Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ртуть, сопротивление

    Для измерения температуры применяют специальные приборы—термометры различных конструкций и различного назначения. Имеются жидкостные термометры, в которых рабочей жидкостью является ртуть, спирт, пентан и т. п., предназначенные для измерения температур, как высоких, так и очень низких. Большим распространением пользуются термометры, основанные на использовании электричества. К таким термометрам относятся термометры сопротивления, или болометры, термоэлектрические термометры, или термопары, а также дифференциальные термо- [c.166]


    ПРИМЕР 1. Навеску органического соединения массой 1,021 мг подвергли пиролизу в условиях, когда находящаяся в веществе сера переходит в сероводород. Газообразные продукты распада после хроматографического отделения циана пропустили в кондуктомет-рическую ячейку, содержащую раствор нитрата ртути. Сопротивление раствора в ячейке в результате этого выросло на АЛ . [c.236]

    Эти данные показывают, что частицы таких веществ, как хлорид ртути, оксид магния, практически гомогенны и состоят из плотно упакованных единиц. Другие частицы представляют собой агломераты и их масса намного меньше значения, которое следовало бы ожидать в результате измерения их диаметра под микроскопом. Поэтому знание только размеров и формы агломерированных частиц не дает достаточных оснований для использования их в расчетах аэродинамического сопротивления. [c.224]

Рис. 50. Схема полярографической установки с электролизерами 1— электролизер, 2 — сосуд со ртутью, 3— гальванометр, 4— проволока высокого сопротивления, 5— подвижной контакт, 6— аккумулятор, 7—8— концы проволоки сопротивления, 9— агар-агаровая пробка, 10— стеклянная пористая пластинка, II— крап. Рис. 50. <a href="/info/1690003">Схема полярографической установки</a> с электролизерами 1— электролизер, 2 — сосуд со ртутью, 3— гальванометр, 4— проволока <a href="/info/320970">высокого сопротивления</a>, 5— <a href="/info/954909">подвижной контакт</a>, 6— аккумулятор, 7—8— концы <a href="/info/1274410">проволоки сопротивления</a>, 9— <a href="/info/931131">агар-агаровая</a> пробка, 10— <a href="/info/609281">стеклянная пористая пластинка</a>, II— крап.
    Кроме обычных контактов, в верхнюю суженную часть аппарата 4 вставлен угольный стержень, сопротивление которого измеряют мостовой схемой 9. При изменении уровня ртути сопротивление стержня меняется. Резервуары 2, 3, коммуникации и компрессор 4 могут быть подогреты выше температуры конденсации. [c.216]

    Терморегуляторы и реле времени. Производительность горелки должна быть приведена в соответствие, с требованиями технологического процесса. Если эта операция осуществляется автоматически, то клапан, регулирующий подачу топлива, настраивают на сигнал, который может поступать от регулятора температуры или датчика реле времени процесса. Современные промышленные терморегуляторы практически всегда основаны на действии термоэлектродвижущей силы термопар, которая прямо пропорциональна температуре. Если температура процесса превышает допустимый уровень, то результирующая термоэдс воздействует на соленоид, который уменьшает или отключает подачу газа. Другие терморегуляторы основаны на изменении электрического сопротивления при изменении температуры. Терморегуляторы, принцип действия которых основан на свойстве металлов и ртути расширяться при повышении температуры, а также механические терморегуляторы применяют для управления горением в основном при низкотемпературных процессах, например при подогреве воды. [c.126]


Рис. 45. Схема полярографической установки / —электролизер, 2 —сосуд со ртутью,, 3 — гальванометр, 4— проволока высокого сопротивления, Рис. 45. <a href="/info/1690003">Схема полярографической установки</a> / —электролизер, 2 —сосуд со ртутью,, 3 — гальванометр, 4— проволока высокого сопротивления,
    Большинство исследований основано на предположении, чТо электрод, цо отношению к которому ведут измерения, имеет постоянный потенциал или, если применяется солевой мостик, что во время электролиза потенциал жидкостного соединения остается постоянным. По отношению к водному раствору это предположение, вероятно, оправдывается, но для смешанных водно-органических растворителей оно может привести к серьезным ошибкам. Вследствие этого результаты, получаемые при работе в указанных средах, должны внимательно анализироваться, и в основном их приходится рассматривать как эмпирические. В еще большей степени это нужно принимать во внимание в том случае, когда анализ проводится в целиком неводной среде (например, в ледяной уксусной кислоте, метиловом спирте и т. п.). При этом обычно в качестве электрода сравнения употребляют большой слой ртути на дне электролитической ячейки. Его потенциал почти всегда остается неизвестным, и сомнительно, остается ли он постоянным на протяжении всего анализа. Кроме того, сопротивление ячейки с неводным раствором крайне велико, соответственно и поправка на IR становится более неопределенной. В этих условиях расстояние от капельного электрода до анода начинает играть большую роль, и во время роста капли ртути сопротивление заметно меняется, так как при этом указанное расстояние сокращается. К сожалению, возможность таких осложнений не всегда учитывается работающими с неводными растворами, поэтому нередко их исследования приходится рассматривать как ориентировочные [98]. Чтобы данные, полученные в результате таких исследований, сделать более приемлемыми, настоятельно [c.522]

