Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Культуры плотность

    Особенности аэрозолей заключаются в том, что из-за низкой вязкости воздуха седиментация и диффузия частиц аэрозоля протекают очень быстро. Кроме того, дымы и туманы легко переносятся ветром, что используют для создания дымовых завес, окуривания и опрыскивания сельскохозяйственных культур. Электрические свойства аэрозолей чрезвычайно сильно отличаются от электрических свойств систем с жидкой средой, что объясняется резким различием плотностей и диэлектрических свойств газов и жидкостей. В газовой среде отсутствуют электролитическая диссоциация и ДЭС. Однако частицы в аэрозолях имеют электрические заряды, которые возникают при случайных столкновениях частиц друг с другом или с какой-нибудь поверхностью. Возможна также адсорбция ионов, образующихся при ионизации газов под действием космических, ультрафиолетовых и радиоактивных излучений. Для аэрозолей характерна крайняя агрегативная неустойчивость. Их длительное существование связано с высокой дисперсностью и малой концентрацией. Это значит, что устойчивость аэрозолей является лишь кинетической, термодинамические факторы устойчивости отсутствуют. [c.447]


    Пшеничные отруби ковшовым элеватором I подают на автоматические весы 2, отсюда они поступают в загрузочный бункер 5, а из него в стерилизатор 5. В этом аппарате отруби увлажняются водой, подаваемой через форсунки из бака для стерильной воды 4. На 1 кг отрубей добавляют 0,2 л воды и 7—8 мл соляной кислоты с относительной плотностью 1,19 или 2,7—3,0 мл серной кислоты плотностью 1,84. Стерилизацию производят острым паром при температуре 103—105°С (давление 0,07 МПа) в течение 1—1,5 ч, периодически включая мешалку. По окончании стерилизации отруби дополнительно увлажняют до содержания влаги 58—60%, охлаждают до 40—42" С и затем производят засев культурой гриба, полученной в отделении чистых культур. [c.155]

    Технологические показатели зрелой бражки характеризуют работу не только бродильного цеха, но и всех предыдущих цехов и участков производства — разваривания сырья, выращивания солода или культуры плесневых грибов, осахаривания, вакуум-охлаждения, приготовления дрожжей и др. Ошибки в технологии, допущенные в предыдущих цехах, обнаруживаются в показателях зрелой бражки. Важнейшие из этих показателей содержание РВ и истинных сухих веществ видимая плотность, кислотность и крепость бражки (содержание спирта). [c.246]

    При осахаривании разваренной массы сырья ферментами плесневых грибов, особенно глубинной их культуры, видимая плотность значительно выше, чем при осахаривании солодом. Увеличение ее объясняется гидролизом пектиновых веществ, гемицеллюлоз, -глю-канов и других веществ зерна, не гидролизуемых солодом из-за отсутствия в нем соответствующих ферментов, [c.246]

    Выделение и промывка дрожжей. Культура из дрожжерастильных аппаратов выходит в пенно-жидкостном виде плотностью 0,25 г/см , на /з состоящей из пены. Перед выделением дрожжей пену разрушают, так как она требует увеличенного объема аппаратов, снижает производительность насосов и сепараторов, увеличивает потери дрожжей. [c.380]

    Кроме того, концентрирование клеток в культуре, т.е. увеличение ее плотности, способствует повышению выживаемости клеток после замораживания. [c.202]

    Часто культуру клеток выращивают в условиях, когда время генерации поддерживается постоянным, однако плотность клеток в среде не возрастает. Для этих целей создано простое устройство, названное хемостатом. Среда в сосуде с культурой, содержащая определенное число бактерий, непрерывно перемешивается. В этот сосуд из специального резервуара все время поступает свежая культуральная среда, а часть содержимого сосуда вместе с суспендированными бактериями непрерывно выводится в другой сосуд. Численность популяции бактерий в сосуде достигает постоянного уровня, который может поддерживаться относительно долго. [c.40]


    Шелушение семян бобовых культур, богатых крахмалом (и бедных маслом), таких, как горох и конские бобы, относительно просто. Оно производится подачей семян на приводные рифленые вальцы, вращающиеся с разной скоростью, а затем разделением семенных оболочек и ядер, основанным на разнице в их размерах и плотности [74]. Этот технологический процесс [c.365]

