Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Митохондрия кислорода

    Повышение скорости тканевого дыхания в митохондриях. Это происходит по двум причинам. Во-первых, увеличивается снабжение митохондрий кислородом во-вторых, повышается активность ферментов тканевого дыхания вследствие активирующего действия избытка АДФ, возникающего при интенсивном использовании АТФ в мышечных клетках во время физической работы. [c.180]


    Внутримышечными структурными факторами, лежащими в основе аэробной работоспособности, являются количество митохондрий в миоцитах и содержание в них миоглобина. Это связано с тем, что аэробные нагрузки, в основном, обеспечиваются аэробным способом образования АТФ (тканевое дыхание), обязательно протекающим в митохондриях. Миоглобин является переносчиком кислорода внутри мышечных клеток и от его концентрации зависит снабжение митохондрий кислородом. Кроме того, связывая кислород, миоглобин создает определенный резерв его в мышечной ткани. Связь между содержанием в мышцах миоглобина и аэробной работоспособностью отмечена во многих работах. Как указывалось выше, большим количеством митохондрий и высокой концентрацией миоглобина характеризуются красные (тонические) мышечные волокна. Отсюда вытекает, что выражен- [c.196]

    Гринберг Л. Н. Регуляция дыхания митохондрий кислородом,— В кн. Руководство по изучению биологического окисления полярографическим методом. М. Наука, 1973, с. 129—146. [c.262]

    Поскольку снабжение митохондрий кислородом становится лимитирующим звеном в работающей мышце, важное значение имеет активация анаэробного распада глюкозы. Усиление гликолиза связано с действием аденилаткиназы, которая катализирует следующую реакцию  [c.527]

    Железо функционирует как основной переносчик электронов в биологических реакциях окисления — восстановления [231]. Ионы железа, и Fe +, и Fe +, присутствуют в человеческом организме и, действуя как переносчики электронов, постоянно переходят из одного состояния окисления в другое. Это можно проиллюстрировать на примере цитохромов . Ионы железа также служат для транспорта и хранения молекулярного кислорода — функция, необходимая для жизнедеятельности всех позвоночных животных. В этой системе работает только Ре(П) [Fe(111)-гемоглобин не участвует в переносе кислорода]. Чтобы удовлетворить потребности метаболических процессов в кислороде, большинство животных имеет жидкость, циркулирующую по телу эта жидкость и переносит кислород, поглощая его из внешнего источника, в митохондрии тканей. Здесь он необходим для дыхательной цепи, чтобы обеспечивать окислительное фосфорилирование и производство АТР. Одиако растворимость кислорода в воде слишком низка для поддержания дыхания у живых существ. Поэтому в состав крови обычно входят белки, которые обратимо связывают кислород. Эти белковые молекулы способствуют проникновению кислорода в мышцы (ткани), а также могут служить хранилищем кислорода. [c.359]


    Используют экстракт мышц, содержащий митохондрии, полученный из 5 г измельченных мышц (с. 50). Для опыта готовят 6 колбочек емкостью 25—30 мл, плотно закрывают резиновыми пробками. В каждую пробку вставлены по две стеклянные трубочки, одна из которых длинная, доходящая почти до дна, другая — короткая, оканчивающаяся сразу под пробкой. Через длинную трубочку газ входит в колбочку, через короткую выходит из нее. Таким образом, с помощью такой системы воздух в колбочках может быть заменен кислородом, азотом или аргоном (рис. 4). Вместо колбочек можно использовать пробирки с такой же системой для пропускания газов. [c.57]

    Скорости потребления кислорода определяют полярографически (с. 480), используя в качестве субстратов сукцинат и глутамат. Ячейку полярографа заполняют 2 мл среды инкубации (см. выще), погружают электроды и в реакционную смесь вносят 0,08—0,10 мл густой суспензии митохондрий. Через 1 мин добавляют в смесь субстрат окисления (5 мМ) и через 1—2 мин вносят динитрофенол (50—100 мкМ). Каждую пробу повторяют дважды. Рассчитанные скорости дыхания представляют в виде таблицы  [c.420]