    Метод основан на свойстве ртути не смачивать многие твердые тела [74, 75]. Связь между внешним давлением Р и капиллярным сопротивлением в порах твердого тела определяется уравнением капиллярного падения [76]  [c.303]

    Сила тока короткозамкнутого элемента тем больше, чем ниже перенапряжение водорода на электроде, введенном в контакт с амальгамой. С этой точки зрения целесообразно применять в электродах металлы с низким перенапряжением водорода. Однако металлы в разной степени смачиваются ртутью, и скорость разложения амальгамы при добавлении этих металлов резко снижается. На практике пока единственным материалом, применяемым для ускорения разложения амальгамы, является графит. К его недостаткам следует отнести сравнительно высокое перенапряжение водорода, высокое удельное сопротивление и малую механическую прочность. Для снижения перенапряжения водорода на графите его предложено пропитывать солями хрома и молибдена, однако эффект, вызываемый этими солями, непродолжителен. [c.162]

    Использование сравнительно концентрированных растворов фонового электролита ( 0,1 М) для уменьшения сопротивления. С этой же целью применяют ячейки с внутренним анодом — донной ртутью. [c.158]

    Напряжение, подаваемое на электроды, изменяют посредством передвижения подвижного контакта 5 по проволоке высокого сопротивления 4, натянутой на мостик с делениями концы проволоки присоединены к полюсам аккумулятора 6. Падение напряжения на проволоке пропорционально ее длине. Мостик 7 соединен с отрицательным полюсом аккумулятора и со ртутью, находящейся в сосуде 2. Анод (ртуть на дне стакана) соединен через гальванометр 3 с положительным полюсом аккумулятора посредством подвижного контакта 5. Если подвижной контакт совместить с началом мостика 7, то разность потенциалов между анодом и катодом электролизера будет равна нулю. По мере передвижения контакта 5 слева направо напряжение, подаваемое на электроды, увеличивается и, наконец, становится равным напряжению аккумулятора, если контакт 5 находится в точке 8. Гальванометр 3, включенный в так называемую малую цепь (точка 7—электролизер —гальванометр —подвижной контакт), будет показывать силу тока, проходящего через анализируемый раствор. [c.216]

    Проведение опыта А. На часовое стекло наносят такое количество очищенной металлической ртути 1, чтобы диаметр капли ее был около 1 см, и ставят это стекло на дно кристаллизатора. Затем в кристаллизатор наливают 0,01 н. раствор нитрата натрия (или 0,01 н. раствор цианида калия) слоем толщиной в 3 см и погружают в него в диаметрально противоположных концах сосуда оба угольных электрода 2, которые через переменное сопротивление подключают к клеммам источника постоянного [c.186]

    Вспомогательным электродом (анодом) в полярографической ячейке служит ртуть, которая находится на дне ячейки и имеет поверхность, не менее чем в 100 раз большую по сравнению с поверхностью ртутной капли. Этот электрод практически не поляризуется. Так как сила тока, текущего через полярографическую ячейку, мала ( 10 А) и сопротивление самой ячейки незначительно, то омические потери напряжения ничтожны. Так как анод практически не поляризуется, то все увеличение или уменьшение напряжения на полярографической ячейке с изменением силы тока можно отнести за счет изменения потенциала ртутного капающего электрода. [c.210]


    Теперь, вращая ручку потенциометра переменного сопротивления Г, увеличивать напряжение и следить за показаниями вольтметра Б. Когда напряжение достигнет 10,4 В (ионизацион-Еый потенциал ртути), в лампе А вспыхнет разряд. [c.171]