    Чтобы культура микроорганизмов могла нормально расти, размножаться и осуществлять биосинтез ка-кого-то вещества, необходимы оптимальные условия окружающей среды химические факторы — состав и концентрация питательных веществ, присутствие активаторов и ингибиторов физические факторы — температура, давление, реакция, плотность, подвижность среды, освещение, радиация и т. д. При нарушении оптимальных границ этих факторов нарушается обмен веществ, прекращается или ограничивается рост и размножение культуры. [c.52]

    Е. соИ и многие другие микроорганизмы, которые используются для экспрессии чужеродных белков, обычно растут только в присутствии кислорода. К сожалению, растворимость кислорода в водных средах ограничена, а по мере увеличения плотности культуры содержание растворенного кислорода в культуральной среде быстро падает. Более того, поскольку кислород растворяется очень медленно, эту проблему нельзя рещить простым продуванием через среду воздуха или кислорода даже при интенсивном перемешивании. При уменьшении концентрации кислорода экспоненциальный рост замедляется и культура медленно переходит в стационарную фазу, характеризующуюся другим метаболическим статусом. Одним из последствий этого является образование в клетках протеиназ, которые могут расщеплять белок-мишень. Проблему аэрации культуральной среды пытались решить разными способами изменением конструкции биореактора, повышением интенсивности продувания воздуха и перемешивания, добавлением в среду веществ, увеличивающих растворимость кислорода. Все это, однако, не привело ни к каким ощутимым результатам. [c.122]

    Как это ни парадоксально, но один из способов увеличения количества чужеродного белка, синтезируемого рекомбинантным микроорганизмом, состоит в поддержании уровня экспрессии его гена на среднем уровне (так, чтобы на долю продукта приходилось примерно 5% суммарного клеточного белка), но зато в максимальном увеличении плотности культуры. Микробиологическая система с 5%-ным уровнем экспрессии чужеродного белка и низкой метаболической нагрузкой, в которой плотность может достигать 40 г/л (масса сухого вещества), оказывается более [c.129]

    Поскольку кислород плохо растворим в воде, рост аэробных бактерий часто лимитируется количеством растворенного в культуральной среде кислорода. Эта проблема особенно актуальна при большой плотности культуры или при крупномасштабной ферментации. Чтобы решить ее, биотехнологи попытались увеличить количество кислорода, поступающего в жидкую культуральную среду. Предложенные подходы состояли в следующем 1) подача в культуральную среду чистого кислорода вместо воздуха 2) подача воздуха (или кислорода) под давлением 3) добавление к культуральной среде хими- [c.355]

    Культуры с высокой плотностью [c.356]

    Вообще говоря, при получении чужеродных белков с помощью рекомбинантных Е. соИ руководствуются тем, что при максимальной конечной плотности культуры получается и максимальное количество продукта. В ферментерах периодического действия с добавлением субстрата концентрация рекомбинантных клеток Е. соИ достигает 50 грамм сухого вещества на 1 л среды (а в некоторых случаях >100 г/л). (Вес сухого вешества клеток Е. соН составляет примерно 20-25% веса влажного вещества.) [c.356]

    Один из способов повышения плотности культуры состоит в оптимизации культуральной среды. Следует иметь в виду, что некоторые питательные вещества, в том числе источники углерода и азота, при слишком больших концентрациях замедляют рост клеток. Глюкоза подавляет рост при концентрации >50 г/л, ам- [c.356]

    Для чего нужно стремиться максимально повысить плотность культуры при промышленной ферментации  [c.370]

    Орошаются здесь черноземы выщелоченные, тяжелосуглинистые, среднемощные. Содержание гумуса от 5,7 до 9,4%. За время орошения произошло выщелачивание карбонатов с глубины 0,6 на 0,85 м, то есть карбонаты кальция перемещены с горизонта А, В в горизонт В1. В результате этого произошло повышение кислотности (pH) почвогрунтов от 6,1 до 7,6. Обеспеченность почв подвижным фосфором колеблется от 132 до 184-477 мг/кг (повышенная и высокая), калием — от 92-105 до 270 мг/кг (средняя и высокая). В поглощенном комплексе (ПК) почвогрунтов среди двухвалентньгх катионов Са+ преобладает над М " (22,2 и 3,1 мг-экв/100 г). Объемная масса составляет 1,20-1,69 г/см общая скважность — 36—53%. За пределами орошаемого участка объемная масса 1,10-1,15 г/см, а скважность — 55-60%, что близко к оптимальным показателям для сельскохозяйственных культур. Плотность почв на орошаемых землях составляет 2,51-2,75 г/см влажность (в середине августа) — от 4,1-6,8 до 15,8—19,1%, наименьшая влагоемкость — 7,7-27,8%, запас влаги в интервале глубин 0,0-1,5 м колеблется от 590-834 до 1580-3328 мУга. [c.311]