    Перенос электронов от субстратов цикла трикарбоновых кислот к кислороду, сопровождающийся образованием воды, осуществляется сложной полиферментной системой, локализованной во внутренней мембране митохондрий. Последовательность функционирования отдельных дыхательных переносчиков в значительной мере была выяснена благодаря применению ингибиторного анализа, а также спектрофотометрических исследований. В настоящее время строение дыхательной цепи может быть представлено схемой на рис. 51. [c.435]

    Окислительно-восстановительные потенциалы каждого переносчика увеличиваются по мере приближения к кислороду, так что электроны, отщепленные от субстратов соответствующими дегидрогеназами, переносятся к кислороду термодинамически самопроизвольно. Внутренняя мембрана митохондрий содержит полную дыхательную цепь с двумя дегидрогеназами (сукцината и НАДН). Известно несколько специфических ингибиторов переноса электронов. [c.435]

    Митохондрии, обработанные антимицином А (ингибитором транспорта электронов от убихинона на кислород), катализируют реакцию окисления субстратов дыхания добавленными низкомолекулярными гомологами убихинона (Q). Образующийся в ходе реакции хинол (QH2) окисляется затем кислородом в реакции, катализируемой суб-митохондриальными фрагментами. В присутствии избыточного количе- [c.438]

    В кювету полярографа помещают 2 мл среды инкубации (п. 4), погружают электроды и устанавливают положение пера самописца в исходное положение. Добавляют примерно 50 мкл густой ( — 100 мг/мл) суспензии митохондрий. Через 1—2 мин в кювету добавляют глутамат и малат до конечной концентрации, равной 5 мМ. Регистрируют постоянную скорость дыхания и через 1—2 мин добавляют 100 мкМ 2,4-динитрофенол. Наблюдают увеличение скорости поглощения кислорода. [c.440]

    Митохондрии активно транспортируют ионы и некоторых других двувалентных металлов. Добавление Са + (200—300 нмоль/мг белка) к аэробной суспензии митохондрий в присутствии субстрата окисления вызывает стимуляцию дыхания. Когда практически весь добавленный Са + окажется во внутреннем пространстве митохондрий, скорость потребления кислорода возвращается к исходному уровню (конт- [c.450]

    Отмытые и подсушенные с помош,ью кусочка фильтрова льной бумаги электроды полярографа осторожно опускают в кювету, заполненную 2 мл среды 1 (проба 1) до полного выхода пузырька воздуха. С помощью специального потенциометра устанавливают перо включенного самописца в исходное положение, соответствующее исходной концентрации кислорода в среде (в самописцах типа КСП-4 — в крайнее правое положение). Включают движение диаграммной ленты и, убедившись в отсутствии дрейфа, с помощью микропипетки добавляют в кювету 0,04—0,05 мл густой суспензии митохондрий (4—6 мг белка). В течение 40—60 с регистрируют медленное эндогенное дыхание и добавляют 0,02 мл сукцината (10 мМ), который вызывает небольшую стимуляцию дыхания. Через 40—60 с в кювету вносят раствор СаСЬ ( 100 мкМ). При этом дыхание сначала резко активируется, затем быстро снижается до исходного уровня. Добавку повторяют несколько раз до тех пор, пока стимуляция дыхания после каждого добавления сменяется четко выраженным торможением. Учитывая количество добавленного СаСЬ, оценивают его максимальную концентрацию, вызывающую обратимую стимуляцию дыхания. Для препарата интактных прочно сопряженных митохондрий (4—6 мг белка в кювете) эта концентрация обычно составляет 400—500 мкМ. В пробе 2 убеждаются в том, что выбранная концентрация СаСЬ вызывает обратимую стимуляцию дыхания с отчетливым выходом в контролируемое состояние. Для определения величины АДФ/О записывают следующую пробу. С этой целью в кювету со средой последовательно добавляют митохондрии, сукцинат и АДФ в концентрации от 300 до 400 мкМ (определение АДФ/О см. на с. 462). Проводят три аналогичных измерения с использованием в качестве субстрата окисления смесь глутамат—малат (по 5 мМ). В этом случае целесообразно уменьшить концентрацию добавляемого СаСЬ в 1,5—2 раза, а в среду инкубации предварительно добавить (непосредственно в кювету) 1 мМ НАД+ для предотвращения утечки эндогенных пиридиннуклеотидов. [c.452]


