибиотиков-перенос-чиков (10 ионов в секунду). Предполагается, что выключение грамицидинового канала, т. е. переход в непроводящее состояние, сопряжено с ф.1уктуаиией толщины мембраны при увеличении толщины димер голова к голове диссоциирует до мономера, а двойная спираль частично расплетается, С этим предположением согласуется тот факт, что время жизни грамицидинового канала монотонно увеличивается при уменьшении ср>едней толщины мембраны. Возможные структурные перестройки грамицидина А в мембране схематически могут быть изображены так  [c.600]

    Хотя электрофизиологические измерения вроде бы подтверждают принцип независимости, тем не менее очевидны несоответствия для систем транспорта натрия и калия. То, что ионные каналы возбудимой мембраны надо рассматривать не как простые отверстия, может быть доказано тем, что насыщение при высокой концентрации ионов аналогично насыщению фермента субстратом, а также взаимной конкуренцией между ионами Na+ и непроникающими ионами, которые блокируют канал. Модель Хилле свидетельствует о том же, демонстрируя возможность натриевого канала связывать одновременно только один ион Na+ с константой диссоциации Ко 368 мМ. В классической модели лиганд соединяется с молекулой переносчика и переносится с внешней поверхности мембраны на внутреннюю, где ион высвобождается. В данном случае этот механизм не наблюдается. Следовательно, натриевая транспортная система должна рассматриваться как канал с катионсвязывающим центром (и воротной системой) в отличие от переносчика канал пронизывает мембрану и является неподвижным. [c.140]

    Еще одна трудность выделения натриевых каналов связана с их сравнительной нестабильностью вне мембраны. Пока известны лишь следующие биохимические характеристики канала ТТХ-связывающий компонент мембраны аксона с 230 ООО (по данным метода инактивации радиацией) или 260 000 (определено биохимическими методами), коэффициент седимента-. ции 9,2 этот компонент инактивируется протеазами, при нагревании и при обработке ионными детергентами (додецилсуль-фатом натрия). Часть натриевого канала, ответственная за связывание ТТХ или STX, построена, по крайней мере частично, из белка СИ]- Молекулярная масса натриевого канала синаптосом мозга равна в целом 320 ООО, что обусловлено присутствием двух небольших полипептидных цепей (37 ООО и 39 ООО) и одной большой (260 000). Однако нельзя исключить, что другие молекулы, липиды или углеводы частично или полностью не участвуют в транспорте ионов Na+. [c.142]

    После того как Б. Прессманом было обнаружено индукционное влияние грамицидина А иа ионный транспорт (К, Na , Н и др.) через биологические мембраны. С. Хладкн и Д. Хейдон в 1970 г. однозначно установили, что антибиотик функционирует в мембране по принципу канала. [c.599]

    Биохимический эффект ацетилхолина заключается в том, что его присоединение к рецептору открывает канал для прохождения ионов Ка и К через мембрану клетки, что ведет к деполяризации мембраны. Блокирование действия ацетилхолина чревато серьезными проблемами, вплоть до смертельного исхода. Именно в этом заключается биохимическое действие нейротоксинов. Ниже показаны структуры двух наиболее сильных нейротоксинов - хистрионикотоксина и хлорида О-тубокурарина. Как и ацетилхолин, молекула О-тубокурарина содержит аммониевые фрагменты. Она блокирует место присоединения ацетилхолина к рецептору, исключает передачу нервного сигнала, предотвращает перенос ионов через мембрану. Создается ситуация, называемая параличом живой системы. [c.407]

    По определению потенциал-зависимые каналы-это такие каналы, которые открываются и закрываются в ответ на изменение трансмембранного потенциала. Это наводит на мысль о каком-то простом механизме включения и выключения каналоа Но в случае натриевых каналов, ответствеиных за потенциал действия, этот механизм несколько сложнее, и существенную роль в нем играет временная задержка. Поведение канала можно исследовать с помощью описанного выше метода фиксации напряжения. Если мембранный потенциал поддерживать на уровне нормального потенциала покоя (примерно - 70 мВХ натриевый ток практически отсутствует это указывает на то, что почти все натриевые каналы закрыты. Если теперь резко сдвинуть мембранный потенциал в положительную сторону, скажем до О мВ, и удерживать клетку в таком деполяризованном состоянии, то потенциал-зависимые натриевые каналы откроются и ионы На потекут в клетку вниз по градиенту концентрации. Этот нат мевый ток достигнет максимума примерно через 0,5 мс после того, как установится новое значение потенциала. Однако уже спустя несколько миллисекунд ток падает почти до нуля, даже если мембрана остается деполяризованной (рис. 18-И). Значит, каналы открылись на какой-то момент и вновь закрылись. Закрывшись, каналы переходят в инактивированное состояние, которое явно отличается от их первоначального закрытого состояния, когда они еще были способны открыться в ответ на деполяризацию мембраны. Каналы остаются инактивированными до тех пор, пока мембранный потенциал не вернется к исходному отрицательному значению и не закончится восстановительный период длительностью в несколько миллисекунд. [c.81]

    Таким образом, при невозможности получить прямые данные отдельные каналы можно изучать путем анализа флуктуаций тока-этот метод называют флуктуационным анализом (см. рис. 18-12). На основе предположения, что у каждого канала имеются только два возможных состояния проводимости-он либо полностью закрыт, либо полностью открыт-и переход из одного состояния в другое происходит мгновенно, с помощью флуктуационного анализа для проводимости одного откры-гого натриевого канала (в нерве лягушки) была получена величина около 10-И См. Это означает, что при разности электрохимических потенциалов в 100 мВ через открытый канал протекает ток силой 10 А, что соответствует прохождению примерно 6000 ионов N3 в I мс. Эти подсчеты и предположения, на которых они базируются, были подтверждены более прямым методом пэтч-клампа (регистрация токов в очень малых участках мембраны, см. ниже). [c.82]


Смотреть страницы где упоминается термин Каналы ионные в мембране: [c.366]    [c.314]    [c.65]    [c.128]    [c.310]    [c.314]    [c.368]    [c.420]    [c.135]    [c.139]    [c.163]    [c.195]    [c.601]    [c.603]    [c.628]    [c.632]    [c.634]    [c.79]    [c.83]   
Биофизика (1983) -- [ c.23 , c.160 , c.167 , c.168 , c.251 ]




ПОИСК





Смотрите так же термины и статьи:

Иониты мембраны



© 2024 chem21.info Реклама на сайте