Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двигатели внутреннего сгорания горение топлива

    Водород, наряду с азотом, кислородом и окисью углерода, является исходным сырьем для синтеза важнейших химических продуктов аммиака, азотной кислоты, углеводородов, спиртов и т. п. Водород широко применяется в топливной промышленности для получения бензина путем гидрогенизации твердых и жидких топлив. В настоящее время разрабатывается вопрос о применении водорода в качестве топлива для двигателей внутреннего сгорания. Горение водорода в кислороде используется в технике для получения высоких (до 2500°) температур, необходимых для плавления кварца и тугоплавких металлов. [c.21]


    Одной из важных характеристик топлива, позволяющих судить о его пусковых свойствах и о стабильности процесса горения, является температура самовоспламенения паров топлива, т. е. такая температура, при которой происходит самовоспламенение горючей смеси без контакта с открытым пламенем. Процесс самовоспламенения горючей смеси встречается во всех двигателях внутреннего сгорания. Дизельные двигатели работают на основе этого процесса. В двигателях с воспламенением от искры самовоспламенение горючей смеси является крайне нежелательным и даже вредным явлением, так как нарушает нормальный процесс сгорания. В турбореактивных двигателях самовоспламенение горючей смеси — явление положительное, способствующее более устойчивому процессу сгорания. [c.76]

    Процессы, происходящие в бензиновом двигателе и дизеле, резко отличаются друг от друга, поэтому отличаются друг от друга и типы топлива, применяемого в этих двигателях. Для двигателей внутреннего сгорания (бензиновых) требуются низкокипящие, равномерно сгорающие углеводороды с относительно высокой температурой самовоспламенения [329, 330]. Топливо для дизельного двигателя, напротив, должно иметь низкую температуру воспламенения, и поэтому низкокипящие соединения для этой цели непригодны. К моменту воспламенения в дизельных двигателях находится не весь объем топлпва, как в бензиновых, а только часть топливо добавляется в течение всего времени поворота кривошипа, начиная с момента, когда кривошип не доходит на угол 15—20° до верхней мертвой точки, причем горение топлива происходит в полном объеме. [c.438]

    Давайте рассмотрим процесс сгорания бензина в двигателе. Это сложный физико-химический и технологический процесс, связанный с выполнением противоречивых требований. Прежде всего, карбюрация — смешение бензина с воздухом. Если топливная смесь бедна, то есть в ней много воздуха и мало топлива, то температура горения и, следовательно, температура рабочего тела (продуктов сгорания) в двигателе снижаются. А эффективность всякой тепловой машины, в том числе и двигателя внутреннего сгорания, зависит как раз от перепада температур рабочего тела в начале и конце рабочего процесса. Это непреложное требование термодинамики. Кроме того, при работе на бедной топливной смеси снижается мощность двигателя, повышается интенсивность закоксовывания цилиндров, поршней и клапанов, снижается КПД... [c.88]


    При взаимодействии металла с сухими газами (воздухом, газообразными продуктами горения топлива и др.) при высоких температурах происходит газовая химическая коррозия. Этот вид коррозии возможен и при низких температурах, если при этом на поверхности металла не конденсируется жидкость, проводящая электрический ток. Газовой коррозии подвергаются детали газовых турбин, двигателей внутреннего сгорания, арматура печей подогрева нефти и другие изделия, работающие при повышенных температурах в среде сухих газов. При проведении многочисленных технологических процессов обработки металлов в условиях высоких температур (нагрев перед ковкой, прокаткой, штамповкой, при термической обработке - закалка, отжиг, сварка) на металлургических и трубопрокатных заводах также возможна газовая коррозия. При взаимодействии металла с кислородом воздуха или содержащимся в других газах происходит его окисление с образованием окисных продуктов коррозии. В отдельных случаях, например при воздействии на металл паров серы или ее соединений, на поверхности металла могут образоваться сернистые соединения. [c.17]

    Химические реакции широко используются во многих производственных процессах. Они (например, процессы окисления, коррозии и др.) протекают при работе многих установок, машин и приборов. Получение электроэнергии, топлива, металлов, различных материалов, продуктов питания и т. п. непосредственно связано с химическими реакциями. Например, в настоящее время электрическую и механическую энергии получают в основном преобразованием химической энергии природного топлива. В процессе этого преобразования происходят сложные химические реакции горения, взаимодействия воды и ее примесей с металлами и т. п. Без понимания этих процессов невозможно обеспечить эффективную работу электростанций и двигателей внутреннего сгорания. Велика роль химических процессов и в атомной энергетике, значение которой непрерывно возрастает. [c.8]