    Интактные митохондрии, инкубируемые в среде, содержащей субстрат окисления и кислород, характеризуются низкой скоростью дыха- [c.462]

    На рис. 58 приведена типичная кривая потребления кислорода митохондриями. Добавление к суспензии субстрата окисления (5) приводит к медленному потреблению кислорода — со скоростью У4 . Вне- [c.463]

    В следующей серии опытов реакцию начинают добавлением различных количеств митохондрий (от 0,5 до 5 мг белка в пробе) и после добавления выбранной концентрации ДНФ каждый раз регистрируют дыхание до исчерпания кислорода в среде. [c.466]

    Пробы 3, 6, 9 служат контролем и их не инкубируют в аппарате Варбурга. Доводят температуру в термостате до 26° С. Готовят раствор гексокиназы на 0,5 М глюкозе, исходя из расчета 0,5—1 мг гексокиназы на пробу (необходимое количество гексокиназы находят в предварительных опытах). Выделяют митохондрии из исследуемой ткани (с. 403). Во все сосудики разливают по 0,2 мл раствора гексокиназы в глюкозе и по 0,4 мл суспензии митохондрий, быстро притирают сосудики к манометрам и помещают их в термостат аппарата Варбурга. Включают качающий механизм и через 10 мин, в течение которых происходит выравнивание температуры, подводят жидкость в обоих коленах манометра до одного уровня (150—250), закрывают краны и приступают к определению поглощения кислорода. [c.468]

    Одним из основных параметров, характеризующих обмен выделенных митохондрий, является их способность к поглощению кислорода и зависимость скорости дыхания от присутствия акцепторной системы (АДФ-ЬФн) (см. также с. 462). В связи с этим для изучения метаболизма митохондрий необходимо иметь метод, позволяющий точно измерить поглощение кислорода при окислении митохондриями тех или иных субстратов. [c.480]

    Бесклеточные препараты нитрогеназы были выделены из целого ряда организмов. Всем этим ферментам свойственна быстрая инактивация в присутствии кислорода, что на первых порах сильно сдерживало развитие исследований. По-видимому, фиксация азота происходит в анаэробных участках клеток. Существует даже предположение, что леггемоглобин защищает азотфиксирующие ферменты корневых клубеньков от воздействия кислорода. Возможно, что леггемоглобин осуществляет также доставку Ог путем облегченной диффузии в аэробные митохондрии бактероидов при устойчиво низком давлении кислорода [8] [c.83]

    В 1958 г. Ларди и сотр. [59] обнаружили, что антибиотик олигомицин блокирует синтез АТФ, так что это приводит к подавлению поглощения митохондриями кислорода. Оказалось, что действие олигомицина снимается динитрс- [c.67]

    Применение других подходов к проблеме локализации пунктов запасания энергии в дыхательной цепи дало по существу те же результаты. Например, многие исследователи обнаруживали, что отношение Р О, т. е. отношение количества фосфора, включенного в АТФ, к количеству поглощенного митохондриями кислорода, варьирует в зависимости от использованного субстрата окисления. Так, при окислении митохондриями а-кетоглутарата предельное значение отношения Р О составляет 4, а при добавлении динитрофенола это отношение надает до 1. Фосфорилирование, нечувствительное к действию динитрофенола, имеет место при превращении а-кетоглутарата в сукцинил-кофермент А. Это не окислительное, а так называемое субстратное фосфорилирование. Чувствительное к динитрофенолу фосфорилирование, когда субстратом служит глутамат, дает предельное отношение Р О, равное 3. При окислении сукцината отношение Р О достигает 2, а нри введении искусственного донора электронов (аскорбата) предельное отношение Р О составляет 1. Эти данные опять-таки указывают на то, что пункты фосфорилирования располагаются между пиридиннуклеотидом и флавопроте идом, между цитохромами 6 и с и между цитохромом с и цитохромоксидазой. [c.68]

    Из изложенного выще ясно, что снабжение митохондрий кислородом становится лимитирующим звеном в процессах, определяющих мышечную активность. Поэтому активация анаэробного распада глюкозы имеет важное значение. Усиление гликолиза связано с действием аденилатки-назы, которая катализирует реакцию [c.482]

