Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки номенклатура

    Правилами ШРАС/ШВ [12] приняты английские трехбуквенные сокращения тривиальных названий аминокислот, начинающиеся с прописной буквы Gly, Ala, Туг и т. д. (применяемые либо для всей молекулы аминокислоты, либо для ее радикала) особенно часто такие сокращения применяются для описания аминокислотной последовательности в пептидах и белках. Разрешена также [13] и однобуквенная система сокращений, но она применяется гораздо реже. Имеются также правила номенклатуры, касающиеся часто применяемых сокращений для синтетических пептидов [14], для синтетических модификаций природных пептидов [15], пептидных гормонов [16] и белков, содержащих железо и серу [17]. [c.187]


    Настоящее, третье издание книги отражает тот рост знаний в области органической химии, который продолжался с неослабевающей скоростью со времени опубликования второго издания. Все разделы дополнены появившимися в последнее время сведениями, практически на каждую страницу внесены те или иные изменения, от незначительных до существенных добавлено более 5000 новых ссылок. В отличие от предыдущих изданий в третьем издании для описания химических превращений используются номенклатуры ИЮПАК (см. т. 2, ч. 2). Однако в целом структура книги не претерпела изменений, и третье издание построено по существу так же, как и второе. Подобно первым двум изданиям, настоящая книга является учебным пособием для углубленного изучения органической химии и может быть рекомендована студентам, уже получившим необходимую подготовку по органической и физической химии. В книге предпринята попытка равномерно осветить три основных аспекта в изучении органической химии реакции, механизмы и строение. Студент, овладевший материалом, изложенным в данной книге, должен приобрести прочные знания современных основ органической химии и умение работать с оригинальной литературой. В книге не рассматриваются или лишь затрагиваются главные специальные разделы органической химии терпены, стероиды, углеводы, белки, полимеризация, электрохимические реакции и т. п. По моему убеждению, к этим темам лучше обращаться либо сразу после первого года обучения, когда заложены необходимые основы, либо в ходе углубленного курса, но с помощью многих известных книг и обзоров, прекрасно написанных по каждому из упомянутых разделов. [c.10]

    По принятой для обозначения пространственного строения номенклатуре аминокислоты с такой конфигурацией относятся к Ь-ряду. Аминокислоты противоположной О-конфигурации в белках, как правило, не встречаются. Есть, однако, весьма примечательные исключения О-аминокислоты входят в состав некоторых микроорганизмов (бактерии сибирской язвы), антибиотиков, т. е. необычных, не имеющих широкого распространения форм жизни и их продуктов. [c.279]

    До недавнего времени аминокислоты, приведенные в табл. 2, настолько доминировали в изученных природных соединениях, что все другие аминокислоты рассматривались исследователями как неприродные , редкие или случайные . В дальнейшем было обнаружено, что белки некоторых бактерий, а также ряд природных физиологически активных веществ содержат и другие аминокислоты. Некоторые другие аминокислоты были найдены и в свободном состоянии в растениях и в животных организмах (см. табл. 3). Они отличаются гораздо более широким ассортиментом функциональных групп, многие из них относятся к О-ряду. Вероятно, номенклатура аминокислот, входящих в состав белков, вряд ли подвергнется серьезному изменению, что же касается списка аминокислот, найденных в физиологически активных [c.438]


    В зерне хлебных зерновых культур содержится большое число белков — структурных, биологически функциональных и запасных. В соответствии с номенклатурой, которую предложил Осборн [1907], белки зерновых классифицированы на основании их растворимости в разных растворителях. Эта классификация до сих пор еще широко применяется, хотя и с оговорками, касающимися ее физико-химического смысла. [c.177]

    Олигомеры в отличие от мономеров могут диссоциировать. Белки обычно подразделяют на мономеры и олигомеры. Согласно определению Клотца и сотр. [81], белок представляет собой мономер , если он состоит только из одной полипептидной цепи или если он построен из нескольких цепей, связанных ковалентно (например, Дисульфидными мостиками). По этой номенклатуре такие белки, как инсулин, а-химотрипсин и иммуноглобулины, представляющие собой образования из валентно-связанных цепей, должны быть отнесены к мономерам. Отличительная особенность олигомерных белков состоит в том, что они построены из так называемых субъединиц, т. е. из связанных невалентными силами более мелких образований (рис. 4.1 и 5.18). Как указывалось выше, мономеры могут состоять из нескольких функциональных доменов пли из еще большего числа структурных доменов. Это относится и к субъединицам Олигомеров, хотя субъединица часто эквивалентна функциональному домену. [c.61]