    Окислительно-восстановительные реакции играют важную роль в природе и технике. В качестве примеров окислительно-восстано-вительных процессов, протекающих в природных биологических системах, можно привести реакцию фотосинтеза у растений и процессы дыхания у животных и человека. Процессы горения топлива, протекающие в топках парогенераторов тепловых электростанций и в двигателях внутреннего сгорания, являются примером окислительновосстановительных реакций. [c.182]

    Продукты горения топлива зависят от его состава и условий сжигания. Однако при горении топлива на электростанциях, в промышленных печах, двигателях внутреннего сгорания и других установках всегда образуются Н2О и СО2. Кроме того, продукты горения содержат, как правило, СО, оксиды серы и азота, сажу, золу, а также азот и непрореагировавший кислород. Соотношение между СО2 и СО в продуктах горения зависит от ряда факторов и прежде всего от соотношения топлива и воздуха. Если подача воздуха недостаточна, то [c.354]

    Продукты горения топлива. Основные антропогенные атмосферные выбросы вредных веществ вызваны сжиганием органического топлива на электростанциях, в котельных, промышленных печах и двигателях внутреннего сгорания, а также переработкой руд и получением различных химических продуктов. [c.387]

    Продукты горения топлива зависят от его состава и условий сжигания. Однако при горении топлива на электростанциях, в промышленных печах, двигателях внутреннего сгорания и других установках всегда образуются Н2О, СО2 и СО. Соотношение между СО2 и СО в продуктах горения зависит от ряда факторов и прежде всего от соотношения топлива и воздуха. Если подача воздуха недостаточна, то топливо сгорает не полностью, в продуктах горения увеличивается доля СО и сажи, при этом КПД использования топлива понижается. В то же время большой избыток воздуха ухудшает эффективность работы установок, так как при этом необходимы дополнительные затраты теплоты на подогрев воздуха. Температура топливно-воздушной смеси на некоторых участках может упасть ниже температуры воспламенения топлива, из-за чего часть его не успевает сгореть. Поэтому должно соблюдаться оптимальное соотношение между топливом и воздухом. Лучше всего контролировать это соотношение по содержанию СО2 и СО в продуктах горения. [c.388]

    В последние годы все большее внимание уделяется водородной энергетике, т. е. использованию водорода в качестве топлива, в частности, для двигателей внутреннего сгорания. Это представляет особый интерес с экологической точки зрения, т. к. при горении водорода в выделяющихся газах не содержится вредных веществ (продукт горения — вода ). [c.337]


    Генераторный газ (воздушный газ) — смесь оксида углерода СО с азотом воздуха. Получают при продувании воздуха сквозь накаленный уголь. При горении угля образуется СОз, который накаленным углем восстанавливается в оксид углерода СО (СО2+ С = 2С0). Г, г. применяется как топливо в металлургической, стекольной, керамической промышленности, для двигателей внутреннего сгорания. Геохимия (от греч. ge — земля и химия) — наука о химическом составе и законах сочетания, распределения и миграции химических элементов в земной коре и глубинах Земли. [c.37]

    Г орение — это процесс химического взаимодействия горючего и окислителя с образованием пламени, излучающего тепловую и световую энергии. В двигателях внутреннего сгорания химическая энергия топлива через процесс горения превращается в механическую энергию. Горение поддерживается физическими процессами испарения капель распыленного топлива, смешения паров с воздухом и их воспламенением или самовоспламенением. [c.94]

    Методы химической технологии весьма распространены в нехимических отраслях промышленности - металлургии, транспорте, электронике, энергетике, строительстве и др. Процессы получения металлов (в доменных, мартеновских и других плавильных печах) - типичные химические процессы. Горение топлива в топках паровых котлов, в двигателях внутреннего сгорания или ракетных - типичный химический процесс. Получение материалов электроники и строительных материалов тоже во многом связано с химическими процессами. Защита окружающей среды также использует химические методы. [c.10]