    Содержание СО2 в атмосфере остается почти постоянным, несмотря на то, что углекислый газ расходуется в процессе фотосинтеза. Дело в том, что все растения и животные дышат. В процессе дыхания (в митохондриях) кислород, поглощаемый из атмосферы живыми тканями, используется для окисления углеводов и других компонентов тканей с образованием в конечном счете двуокиси углерода и воды и с сопутствующим выделением энергии. Высвобождающаяся энергия запасается в виде высокоэнергетического соединения — аденозинтрифосфа-та (АТР), который и используется организмом для выполнения всех жизненных функций. Таким образом, дыхание приводит к расходованию органических веществ и кислорода и увеличивает содержание СО2 на нащей планете. На процессы дыхания во всех живых организмах и на сжигание всех видов топлива, содержащего углерод, в совокупности расходуется в масштабах всей Земли в среднем около 10 000 тонн О2 в секунду. При такой скорости потребления весь кислород в атмосфере должен бы иссякнуть примерно через 3000 лет. К счастью для нас, расход органических веществ и атмосферного кислорода уравновешивается созданием углеводов и кислорода в результате фотосинтеза. Б идеальных условиях скорость фотосинтеза в зеленых тканях растений примерно в 30 раз превышает скорость дыхания в тех же тканях. Таким образом, фотосинтез служит очень важным фактором, регулирующим содержание О2 и СО2 [c.12]

Рис. 21-24. Завершающая стадия метаболическою окисления-дыхательная цепь. Все ко.мпоненты цепи собраны па внутренней поверхности внутренней мембраны митохондрии в четыре макромолекулярных комплекса, содержащих цитохромы, флавопротеиды и другие негемиповые железосодержащие белки. Кофермент р, или убихинон, и цитохром с играют роль переносчиков протонов и электронов от одного комплекса к следующему. Восстановление осуществляется путем переноса протонов до тех пор, пока этот процесс не достигнет кофермента Q, после чего оно осуществляется путем переноса электронов, а протоны переходят в раствор. Электроны и протоны снова объединяются в конце цепи, когда кислород восстанавливается до воды. Свободная энергия запасается в молекулах АТФ, образующихся в трех из четырех комплексов. Рис. 21-24. Завершающая стадия метаболическою <a href="/info/526112">окисления-дыхательная цепь</a>. Все ко.<a href="/info/933341">мпоненты</a> цепи собраны па <a href="/info/93820">внутренней поверхности внутренней</a> <a href="/info/101342">мембраны митохондрии</a> в четыре <a href="/info/1350480">макромолекулярных комплекса</a>, содержащих цитохромы, флавопротеиды и другие негемиповые <a href="/info/168868">железосодержащие белки</a>. Кофермент р, или убихинон, и цитохром с <a href="/info/1907646">играют роль</a> <a href="/info/386253">переносчиков протонов</a> и электронов от одного комплекса к следующему. Восстановление осуществляется <a href="/info/1898102">путем переноса протонов</a> до тех пор, пока этот процесс не достигнет кофермента Q, после чего оно осуществляется <a href="/info/1896993">путем переноса электронов</a>, а <a href="/info/713953">протоны переходят</a> в раствор. Электроны и протоны снова объединяются в <a href="/info/626669">конце цепи</a>, когда кислород восстанавливается до воды. <a href="/info/2431">Свободная энергия</a> запасается в молекулах АТФ, образующихся в трех из четырех комплексов.
    Бнолог. Я не вижу здесь противоречий. Митохондрии в клетках снабжаются кислородом, который доставляют организму легкие. Поэтому плотность митохондрий и удельная жизненная емкость легких, конечно, должны соответствовать друг другу. Я готов также принять, что удельная жизненная емкость легких и эффективный объем взаимодействий пропорциональны друг другу. Кстати, эта связь помогает мне понять физиологический смысл эффективного объема взаимодействий - столь загадочного для меня понятия... [c.71]