    Необходимость систематики номенклатуры диктовалась прежде всего стремительным ростом числа вновь открываемых ферментов, которым разные исследователи присваивали названия по своему усмотрению. Более того, одному и тому же ферменту часто давали два или несколько названий, что вносило путаницу в номенклатуру. Некоторые названия ферментов вообще не отражали тип катализируемой реакции, а при наименовании фермента исходили из названия субстрата, на который действует фермент, с добавлением окончания -аза в частности, амилазы (ферменты, гидролизирующие углеводы), липазы (действующие на липиды), протеиназы (гидролизирующие белки) и т.д. [c.160]

    Глобулярные белки растворяются в воде и солевых растворах с образованием коллоидных систем. Примерами таких белков служат альбумин, основная составная часть белка куриного яйца глобин, белковый компонент гемоглобина, а также важный в процессах свертывания крови фибриноген. --Структура белков крайне сложна. В принципе, как и для других макромолекул, строение белков может быть описано в терминах конституции, конфигурации, конформации, суммарной брутто-конформации и ассоциации. Однако в химии белков более целесообразно применять другую номенклатуру. Различают при этом четыре типа структурных признаков [3.3.6]. [c.656]

    Качество и количество отходов биотехнологических производств зависит от ряда причин, среди которых можно назвать характер производства по номенклатуре выпускаемой продукции (например, производство микробного белка, антибиотиков, витаминов, аминокислот, полисахаридов, ферментов и др.) особенности технологии производства — аэробное или анаэробное культивирование биообъекта, в герметизированных или негерметизированных биореакторах, в периодическом, полунепрерывном или непрерывном режимах объемы производства — малотоннажные [c.351]

    Рекомендованное в 1927 г. Международной комиссией по химической номенклатуре наименование белков. [c.392]

    Биотехнологию можно определить как попытку приспособить часть одной из природных фабрик для производства необходимого нам продукта. Один из способов добиться успеха — это обнаружить и задействовать ту часть фабрики, которая и так производит то, что нам нужно. Биотехнология такого рода использовалась веками. Примером может служить осуществляемая с помощью природных ферментов ферментация сахара в производстве уксуса и вина и крахмала при выпечке хлеба. Но у современной биотехнологии гораздо более честолюбивые замыслы. Ученые изыскивают способы модификации природных пакетов программ, которые заставили бы природные фабрики производит новые вещества, ранее не входившие в их номенклатуру. Чтобы понять, как реализуются такие замыслы, рассмотрим ДНК и присущие ей способы кодирования инструкций. Мы далее увидим, как используются эти инструкции в производстве белков, в том числе и ферментов. Наконец, мы обсудим, как в природную ДНК вводят новые инструкции, чтобы получить новый пакет технической документации, который мы называем рекомбинантной ДНК. [c.113]

    Авторы книги в основном пользуются символикой и номенклатурой, рекомендованной комиссией Международного союза чистой и прикладной химии для аминокислот, пептидов и белков. Эти рекомендации, основанные на использовании латинской транскрипции, представляются вполне целесообразными, и мы считаем, что их следует применять в советской химической и биохимической литературе. [c.6]

    Ранние работы в области аминокислот и белков начаты примерно одновременно с работами в области углеводов. Конфигурация аминокислот основывается на таковой для L-серина (46) (R = H20H). Однако в связи с тем, что все природные аминокислоты являются а-аминосоединениями, символы D/L в данном случае неизбежно относятся к асимметрическому атому, имеющему наименьший локант, в противоположность тому, как это принято в номенклатуре углеводов (основанной на при-писании этих символов асимметрическому атому, имеющему наибольший локант). В настоящее время доказано, что абсолютная конфигурация -серина отвечает символу 5, как и для большинства других природных аминокислот. Специалисты де-СООН [c.171]


    Благодаря разработке целого ряда новых методов и подходов к решению структурных задач, основанных на широком применении ЭВМ и автоматизации трудоемкого дифракционного эксперимента, изучение кристаллической структуры большинства соединений (за исключением сложных биологических объектов — белков и других подобных им соединений) значительно ускорилось и упростилось. Неспециалисту в области кристаллографии войти в курс дела стало гораздо легче достаточно ознакомиться с общими понятиями и номенклатурой симметрийной кристаллографии, основными положениями и формулами теории структурного анали- [c.3]