    Под моторными свойствами нефтяных топлив понимают физические величины, характеризующие особенности их горения внутри соответствующего типа двигателя внутреннего сгорания. В связи с тем, что моторные свойства неразрывно связаны с типом двигателей внутреннего сгорания, необходимо предварительно ознакомиться с некоторыми принципиальными моментами их работы, определяющими характер горения топлива. [c.173]

    Горение углеводородов в двигателе внутреннего сгорания также может быть неполным. По данным, приведенным в работе [16, с. 409], в дизельных двигателях в качестве продуктов неполного сгорания обнаружены угольный осадок в отверстии форсунки, сажа на стенках, смолистые и угольные отложения, сажа в газовой смеси (черные выхлопные газы), не полностью сгоревшее топливо (сине-серые выхлопные газы) и альдегиды (едкие выхлопные газы).  [c.73]

    Второй аспект — борьба с детонацией в двигателях. Процесс детонации сродни процессу горения, но скорость его слишком велика... В двигателях внутреннего сгорания он возникает из-за распада молекул еще не сгоревших углеводородов под влиянием растущих давления и температуры. Распадаясь, эти молекулы присоединяют кислород и образуют перекиси, устойчивые лишь в очень узком интервале температур. Они-то и вызывают детонацию,- и топливо воспламеняется раньше, чем достигнуто необходимое сжатие смеси в цилиндре. В результате мотор начинает барахлить , перегреваться, появляется черный выхлоп (признак неполного сгорания), ускоряется выгорание поршней, сильнее изнашивается шатунно-кривошипный механизм, теряется мощность... [c.266]

    Детонационные свойства — весьма важная характеристика бензинов. В цилиндр двигателя внутреннего сгорания поступает смесь паров бензина с воздухом, которая сжимается поршнем и зажигается от запальной свечи (искры). Образующиеся при горении газы двигают поршень. Чем больше степень сжатия смеси в цилиндре, тем выше коэффициент полезного действия двигателя. Величина степени сжатия ограничивается характером горения смеси в цилиндре. При запале смеси от искры образующееся пламя может распространяться в цилиндре двигателя с различной скоростью. При нормальном горении скорость распространения пламени равна 10—15 м/сек, однако при некоторых степенях сжатия наступает детонация, при которой пламя распространяется со скоростью 1500—2500 м/сек. Появление детонации сопровождается стуком в цилиндре, перегревом, черным дымом на выхлопе и приводит к повышению расхода топлива, снижению мощности двигателя и преждевременному его износу. [c.458]

    В связи с конструктивными особенностями газотурбинных двигателей условия работы смазочных масел в них существенно отличаются от условий работы масел в поршневых двигателях внутреннего сгорания. В отличие от поршневых двигателей, например, смазочное масло в ГТД изолировано от камеры сгорания (зоны горения топлива) кроме того, в наиболее ответственных узлах трения реализуется в основном трение качения, а не трение скольжения, как в поршневых двигателях (коэф-фициент трения качения на порядок ниже коэффициента трения скольжения). Вал турбокомпрессора в ГТД хорошо уравновешен в отличие от поршневых двигателей и, несмотря на большие обороты и высокие осевые и радиальные нагрузки, работает без резких переменных нагрузок. [c.240]

    Итак, на скорость и полноту сгорания влияют многие факторы, из которых весьма важными являются химическая природа топлива, равномерность состава и распределения в камере сгорания рабочей смеси (топливо—воздух). Для двигателей внутреннего сгорания с воспламенением от сжатия не менее важное значение имеет акт самовоспламенения жидких распыленных топлив в цилиндре. Между началом впрыска дизельного топлива и началом его горения имеется всегда известный разрыв во времени, что рассматривается как запаздывание самовоспламенения, характеризующее качество топлива с точки зрения воспламеняемости, а следовательно, запуска и процесса горения. [c.301]

    Бензин (газолин). Горение бензина в цилиндре двигателя внутреннего сгорания — сложный химический процесс. В идеальных условиях топливо полностью окисляется до двуокиси углерода и воды. Прп благоприятных рабочих условиях полное сгорание почти достигается, хотя немного окиси углерода и других продуктов неполного окисления находится в большинстве выхлопных газов. [c.602]