    Врач. Ну так вот. Вы решили заняться собой и однажды утром сделали зарядку. Что произошло с вашим организмом На какое-то время скорость кровотока повысилась, и если сразу после зарядки вы измерите содержание глюкозы в крови, то оно, наверняка, немного понизится. Что же касается жизненной емкости легких и массы вашего тела, то после одного занятия, как вы прекрасно понимаете, они практически не изменятся. Совсем другое дело, если вы зарядку станете делать ежедневно да еще ежедневно будете совершать прогулки на свежем воздухе. Словом, существенно измениге свой образ жизни. Тогда через несколько месяцев у вас заметно возрастут потребление кислорода тканями тела, интенсивность метаболизма, число митохондрий в клетках, а значит, и ваш Параметр Подобия повысится. Вот теперь, в полном соответствии с (4.32), у вас уменьшится содержание жира в теле, увеличится жизненная емкость легких, снизится содержание в крови глюкозы и холестерина, а также понизится уровень очень опасных для организма аутоиммунных процессов (см. рис. 4.7). [c.96]

    В 1961 г. английский биохимик П. Митчел выдвинул хемиосмо-тическую (электрохимическую) гипотезу энергетического сопряжения окисления и фосфорилирования, которая в дальнейшем получила подтверждение и развитие во многом благодаря работам советских ученых (В. П. Скулачев, Е. А. Либерман). Принцип хемиосмотического сопряжения иллюстрирует рис. VI. 14. Субстрат АНг —донор водорода — окисляется на активном центре фермента, встроенного на внешней стороне мембраны митохондрии. При этом 2Н+ и А выбрасываются в окружающую среду, а два электрона переносятся на внутреннюю сторону мембраны по так называемой дыхательной цепи, ориентированной поперек мембраны. Локализованный на внутренней стороне переносчик электронов передает электроны акцептору водорода В (например, кислороду), который присоединяет 2Н+ из внутримитохондриального матрикса. Таким образом, окисление одной молекулы АНг приводит к возникновению 2Н+ во внешнем пространстве и исчезновению 2Н+ из внутреннего пространства митохондрии. Возникший градиент ионов водорода генерирует трансмембранный потенциал, который оказывается достаточным по величине для осуществления реакции фосфорилирования. Последняя состоит во взаимодействии АДФ с фосфатом Ф и приводит к образованию АТФ с поглощением 2Н+ из внешнего пространства и выделением 2Н+ в матрикс. Величина трансмембранного потенциала сравнительно 160 [c.160]

    Основной механизм разложения в организме млекопитающего индолилалкиламинов эндогенного и экзогенного происхождения состоит в дезаминации с помощью моно-аминоксидазы (МАО). Токсичность и фармакологическое действие метаболитов выражены значительно меньше, чем у исходного вещества. Собственно трансаминация проходит в митохондриях с потреблением кислорода, которое может вызвать умеренную гипоксию. Как пример общей [c.57]

    В кювету полярографа, заполненную средой, содержащей 0,125 М сахарозу, 60 мМ КС1, 10 мМ трис-НС1, 0,1 мМ 2,4-динитрофенол и 40 мкМ цитохром с, вносят суспензию либо интактных митохондрий, либо митопластов, либо интактных митохондрий, разрушенных детергентом (конечное содержание белка в кювете полярографа —0,5— 1 мг/мл). Митохондрии, разрушенные детергентом, готовят, смешивая равные объемы густой суспензии митохондрий и 2%-ного раствора детергента твин-80. Смесь взбалтывают 2—3 мин и помещают на лед. Реакцию начинают добавлением нейтрализованной (pH 7,4) аскорбиновой кислоты (конечная концентрация 10 мМ). Регистрируют постоянное во времени поглощение кислорода и рассчитывают активность цитохромоксидазы в микроэлектронэквивалентах за 1 мин в расчете на 1 мг белка препарата. [c.412]