    Разделение в вышеуказанной системе легко в основу современной номенклатуры рибосомных белков. Было предложено обозначать рибосомные белки цифрами по порядку сверху вниз, как это видно на двумерных электрофореграммах (рис. 53 и 54). Белки малой (small) рибосомной субчастицы (30S или 40S) отмечаются индексом S (S1, S2, S3, и т. д.), а белки большой (large) рибосомной субчастицы (50S или 60S) — соответственно, индексом L (L1, L2, L3, и т. д.). Малая субчастица рибосомы Е. oli содержит 21 белок, от S1 до 521. Большая субчастица рибосомы содержит 32 различных белка, от L1 до L34 пятно, обозначенное первоначально как L8, не представляет собой отдельного белка, а является комплексом белков L10 и L12 пятна, обозначенные как L7 и L12, оказались одним и тем же белком, и L7 является лишь N-ацетилированным производным L12. Белок S20 в малой субчастице оказался идентичным белку L26 в большой субчастице. Таким образом, 70S рибосома Е. соИ содержит 52 различных белка. [c.91]

    Цитохромы классифицируют по их спектру поглощения в области длин волн между 400 и 600 нм. Эти спектры зависят от типа гема (цитохром Ь, например, содержит протогем IX) и от способа соединения гема с полипептидной цепью. Согласно этой номенклатуре, отнесение белков к цитохромам й-типа, ие означает, что они имеют общее с ними свертывание цепи [509. 561]. [c.222]

    Структуры всех 20 нормальных аминокислот (компонентов, выделенных из гидролизатов белков) были установлены к 1935 г. самым первым Браконно в 1820 г. был охарактеризован глицин, самым последним — треонин. Хотя цистеин входит в состав многих пептидов и белков как таковой, Однако их функционирующие формы содержат окисленный продукт — цистин, дисульфидные мостики которого могут образовываться как внутри-, так и межмолекулярно. За исключением глицина, все кодируемые аминокислоты белков оптически активны и одинаково хиральны при асимметрическом ос-углеродном атоме. По аналогии, с обычной номенклатурой для углеводов, их обычно рассматривают как соединения, обладающие -конфигурацией, при этом -серин считают родоначальным соединением. За исключением цистеина, конфигурация всех аминокислот соответствует S-конфигурацни по системе Кана-Ингольда-Прелога положение серы в цистеине таково, что -цистеин имеет / -конфигурацию. Изолепцин и треонин имеют по второму центру асимметрии при -углеродных атомах найденные в белках (2S, 35)-2-амино-3-метилвалериановая и (2S, 3/ )-2-амино-3-гидроксимасляная кислоты являются стереоизомерами. [c.227]

    Биополимеры, содержащие одновременно пептидные и полисахаридные цепи, уже достаточно давно найдены в животных организмах. Позднее они были обнаружены также в микроорганизмах и растениях и в настоящее время составляют наиболее обширный и изученный класс смешанных биополимеров. Существует известная неопределенность в номенклатуре этих соединений, которые часто называются углевод-белковыми соединениями или комплексами они известны и под наименованиями мукополисахаридов (для веществ, содержащих большое количество углеводов), мукопротеинов (для веществ, содержащих больше белковых фрагментов), мукоидов и т. п. В последнее время их чаще всего называют гликопротеинами, независимо от соотношения в них пептидной и полисахаридной части, и мы принимаем здесь зто наиболее целесообразное название. Гликопротеины выделены из многих секреторных жидкостей, таких, как плазма крови, цереброспинальная жидкость, моча, синовиальная жидкость, слюна, желудочный сок и т. п. Они имеются в эритроцитах, нервной ткани и т. д. Очень многие белки содержат определенное количество углеводов , присоединенных в виде олиго- или полисахаридных цепей, и в сущности являются гликопротеинами сюда относятся овальбумин и овомукоид — главные компоненты белка куриного яйца, Y-глобулин и другие белки крови, многие ферменты, такие как, например, рибонуклеаза В, така-амилаза, глюкозооксидаза из Aspergillus niger, некоторые гормоны, в частности гормоны гипофиза (тиреотропин, фолликулостимулирующий гормон), и др. Важнейшая функция гликопротеинов связана, по-видимому, с обеспечением всех видов клеточных взаимодействий, таких, как скрепление клеток в тканях, иммунохимическое взаимодействие, оплодотворение и т. п. (см. гл. 22). [c.566]

    Более общей системой стереообозначений конфигурации хиральных центров является /г,5-система. Почти все природные L-аминокислоты, встречающиеся в белках, имеют 5-конфигура-цию. Наиболее важными исключениями из этого правила являются L-цистин и L-цистеин, хиральный центр которых имеет Л-кон-фигурацию. Для обозначения конфигурации атомов иных, чем а-углеродные рекомендуется пользоваться Л,5-системой. Во избежание использования сразу двух систем стереообозначений .. -номенклатура часто употребляется и для обозначения а-угле-родного атома, например, (25,45)-4-гидроксипролин вместо (45)-4-гидрокси-Ь-пролин. Для аминокислот с несколькими хиральными центрами использование углеводных стереопрефиксов таких, например, как Ti-эритро нежелательно. [c.312]