    Удобным вариантом метода жидких капель является культивирование в малом объеме (до 1 мкл) единичных протопластов (микроизоляция) (Ю. Ю. Глеба, 1978). В микрокаплях, даже если в них находится только одна клетка, соотношение объема клетки к объему питательной среды такое же, как в культуре плотностью 10 кл/мл. [c.37]

    Приготовьте культуры для газона. В данном случае культура для газона — это просто растущая экспоненциально культура плотностью около 5-10 клетка/мл. Определите титр препарата фага Kamp. Для этого сделайте последовательные разведения препарата фага, смешайте 0,1 мл разведения с [c.37]

    Акустический анализ негомогенных жидкостей (т.е. частиц, суспендированных в растворах электролитов, например, микробных культур) особенно сложен. С помощью ультразвука определяли концентрацию загрязнений в сточных водах [37]. Рост дрожжевых (и других) культур также контролировали ультразвуковым методом, используя гибкий пьезоэлектрический мембранный преобразователь, состоящий из полиацеталевой смолы, хлорированного полиэтилена и цирконат-титаната свинца [42]. Измерительная ячейка состояла из двух пьезоэлектрических мембран (каждая площадью 2,5 х 1,5 см и толщиной 0,2 мм), разделенных слоем культуральной жидкости толщиной 2,5 мм. Частоту колебаний передающей мембраны фиксировали равной 40 кГц так, чтобы на приемной мембране генерировался сигнал с амплитудой приблизительно 20-100 мВ. Хотя с ростом концентрации выходное напряжение должно увеличиваться [81], на самом деле в диапазоне концентраций от 10 до 500 мМ наблюдалось лишь небольшое увеличение амплитуды (приблизительно на 5 мВ). Рост скорости звука с температурой в диапазоне от 25 до 40°С также был незначительным. В процессе роста культур плотность культуральной среды нередко меняется, поэтому контролировали отклик сенсора при различных концентрациях глицерина (плотности от 1 до 1,10). Изменения амплитуды и в этом случае были малы. Напротив, введение популяций бактерий или дрожжей приводило к значительно большим значениям сигнала (при изменении числа клеток от 1 до 10 в 1 мл амплитуда сигнала менялась от 20 до 50-80 мВ). Отклик сенсора линейно зависел от числа клеток (до 10 клеток/мл) и лучше отражал кривую роста, чем данные измерений проводимости культур [11]. Хотя датчик мог выдержать несколько циклов паровой стерилизации, возможность растрескивания пьезомембраны создает серьезные проблемы. Принципы, лежащие в основе метода, не совсем ясны. Более или менее уверенно можно полагать только, что сжимаемость суспензии играет большую роль, чем скорость звука и плотность [42]. [c.450]

    В процессе исследований с использованием активных макрофи-тов, отобранных на основании результатов первичного обследования Кизеловского угольного бассейна, показана возможность увеличения pH шахтных вод с 4,2 4,9 до 6,2-6,5 при прямом контакте их с макрофитами с плотностью культур 200-400 г/дм . При этом отмечалось одновременное снижение содержания Ре " на-60-82%, РеЗ+ на 14-28%, А13+ на 42-51%, 804 - на 72-86% с осветлением воды и образованием рыхлого осадка. Вместе с тем, как было установлено в процессе прямой бионейтрализации, шахтные воды оказывают токсическое воздействие на развитие макрофитов, [c.118]

    Вода класса 1 ( Вполне пригодная ) не опасна с точки зрения осолонцевания почвы и может применяться для полива сельскохозяйственных культур без применения химических мелиорантов. Длительное орошение такой воды не вызывает ухудшения физических свойств почвы, так как содержание поглощенного натрия в почвенном поглощающем комплексе не превышает 3—5% от емкости катионного обмена. Содержание катионов магния в воде этого класса не должно превышать содержание в ней катионов кальция, т. е. обязательно должно выполняться условие [Са +] [Mg2+] l. Вода класса I обеспечивает урожай сельскохозяйственных культур не ниже, чем при орошении пресными водами. Только иа почвах, обладающих плохими физическими и водно-физическими свойствами (плотность пахотного и подпахотного горизонтов более 1,50 ккг/м , водопроницаемость в первый час впитывания менее 30 мм вод. ст.) и при отсутствии промывного режима орошение такой водой с общей минерализацией более 50 мкг-экв/м (более 3 кг/м ) не допускается ввиду реальной угрозы засолення верхних слоев почвен-иого профиля. [c.94]