    При работе с изолированными компонентами дыхательной цени отсутствуют четкие функциональные критерии очистки (общая и удельная активности). Любой компонент дыхательной цепи (кроме первых, реагирующих с НАДН или сукцинатом, и последнего, реагирующего с кислородом) катализирует бисубстратную реакцию, в которой в качестве субстрата-донора и субстрата-акцептора электронов участвуют йелки, не полученные в индивидуальном состоянии. В такой ситуации единственным строгим критерием активности компонента, полученного в результате фракционирования, может слул<ить реконструкция. Для ее осуществления в идеальном случае необходимо было бы иметь, во-первых, препарат внутренних мембран митохондрий, специфически и полностью лишенный одного из компонентов, и, во-вторых, растворимый очищенный препарат этого компонента. Смешивание этих препаратов в этом случае должно приводить к появлению сукцинат-, или НАДН-оксидазной активностей, количественно соответствующих исходному нативному препарату дыхательной цепи. К сожалению, такая реконструкция в настоящее время осуществлена лишь в отношении цитохрома с и частично — сукцинатдегидрогеназы. Стандартным подходом, сыгравшим главную роль во фракционировании дыхательной [c.414]

    В системе доказательств обязательного участия коэнзима в дыхательной цепи важную роль играют эксперименты по экстракции его из внутренней мембраны митохондрий различными органическими растворителями (циклогексаном, пентаном, ацетоном и др.). Такая обработка приводит к полному ингибированию переноса электронов от дегидрогеназ к молекулярному кислороду, но не сказывается на каталитической активности собственно дегидрогеназ, цитохромов и цитохромоксидазы. Реконструкция коэнзима Q в состав препарата СМЧ, специфически лишенных убихинона, приводит к полному восстановлению утраченных функций. [c.421]

    Перенос электронов по дыхательной цепи митохондрий завершает цитохромоксидаза (цитохром сЮг-оксидоредуктаза, комплекс IV), катализирующая реакцию восстановления молекулярного кислорода до воды. Донором электронов для фермента служит ферроцитохром с. Реакция специфически блокируется цианид- и азид-ионами, а также окисью углерода. Цитохромоксидаза прочно связана с внутренней мембраной митохондрий и является интегральным мембранным белком в раствор фермент может быть высвобожден лишь после растворения мембраны высокими концентрациями детергентов. В нативной мембране, а также в растворах неионных детергентов (тритон Х-100, твин-80, Emasol-1130) цитохромоксидаза присутствует в виде высокоактивного димера. Некоторые воздействия (рН>8,5, высокие концентрации солей и неионных детергентов) вызывают появление мономерных форм фермента. Каталитическая активность цитохромоксидазы зависит от степени агрегации молекулы фермента. [c.432]

    Цитохромоксидаза представляет собой сложный белковый комплекс, в состав которого входит по меньшей мере 8 индивидуальных полипептидов. Во внутримолекулярном переносе электронов участвуют простетические группы фермента гемы а и з, а также 2 атома меди ua и ub. Трансмембранный перенос электронов от цитохрома с к молекулярному кислороду сопровождается векторным переносом протона из матрикса митохондрий в межмембранное пространство. Разность электрохимических потенциалов ионов водорода, генерируемая в цитохромоксидазной реакции на мембране митохондрий, может быть использована для синтеза АТФ. [c.432]

    Дыхательная цепь митохондрий представлена четырьмя дыхательными комплексами, катализирующими парциальные реакции окисления сукцината и НАДН кислородом (см. рис. 48, с. 415). В настоящее время установлено, что функционирование комплексов I, 1П и IV сопряжено с генерацией Изучение механизма функционирова- [c.438]

    В полярографическую кювету, содержащую 2 мл среды инкубации,, погружают электроды, вносят 50 мкл суспензии обработанных антимицином митохондрий, добавляют 5 мМ малат и 5 мМ глутамат и через 1—2 мин вносят 50 мкл густой (50—70 мг/мл) суспензии препарата Кейлина—Хартри. Внесение субмитохондриальных фрагментов практически не вызывает стимуляции поглощения кислорода. Реакцию инициируют добавлением 4 мкМ Qa (осуществляющего перенос элект ронов между митохондриями и субмитохондриальными фрагментами неспособными окислять малат). По ходу реакции добавляют 100 мкМ динитрофенол и регистрируют увеличение скорости поглощения кисло рода. В том случае, если стимуляция разобщителем не наблюдается рекомендуется вдвое понизить количество вносимого препарата Кей лина—Хартри и (или) уменьшить концентрацию вносимого Q i. Нов торяют измерение с другими гомологами убихинона Qi (3 мкМ) и Qe (3 мкМ). Убеждаются в полной чувствительности наблюдаемой убихинон-редуктазной активности (измеренной с различными гомологами убихинона) к ротенону. С этой целью в кювету по ходу реакции вносят 5 мкМ ротенон и наблюдают полное ингибирование реакции. [c.440]