    Аминокислоты являются карбоновыми кислотами, содержащими аминную и карбоксильную группы, которые находятся у одного и того же углеродного атома. В организме человека найдено около 70 аминокислот, причем 20 из них входят в состав белков. Это так называемые протеиногенные аминокислоты. Применительно к аминокислотам используют как систематическую номенклатуру, так и тривиальные названия. Последние чаще всего связаны с источником их получения. Так, тирозин был впервые вьщелен из сыра (от греч. tyros — сыр), аспарагиновая кислота — из спаржи (от лат asparagus — спаржа) и т. д. Аминокислоты кроме карбонильной и аминной группировок содержат боковые радикалы, причем именно эти химические группировки определяют большинство свойств той или иной аминокислоты. В общем виде формула аминокислоты может быть представлена следующим образом  [c.17]

    Белки, поступившие в организм с пищей, в желудочно-кишечном тракте (ЖКТ) расщепляются до аминокислот при действии группы протеолитических ферментов — пептидгидролаз по современной номенклатуре широко известно их тривиальное название — протеазы, или протеиназы. Эти ферменты катализируют гидролитическое расщепление пептидной связи в белках, представляющее собой экзэргонический процесс, при котором АС имеет отрицательное значение и полностью сдвигает равновесие реакции в сторону образования продуктов реакции. Пептидгидролазы относятся по классификации ферментов к классу гидролаз, их шифр КФ 3.4.1—3.4.4. [c.361]

    В разд. 3.3 и 3.4.2 щла речь о гидролизуемых таннинах. Катехины же служат составной частью негидролизуемых или конденсированных таннинов. С первыми их объединяет только способность взаимодействовать с белками и дубить кожу. По химической структуре это соверщенно разные группы веществ. Многие конденсированные таннины представляют собой олигомеры катехинов, соединенных связями С4-С6 и С4-С8. Их называют про-цианидинами. Прямые и разветвленные цепи этих олигомеров состоят из 4—16 мономерных звеньев и имеют молекулярную массу 2000—5000 единиц. Представление об их химической структуре и номенклатуре можно полу- [c.367]

    В названиях алифатических аминокислот по заместительной номенклатуре аминогруппа обозначается префиксом амино-, а карбоксильная группа как старшая — суффиксом -овая кислота. В названиях ароматических аминокислот в качестве родоначальной структуры используется бензойная кислота. Для аминокислот, участвующих в построении белков, применяются в основном тривиальные названия (см. 16.1.1). Изомерия аминокислот обусловлена взаимным расположением аминогруппы и карбоксильной группы в открытой углеродной цепи или цикле. Алифатические аминокислоты подразделяются на а-, -, у-аминокислоты и т. д. [c.336]

    Однако, чтобы понять взаимоотношения между перекисью водорода и ферментами, достаточно ознакомиться с некоторыми основами, касающимися группы ферментов и родственных им соединений, известных под названием ге-монротеинов, а также с соответствующей номенклатурой. Из ферментов наибольшее значение имеют каталаза и иероксидаза. Эти ферменты состоят из белка, содержащего активную или простетическую группу, известную как прото-порфирин железа. Эти ферменты очень близки к переносчику кислорода красных кровяных шариков, гемоглобину и родственному ему компоненту мышц [c.349]

    В 1927 г. Международная комиссия по реформе химической номенклатуры предложила заменить термин углеводы , как не отражающий ни химической природы, ни состава этого класса соединений, термином глюциды , происходящим от названия самого распространенного сахара — глюкозы. Однако этот термин и до настоящего времени не получил щирокого распространения (так же как термин липиды вместо жиры и термин протиды вместо белки ). Названия углеводы или сахара до сих пор остаются общепринятыми. [c.531]

    ПЛАЗМИН (фибринолизин) — фермент, катализирующий гидролитич. расщепление фибрина, приводящее к растворению (ф и б р и н о л и з у) кровяного сгустка (тромба) относится к подклассу иептидо-гидролаз систематич. шифр 3.4.4.14 (см. Номенклатура и классификация ферментов). Действие П. направлено гл. обр. на пептидные связи, образованные остатками L-аргинипа и L-лизипа. Помимо фибрина, П. может гидролизовать и другие белки, в частности казеин, -лактоглобулин, желатину, фибриноген, а также пизкомолекуляриые синтетич. пептиды и эфиры L-аргинина и L-лизина. Физиологич. роль П. состоит в предотвращении роста и последующем растворении тромбов, образующихся в сосудах нри их повреждениях, а также при ряде заболеваний (тромбозы). [c.22]