    Тлеющий разряд возникает при малых давлениях газа (единицы и десятые доли кПа) и значительных сопротивлениях во внешней цепи. Тлеющий разряд представляет собой совокупность нескольких значительно отличающихся светящихся и темных участков в газовом промежутке (рис. 111.59). Наибольшее падение напряжения наблюдается в зоне 2 (катодном темном пространстве), где имеет место увеличение кинетической энергии электронов за счет электрического поля. Электроны вылетают из катода в результате ударов положительных ионов и быстрых атомов о материал катода (вторичная ионно-электронная эмиссия). Движущиеся к аноду электроны, соударяясь с молекулами и атомами, возбуждают и ионизируют их. Переход из возбужденных состояний в нормальное сопровождается свечением. Тлеющий разряд используется в газосветных лампах, наполненных аргоном, неоном с добавками паров ртути. [c.251]

    Прямой метод. Для получения кривых ф — можно применять схему, изображенную на рис. 154. Чтобы избежать попеременного растворения и осаждения ртути, на поляризуемый ртутный электрод, кроме переменной, подается также постоянная составляющая напряжения от источника В через потенциометр / ]. Для сохранения условий работы по гальваностатическому методу необходимо, чтобы постоянная и переменная составляющие напряжения имели величину одного порядка (100 в), а сопротивление цепи должно быть порядка 10 —10 ом. Для получения неподвижной кривой на экране осциллографа развертка 2 синхронизируется с частотой поляризующего переменного тока. [c.219]

    Они обладают очень хорошей удельной электропроводностью электропроводность лития в 10,9, натрия — в 22, калия — в 15, рубидия — в 8 и цезия — в 5,2 раза больше электропроводности ртути (при 0 С). Несмотря на это, натрий как проводник далеко уступает лучшему проводнику — серебру, по отношению к которому сопротивление натрия в три раза больше. [c.232]

    Физические свойства. Ртуть представляет собой серебристо-белый жидкий металл. Физические константы ее приведены в табл. 121. Удельная электропроводность ртути при 0° С равна 58% электропроводности серебра. Электропроводность ртути является стандартной единицей сопротивления — столбик ртути сечением в 1 мм и длиной в 106,3 см оказывает сопротивление в 1 ом. Молекулы ртути в парах моноатомны. [c.424]

    В своих первых работах в этой области Эндрюс и Амага вместо пьезометра использовали калиброванный по длине стеклянный капилляр, запиравшийся ртутью. По положению ртути определялся объем, занятый газом. Камерлинг-Оннес [52а, 94] в Лейдене применял этот метод для измерения сжимаемости гелия. Положение ртути в капилляре можно определять визуально с помощью катетометра [94—102] или по изменению электрического сопротивления проволоки, натянутой вдоль оси капилляра [103, 104]. Во всех случаях необходимо вводить поправки, учитывающие влияние мениска ртути в капилляре и температурное расширение стекла. Используя прибор подобного типа, Амага удалось создать давление до 450 атм, хотя в таких случаях максимальное давление обычно не превышает 150 атм. Верхний предел температуры определяется давлением паров ртути над ее поверхностью. При температуре выше 150° С необходимо принять соответствующие меры, чтобы быть уверенным в том, что пары ртути находятся в равновесии с исследуемыми парами или газом. Коннолли и Кандалик [102], использовавшие подобный прибор вплоть до 300° С, обнаружили, что даже при перемешивании с помощью магнитной мешалки (стальной шарик) со скоростью 50 цикл1сек для достижения равновесия паров ртути с парами исследуемого вещества или газом требовалось больше 2 час. Более подробно проблема растворимости ртути в сжатых газах обсуждается в конце этой главы. При использовании рассмотренного выше метода ошибка измерений составляет примерно 0,1 %  [c.99]