    Вода класса II ( Ограниченно пригодная ) может вызывать слабое ослонце-ванне почвы, доходящее до 10% поглощенного натрия от емкости катионного обмена. Воды этого класса, особенно слабо минерализованные (до 25 мкг-экв/м , т. е. до 1,5 кг/м ), могут использоваться для орошения без применения химических мелиорантов непродолжительное время (3—5 лет) черноземов южных и обыкновенных. Орошение каштановых и темно-каштановых почв обязательно должно сопровождаться применением химических мелиорантов или плантажировани-ем орошаемых почв. При применении одного из указанных приемов вода класса II обеспечивает такой же урожай сельскохозяйственных культур, как и при поливе пресными водами. На почвах с плохими физическими и водно-физическими свойствами (плотность пахотного и подпахотного горизонтов более 1,50 ккг/м , водопроницаемость в первый час впитывания менее 30 мм вод. ст., содержание водопрочных агрегатов 0,25—10 мм менее 20% от массы почвы) орошение следует проводить водами с общей минерализацией не более 50 мкг-экв/м (не более 3 кг/м ) и в обязательном порядке вносить в почву (или в поливную воду) химические мелиоранты. [c.94]

    Вода класса III ( Условно пригодная ) при использовании ее для орошения вызывает осолонцевание почвы, доходящее до 20% поглощенного натрия от емкости катионного обмена и снижает урожай сельскохозяйственных культур на 20—50% но сравнению с орошением пресной водой. Использование этой воды допускается лишь при обязательном применении химической мелиорации или план-тажировання почв, что позволяет поддерживать урожайность сельскохозяйственных культур на уровне 85—90% от урожаев, полученных в первый год орошения. Воды класса III, имеющие общую минерализацию выше 50 мкг-экв/м (выше 3 кг/м ), не следует применять на почвах, обладащих плохими физическими и водно-физическими свойствами (плотность более 1,50 ккг/м водопроницаемость в [c.94]

    Исследования биоповреждаемости органических жидкостей и топлив показали, что в основном меняются их кислотность и оптическая плотность. Причем об изменении этих характеристик можно судить по критерию наличия биомассы отсутствие ее — топливо устойчиво, количество биомассы до 0,7 г/л — умеренное поражение, св. 0,7 г/л — интенсивное поражение микроорганизмами (см. табл. 14). Испытания проводят по методу инкубации смеси топлива с водноминеральной (питательной) средой и определенными видами микроорганизмов. Условия — благоприятные для развития тест-культур [32, с. 67]. [c.76]

    Первое поколение дочерних молекул ДНК состоит наполовину из старых и наполовину из новых полинуклеотидных цепей. Зто было подтверждено замечательным экспериментом на бактериальных культурах с использованием меченых атомов ( N разд. 20.17). Об этом опыте в 1958 г. сообщили М. Мезельсон и Ф. У. Шталь. Они выращивали несколько поколений кишечной палочки Es heri hia oli) на питательной среде, в которой присутствовало соединение азота с высоким содержанием тяжелого изотопа Выделенная в этом случае бактериальная ДНК имела большую молекулярную массу (атомы в молекуле были те же) и большую плотность, чем ДНК, полученная из бактерий, выращенных на обычной среде. Различие плотности определяли методом, называемым ультрацентрифугированием в градиенте плотности. Раствор хлорида цезия помещают в центрифужную пробирку и вращают ротор с такой скоростью, чтобы получить центробежное ускорение, в 100 000 раз превышающее ускорение земного тяготения. В центробежном поле концентрация ионов цезия, имеющих высокую плотность (вместе с компенсирующими их заряд ионами хлора), будет выше в периферическом конце пробирки. Таким образом, по направлению к периферии в пробирке создается градиент плотности. Большие молекулы, вроде ДНК, при введении в пробирку и создании силового поля концентрируются в зонах, где их плотность равна плотности раствора хлорида цезия, т. е. в периферическом конце пробирки. Мезельсон и Шталь перенесли бактерии, выращенные в среде, обогащенной [c.460]