    Внутренняя мембрана митохондрий проницаема для аммиака, кислорода, углекислого газа, воды, пирувата, ацетата и других монокар-боновых кислот. По-видимому, перенос этих веществ происходит в результате простой диффузии незаряженных молекул. Перенос во внутреннее пространство митохондрий молекул недиссоциированной уксусной кислоты должен, как и в случае фосфата, привести к изменениям pH по обе стороны мембраны в соответствии с законом действующих масс. [c.447]

    Проба 4. В среду 1, содержащую п-хлормеркурибензоат, добавляют митохондрии, сукцинат, СаСЬ, 20 мМ ацетат, 2,4-динитрофенол (для быстрого исчерпания кислорода в среде). Убеждаются в том, что ацетат снимает вызванное п-хлормеркурибензоатом торможение транспорта Са2+. [c.453]

    Определив потребление митохондриями неорганического фосфата и кислорода в аппарате Варбурга (с. 10), рассчитывают коэффициент фосфорилирования. Так как для достоверного определения кислорода и неорганического фосфата необходима довольно продолжительная инкубация митохондрий, в реакционную смесь обычно вносят АДФ-реге-нерирующую систему (чаще всего для этой дели используют гексокиназу с глюкозой). Это удобно также потому, что гексокиназа успешно конкурирует с митохондриальными АТФ-азными реакциями, которые могут сильно искажать результаты опытов, гидролизуя образующийся в ходе фосфорилирования АТФ. [c.467]

    В первой части работы изучают влияние разобщителя на сукцинатоксидазную активность митохондрий. В кювету полярографа с 2 мл среды с 5 мкМ ротеноном после погружения в нее электродов и включения самописца добавляют 40—60 мкл суспензии митохондрий (4— 5 мг белка). Через 1—2 мин в кювету добавляют 5 мМ сукцинат и регистрируют дыхание митохондрий с постоянной скоростью на протяжении 1—2 мин. Добавляют 5 мкМ ДНФ и регистрируют дыхание до полного исчерпания кислорода в среде. В следующих пробах последовательно увеличивают концентрацию ДНФ до тех пор, пока дальнейшее увеличение ее не будет вызывать увеличения скорости дыхания. В прочносопряженных митохондриях насыщение сукцинатоксидазной активности обычно достигается в присутствии 50—100 мкМ ДНФ. Строят графическую зависимость скорости окисления сукцината в митохондриях от концентрации ДНФ (5—6 экспериментальных точек). [c.470]

    Перенос электронов по дыхательной цепи митохондрий приводит к аккумуляции энергии окислительно-восстановительных реакций в виде АТФ. Протекание эндергонической реакции синтеза АТФ из АДФ и Ф ( 10 ккал/мол) возможно за счет экзергонической реакции окисления НАДН или сукцината кислородом. Механизмом, обеспечивающим сопряжение этих двух реакций, является АТФ-синтетазный комплекс, способный в определенных условиях катализировать гидролитический распад АТФ. Последняя реакция (АТФазная активность) служит удобным объектом для изучения механизма окислительного фосфорилирования. Схема, иллюстрирующая процесс образования и распада АТФ в митохондриях, приведена на рис. 60. [c.471]

    Функция цикла Кребса заключается в том, чтобы снабжать дыхательную цепь электронами (об этом мы расскажем более подробно в гл. 23). Реакции дыхательной цепи и цикла Кребса протекают в субклеточных структурах — митохондриях — и сводятся к восстановлению кислорода до воды. Связь между циклом Кребса и другими процессами преврагцения биологических молекул показана схематически на рис. 20-4. [c.187]


Смотреть страницы где упоминается термин Митохондрия кислорода: [c.157]    [c.376]    [c.162]    [c.414]    [c.438]    [c.439]    [c.462]    [c.463]    [c.464]    [c.477]   
Биохимия мембран Биоэнергетика Мембранные преобразователи энергии (1989) -- [ c.205 ]




ПОИСК







© 2025 chem21.info Реклама на сайте