    Предложено несколько методов кондуктометрического определения серы в органических соединениях. В методе, предложенном Чумаченко и Алексеевой [54], проводят пиролиз серусодержащих органических соединений в присутствии предельного углеводорода (гексадекана) при 1100—1200 °С. При этих условиях находящаяся в веществе сера переходит в сероводород. Однако при пиролизе азотсодержащих соединений вместе с элементным азотом образуется циан. Для устранения мешающего влияния циана использовали хроматографическую колонку, заполненную хромосорбом W, промытым кислотой. В качестве подвижной жидкой фазы можно применять флексоль 8N8, трикрезилфосфат или карбо-вакс 1500, в качестве газа-носителя — аргон. Навеску вещества 1—2 мг и столько же предельного углеводорода вносят в реакционную камеру, наполненную аргоном, и проводят пиролиз. После пиролиза газообразные продукты распада вытесняют аргоном на хроматографическую колонку, а потом в кондуктомет-рическую ячейку, содержащую раствор нитрата ртути. Сопротивление раствора в ячейке измеряют до и после опыта. Приведены результаты анализов органических соединений с содержанием серы от 7 до 38%. [c.28]

    Величина поверхностного натяжения имеет решающее значение для смачиваемости поверхности и для характера образующихся пузырьков. Если жидкость обладает большой склонностью к смачиванию поверхности нагрева, то пузырьки пара теснятся а поверхности нагрева и легко от нее отрываются наоборот, если жидкость не проявляет склонности к смачиванию поверхности, то пузырек пара растягивается по поверхности и отрывается от нее только при значительном увеличении в объеме. Пузырьки пара в этом случае затрудняют переход тепла от поверхности нагрева к жидкости, так как тепловое сопротивление пара велико. Например, коэффициент теплоотдачи ртути, согласно данным Стырико-вича и Семеновкера, в 10—20 раз меньше, чем воды, при одинаковых тепловой.нагрузке и давлении. Это различие, конечно, обусловлено также и различием физических характеристик этих жидкостей. [c.126]

    Сопротивление R, г), которое оказывает проводник прохождению через него электрического тока, измеряется омами. Практически за единицу сопротпвления проводника принято сопротивление столба ртути высотой 106,3 см при 0° С, имеющего одинаковое поперечное сечение по всей длине, равное 1 мм . [c.23]

    Ртуть как жидкий металл, хорошо поддающийся очистке от примесей и химически сравнительно инертный, используется в различных физических и технических приборах термометрах, барометрах, вакуум-насосах, лампах дневного освещения, источниках ультрафиолетовых лучей, выпрямителях, в качестве эталона электрического сопротивления и напряжения. Широкому применеиию ртути препятствует чрезвычайная ядовитость ее паров. Предельно допустимая концентрация ее паров в воздухе рабочих поменщгшй составляет всего 10 мкг в кубическом метре. [c.334]

    Пипетку 6 заполняют насыщенным раствором Na l, осушительные трубки 8 (емкостью около 2 мл) — ангидроном, манометр 4 — ртутью измерительную бюретку 3—30 %-ным раствором едкого кали или едкого натра. Адсорбционную колонку 1 заполняют активированным углем марки АГ. Уголь предварительно дробят, просеивают и высушивают при температуре 150—140° до постоянного веса. Сопротивление колонки с углем 10 мм рт. ст. [c.841]

    Схема спектрографической установки показана на рис. 56, б. Регистрирующим прибором служит спектрограф J2, а в качестве спектроскопического источника света используется спектроскопическая импульсная лампа /, свет от которой, пройдя реакционный сосуд и спектрограф, попадает на фотопластинку 13. Спектроскопическая лампа зажигается через определенный промежуток времени после вспышки фотолитической лампы при помощи блока временной задержки 14. Таким образом по.лучается полный спектр поглощения фотолизуемого раствора. Меняя время задержки, можно получить набор спектров, изменяющихся во времени. В качестве импульсных фотолитических ламп обычно используются трубчатые импульсные ксеноновые лампы. Такие лампы имеют электрическую мощность до нескольких килоджоулей. Световая отдача таких ламп составляет 5- 20% от электрической мощности. Время вспышки ламп колеблется от 10 до 10 с (по уровню 1/е). Иногда для увеличения излучения в УФ-области к ксенону добавляют другие газы, например Нг, или ртуть. Используют им-пульсные лампы и с другим наполнением (Ог, N2, Аг). Ксенон обладает рядом преимуществ перед другими газами он имеет хорошие спектральные характеристики (сплошной спектр излучения), химическую инертность (нет взаимодействия с электродами), низкий потенциал ионизации. С увеличением энергии разряда максимум излучения смещается в ультрафиолетовую область. Разрешающее время импульсной установки определяется временем затухания светового импульса фотолитической вспышки. А время вспышки импульсной лампы в свою очередь зависит от нескольких факторов от типа лампы, электрической энергии и от емкости и индуктивности контура питания. Электрический контур составляют конденсатор, импульсная лампа и соединительные провода. Электрический разряд в контуре носит колебательный или затухающий характер в зависимости от соотнонюния между сопротивлением R, индуктивностью L и емкостью С элементов контура. Наиболее выгодным с точки зрения длительности импульса является соотпошепие Lj . Уменьшение времени затухания т достигается снижением индуктивности соединительных проводов, а также снижением емкости и индуктивности конденсатора (r yZ, ). При этом уменьшение энергии вспышки E = Wj2 компенсируется за счет увеличения напряжения на конденсаторе U. Увеличение [c.157]