    В зависимости от способа, условий культивирования и происхождения можно выделить несколько типов культур клеток и тканей. Если культивирование происходит поверхностно на агаризо-ванной питательной среде, то образуется каллусная ткань. Она не имеет четко выраженной структуры, но может различаться по плотности. Происхождение и условия выращивания определят, будет ли каллусная ткань рыхлой, средней плотности или плотной. Рыхлая каллусная ткань имеет сильно оводненные клетки, легко распадается на небольшие группы клеток и кластеры и поэтому может быть использобана для получения суспензионной культуры. Ткань средней плотности характеризуется хорошо выраженными меристематическрши очагами. В ней легко инициируются процессы органогенеза. Наконец, у плотных каллусных тканей различают зоны редуцированного камбия и трахеидоподобных элементов  [c.166]

    Клеточные суспензии играют значительную роль в биотехнологии. Они могут бьггь использованы для получения изолированных протопластов, которые применяют для клеточной селекции, при введении чужеродных ДНК и других процессах. Клеточные суспензии культивируют в больших количествах для получения вторичных метаболитов, выявления новых веществ, для выращивания клеточной биомассы. Однако увеличение клеточной биомассы в результате деления клеток и синтез вторичных метаболитов разобщены во времени. Поэтому необходимо хорошо знать физиологию, свойства клеток в суспензионных культурах, чтобы получить максимальный выход продукта. Состояние клеточных суспензий характеризуется плотностью клеточной популяции. За 14—16 дней (средняя длительность пассажа) плотность обычно повышается от 5- Ю до 5-10 кл/мл. Качество суспензии определяется степенью агреги-рованности. Агрегаты должны содержать не более 10 — 12 клеток. [c.167]

    В связи с тем, что селекционные работы по культуре ткапей требуют прове-депия большого количества анализов, а вклад побочных продуктов в оптическую плотность исследуемого образца в среднем пе превышает 10%, что подтверждают спектры поглощения получеппых методом препаративной хроматографии пеидептифицироваппых веществ и компопептов питательной среды, пами были разработаны экспресс-методики определепия содержания протобербериповых алкалоидов в культуральной жидкости, ткапи и агаре без предварительного разделения. Учитывая так же высокую концентрацию алкалоидов в испытуемых образцах, определепие оптической плотности раствора действующего вещества целесообразно проводить при длине волпы 427 им. [c.112]

    Приготовление посевного материала делают смыв суточной тест-культуры со скошенного пептонно-солевого агара раствором натрия хлорида изотоническим 0,9 %. Плотность микробной взвеси должна быть от 1 до [c.52]

    Культуру тест-микроба. andida utilis ЛИА-01 выращивают на чашках Петри со средой № 3 в течение 48 ч при температуре (30 1) °С, отбирают типичные колонии, пересевают их в пробирки со скошенным агаром того же состава и выращивают в указанных выше условиях. Полученная культура служит посевным материалом для приготовления взвеси клеток, применяемой в течение длительного времени. Для этого культуру с поверхности среды смывают 5—10 мл стерильного раствора натрия хлорида изотонического 0,9 % и засевают матрац с 300 мл среды № 3 (со скошенной поверхностью). Через 2 сут культуру смывают 50 мл стерильного раствора натрия хлорида изотонического 0,9%. По мере надобности готовят рабочую взвесь, густота которой должна быть такой, чтобы при разведении ее в 30 раз 0,9% раствором натрия хлорида изотонического оптическая плотность составляла 0,22—0,23. Для определения густоты взвеси используют нефелометр с нейтральным светофильтром и кюветы с толщиной слоя 3 мм. Рабочая взвесь может храниться в течение 30 сут. [c.219]

    Присутствие в субстрате ионов кальция необходимо и для нормальной жизнедеятельности микроорганизмов. Эти ионы входят в состав кальцийпротеинов, а также образуют в плазматических мембранах клеток поперечные связи фосфолипидов, повышая тем самым плотность упаковки их молекул. Выполняя функцию защиты клеточной системы, ионы кальция исключают диффузию однозарядных катионов — калия из клеток в субстрат и натрия из субстрата в клетки,— каждый из которых находится в своей среде в резко повышенной концентрации. Для выполнения этой функции в клетках должно поддерживаться определенное соотношение Са К, видоспецифичное для каждого штамма используемых культур микроорганизмов. Если это соотношение оказывается ниже критического уровня, в результате наступающей диффузии катионов происходит деполяризация клеток, приводящая к их гибели. [c.255]