    РЕННИН (химозин, сычужный фермент) — протеолитич. фермент, катализирующий гидролитич. расщепление пептидных связей в белках относится к пептидогидролазам, систематич. номер 3.4.4.3 (см, Номенклатура и классификация ферментов). [c.325]

    РИБОНУКЛЕАЗЫ (РНК-азы) — ферменты, катализирующие гидролитич. расщепление рибонуклеиновых к-т на олиго- и мононуклеотиды. Р. широко распространены в природе и присутствуют во всех исследованных тканях. Наиболее изучена панкреатическая Р., секретируемая поджелудочной железой [систематич. название полирибонуклеотид — 2-олиго-нуклеотидо-трансфераза (циклизующая) шифр 2.7.7.16 — см. Номенклатура и классификация ферментов]. Р., выделенная в кристаллич. виде из поджелудочной железы быка экстракцией разведенной серной к-той с последующим фракционированием (NH4)2S04 — белок основного характера (р/ 7,8) с мол. в. 13 ООО. Установлена природа и последовательность аминокислотных остатков, входящих в состав Р., и выяснены существенные детали ее пространственной структуры, что дало возможность воссоздать трехмерную модель этого белка. Молекула панкреатич. Р. представляет собой одинарную полипептидиую цепь, состоящую из 124 аминокислотных остатков N-концевой аминокислотой в молекуле Р. является лизин, С-концевой — валин. [c.337]

    В зависимости от валентности металла и групп, занимающих пятое и шестое места в координационной сфере, металлопорфирины отличаются по свойствам и, в частности, по величине каталитической активности. В настоящее время не имеется общей номенклатуры не только для металлопорфиринов вообще, но даже для комплексных соединений железа. Обычно называют порфириновый комплекс железа, содержащий двухвалентное железо, гемом, или феррогемом. Это вещество способно присоединять различные азотсодержащие основания, например пиридин, первичные амины, а также имидазол. Все эти соединения объединяются под названием гемохромогены. Образование соединений этого типа происходит при фиксации гема на белках. В частности, фиксация может осуществляться за счет имида-зольных остатков, которые имеются в молекулах белков. Если металлопорфириновое соединение железа содержит трехвалентное железо и свободная валентность использована для присоединения гидроксила, то получается вещество, называемое гематином если же свободная валентность занята атомом хлора, то образуется гемин. Соответствующее соединение с азотистыми основаниями в этом случае называют парагематинами. [c.66]

    Фишер (Fis her) Эмиль Герман (1852—1919) — немецкий химик-органик, создатель научной школы, основоположник химии природных соединений, ин. ч.-к. и ин. поч. ч. Петерб. АН. Исследовал строение и синтезировал ряд производных пурина. Ввел номенклатуру, создал рациональную классификацию и синтезировал многие углеводороды. Открыл специфичность действия ферментов. Провел основополагающие исследования по химии белков. Лауреат Нобелевской премии 189 [c.297]

    Белки же, по новой теории Мульдера, образовывались в результате соединения нового протеина с радикалами 5М2Н4 (сульфамид, по старой номенклатуре) или Р2ЫгН4 (фосфамид, по старой номенклатуре). Новая теория Мульдера была также поддержана Я. Берцелиусом, но теперь Берцелиус рисковал остаться в меньшинстве, в результате проведения большого числа анализов белковых веществ, после дискуссии о работах Мульдера. Результаты этих анализов со все большей убедительностью показывали, что данные Мульдера не так точны и непогрешимы, как это утверждалось еще со1всем недавно. [c.39]

    Все белки подразделяются на два больщих класса 1) простые белки, или протеины (от протеос — первый, первичное, основное), поэтому по женевской номенклатуре белки называются протидами, содержащие в молекуле только остатки аминокислот 2) сложные белки, или протеиды (производные протеинов), содержащие, кроме [c.437]


Смотреть страницы где упоминается термин Белки номенклатура: [c.171]    [c.92]    [c.93]    [c.71]    [c.72]    [c.160]    [c.35]    [c.519]    [c.233]    [c.235]    [c.263]    [c.235]    [c.116]    [c.372]   
Основы биохимии (1999) -- [ c.80 , c.81 ]




ПОИСК







© 2025 chem21.info Реклама на сайте