    Требует уточнения и вопрос замера начального сопротивления 7 о цепи дилатометра после заполнения его ртутью. Так, согласно работам [1, 2], после отключения форвакуумного насоса (что, кстати, целесообразно делать после остывания нижней части корпуса диффузионного насоса — примерно через 1,5 ч после выключения его нагрева) замеряют столб ртути в дилатометре и электрической цепи поромера. Через 5—10 мин замер [c.233]

    При работе с постоянным током, когда конденсаторы действуют как запорные устройства, эквивалентная схема ячейки упрош ,ается (рис. Д.91). В этом случае имело бы место соотношение И=1(Я1+Я2- -Я1)- Чтобы ход кривой определялся только величиной Я, вычисляемой из равенства и = 1Я[, сопротивления Яь и / 2 должны быть очень небольшими по сравнению с Я1. Для Яь это достигается тем, что в раствор вносят большюе количество полярографически инертного фонового электролита (с концентрацией 0,1 — 1 н.), а для 2 —применением неполяризующегося противоэлектрода (электрода 2-го рода, например каломельного или электрода из донной ртути с большой поверхностью). Величина Я1 должна быть большой. Поэтому рабочий электрод делают как можгно более поляризуемым. [c.279]

    Если в ячейке находится раствор чистого фонового электролита без деполяризатора, то в области значений потенциалов между анодным растворением ртути на ртутном капельном электроде и катодным разложением фонового электролита и электрические свойства ячейки определяются только теременнотоковым сопротивлением R конденсатора С (рис. Д.120 (НИЖНЯЯ диаграмма, кривая 1). Для этого чистого емкостного тока справедливы выражения [c.301]

    Пористость. Порограмму пористого тела с эквивалентным радиусом пдр 2,5—3500 нм можно получить на ртутной порометри-ческой установке П-ЗМ, состоящей из порометров низкого и высокого давлений. Ртуть, вдавливаемая в пористое тело, преодолевает сопротивление, численно равное величине произведения периметра поры на- поверхностное натяжение ртути и косинус угла смачивания. [c.168]

    Электроды сравнения. В качестве электродов сравнения применяют в основном электроды второго рода (разд. 4.2), такие, как каломельный, меркур-сульфатный и хлорсеребряный. Эти электроды должны иметь небольшое сопротивление, в противном случае нарушится пропорциональность между током и напряжением. Потенциалы полуволн измеряют обычно по отношению к электроду сравнения, чаще всего к насыщенному каломельному электроду. В качестве электрода сравнения можно также применять металлическую ртуть на дне сосуда (донная ртуть). Правда, потенциал такого электрода зависит от состава фона. При применении в качестве фона 1 М раствора КС1 потенциал равен потенциалу нормального каломельного электрода при условии, что раствор насыщен ионами Hg(I). При внесении донной ртути в полярографическую ячейку сначала это условие не выполняется, так как происходит изменение ее потенциала до тех пор, пока (в замкнутом электрическом контуре) соответствующее количество ртути не перейдет в раствор и на поверхности электрода не образуется осадок Hga la- В связи с этим донную ртуть применяют в качестве электрода сравнения при проведении количественных определений, для которых положение потенциала полуволны не имеет значения, а важна только величина предельного тока. [c.125]


Смотреть страницы где упоминается термин Ртуть, сопротивление: [c.96]    [c.101]    [c.304]    [c.305]    [c.235]    [c.235]    [c.37]    [c.187]    [c.26]    [c.231]    [c.647]    [c.69]   
Техника низких температур (1962) -- [ c.374 ]




ПОИСК







© 2024 chem21.info Реклама на сайте