    Достичь одновременно и высокого уровня синтеза чужеродного белка, и высокой плотности культуры часто не удается из-за накопления вредных побочных продуктов (в первую очередь ацетата), подавляющих рост клеток и синтез белка. Чтобы уменьшить накопление ацетата в богатой среде, не нарушая роста клеток, можно снизить скорость поглощения глюкозы, добавив в среду ее аналог, метил-а-глюкозид. Альтернативный подход состоит в использовании клеток Е. соИ, несущих мутацию в гене ptsG, который кодирует фермент II глюкозофосфотрансферазной системы. Максимальная плотность культуры Е. соИ дикого типа составила примерно 10 г/л, а культуры Е. соИ с мутацией в гене ptsG - 15 г/л. Кроме того, уровень синтеза Р-лактамазы в мутантных клетках был на 25% выше (на 1 г массы сухого вещества), чем в клетках дикого типа, так что суммарное различие достигает примерно двукратной величины. [c.129]

    Гибридомы, подобно большинству других клеточных культур животных, растут относительно медленно, не достигают высокой плотности и требуют сложных и дорогих сред. Получаемые таким образом моноклональные антитела очень дороги, что не позволяет широко использовать их в клинике. Чтобы решить эту проблему, были предприняты попытки создания своего рода биореакторов на основе генетически модифицированных бактерий, растений и животных. Для эффективной доставки и функционирования некоторых иммунотерапевтических средств зачастую достаточно одной антигенсвязывающей области антитела (Fab- или Fv-фрагмента), т. е. присутствие F -фрагмента антитела необязательно. [c.218]

    Для идентификации гена, кодирующего протоксин, используют обычную методику. В. thuringiensis выращивают в культуре и лизируют клетки. Выделяют суммарную клеточную ДНК и центрифугируют ее в градиенте плотности s l, чтобы разделить плазмидную и хромосомную ДНК. Если гены протоксинов входят в состав генома, создают банк клонов хромосомной ДНК. Если же они содержатся в плазмиде, то плазмидную ДНК фракционируют по размерам центрифугированием в градиенте плотности сахарозы. Это обогащает ту плазмидную фракцию, которая послужит в дальнейшем исходным материалом для идентификации генов протоксинов (рис. 15.3). [c.335]

    В культурах с высокой плотностью может также возникнуть недостаток кислорода. Чтобы избежать этого, увеличивают количество пост ттающе-го воздуха (разбрызгивание) либо скорость перемешивания или делают и то, и другое. Кроме того, можно подавать в культуру чистый кислород, а не воздух, в котором содержится только 20% кислорода, или выращивать клетки под давлением, чтобы увеличить растворимость кислорода. В качестве альтернативы предлагалось экспрессировать в хозяйских клетках Е. соИ ген гемоглобина Vitreos illa, что значительно увеличило бы поглощение кислорода растущими клетками. [c.356]

    При росте в таком двухступенчатом биореакторе непрерывного действия культура штамма Е. соИ NM989 может достигать плотности 4 г (сухого вещества) на 1 л, а на долю ДНК-лигазы Т4 может приходиться до 4% суммарного белка в клетке, что соответствует примерно 25 ООО ЕД ферментативной активности на 1 г (сухого вещества). Вообще же с помощью описанного подхода можно синтезировать примерно 100 ООО ЕД [c.361]

    В некоторых случаях для достижения высокой плотности культуры и получения больших количеств продукта достаточно проводить ферментацию в обычном периодическом режиме. В одном из экспериментов плазмиду, несушую ген гибридного белка, одним из компонентов которого был пептид инсулина В, помешали под контроль ф-цромотора Е. соИ и вводили в trp -штамм Е. oli] трансформированные клетки [c.363]

    Один из подходов к увеличению количества рекомбинантного белкового продукта состоит в максимальном увеличении плотности культуры трансформированных клеток, синтезируюших данный продукт. Для достижения этой цели лучше всего использовать режим периодической ферментации с добавлением субстрата. [c.368]


Смотреть страницы где упоминается термин Культуры плотность: [c.52]    [c.425]    [c.208]    [c.240]    [c.199]    [c.365]    [c.142]    [c.247]    [c.263]    [c.362]   
Сборник Иммуногенез и клеточная дифференцировка (1978) -- [ c.151 , c.152 , c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Культуры с высокой плотность

Плотность клеток в культурах

Регуляция, зависящая от плотности культуры (контактное торможение)



© 2025 chem21.info Реклама на сайте