    В процессе работы двигателя внутреннего сгорания происходит окисление (горение) топлива и частично масла. Кроме того, в маслах образуются продукты неполного окисления. Часто считают, что масло в процессе работы двигателя окисляется преимущественно с образованием э х продуктов и частично расщепляется под влиянием термических воздействий. В литературе не имеется сведений о распределении кислорода, поступающего с топливо-воздушной смесью в двигатель и идущего на образование продуктов горения топлива и продуктов окисления масла Опыты показали, что только 30% поступающего кислорода расходуется на окисление топлива. Для окисления и выгорания масла и его компонентов необходимы следующие количества кислорода (в %)  [c.196]

    На использование энергии, освобождающейся при горении углеводородов, входящих в состав моторного топлива (например, бензина), основывается работа двигателей внутреннего сгорания. [c.29]

    Детонация моторного топлива. В цилиндре двигателя внутреннего сгорания при сильном сжатии и высокой температуре наряду со спокойным горением углеводородов может происходить внезапное, очень быстро охватывающее всю смесь, разложение молекул. Это явление называют детонацией моторного топлива. Внешним проявлением детонации является стук мотора. [c.29]

    Достигнутые к настоящему времени успехи в регулировании горения существенны, но далеко не являются пределом. В идеальном случае в условиях полностью контролируемого горения решающим критерием качества топлива будут не его октановые и цетановые характеристики, а теплосодержание, поскольку поршневые двигатели внутреннего сгорания — двигатели тепловые. [c.112]

    Представляется перспективным создание крупных установок по производству СПГ типа Стирлинг-Стирлинг . В этих установках предполагается использовать для привода криогенных машин Стирлинга двигатели Стирлинга. Двигатели Стирлинга относятся к классу двигателей с внешним подводом теплоты, что обусловливает принципиальную особенность их работы по сравнению с двигателями внутреннего сгорания. Процесс горения осуществляется вне рабочих цилиндров и протекает более равновесно, рабочий цикл реализуется в замкнутом внутреннем контуре при относительно малых скоростях повышения давления в цилиндрах двигателя, плавном характере теплогидравлических процессов рабочего тела внутреннего контура, при отсутствии газораспределительного механизма клапанов. Данное обстоятельство позволяет использовать различные источники теплоты (и прежде всего ПГ), добиваться более низкой токсичности при работе на органическом топливе, снижения уровня шумов и вибраций, экономить до 20 % топлива по сравнению с традиционными двигателями внутреннего сгорания. [c.806]

    С появлением поршневых двигателей внутреннего сгорания (ДВС) возникло много специфических вопросов их конструирования и эксплуатации, связанных не только с трением и износом металлов, но и с особенностями горения топлива и поведения масла в двигателе в частности, появились проблемы бездетона-ционного горения бензинов в двигателях, лако- и нагарообразо- [c.7]

    Стандартные виды топлива для двигателей внутреннего сгорания — автомобильный бензин (газолин, моторный бензин, петроль) и автодизельное топливо (газойль). Основное преимущество СНГ перед ними — чистота, поскольку в СНГ нет свинца, очень низкое содержание серы, окислов других металлов, ароматических углеводородов и других загрязняющих примесей. Особенно это касается свинца, который для улучшения антидетонационных свойств в обязательном порядке добавляют в бензин в виде тетраэтилсвинца и который засоряет запальные свечи, является потенциальным отравителем атмосферы, а также серы, которая в виде SO2 или SO3 выбрасывается в атмосферу вместе с продуктами сгорания. Использование СНГ облегчает запуск двигателя в холодное время года, обеспечивает более ровное и устойчивое горение внутри рабочего пространства цилиндров двигателя. Тот факт, что при сжигании СНГ обычно полностью отсутствуют загрязнения, объясняет и большую долговечность работающих на СНГ двигателей по сравнению с двигателями, работающими на [c.213]

    Между строением углеводородов и их пригодностью в качестве моторного топлива существует определенная зависимость. Наиболее пригодны углеводороды, стойкие по отношению к окислению, т. е. такие, которые в смеси с воздухом (карбюрированная смесь) сгорают равномерно и сравнительно медленно. В двигателе внутреннего сгорания в момент максимального сжатия карбюрированная смесь зажигается от электрозапала, и газы сгорания совершают нужную работу. Часто в случае неподходящего топлива горение бензиновоздушной смеси переходит во взрыв. Это нежелательное явление называется стуком, звоном или детонацией, а топливо, вызывающее его,—детонирующим топливом. Детонация очень вредна для моторов, так как она уменьшает их мощность, дает нагары и неполное сгорание. [c.187]

    Он сгорает на воздухе, выделяя большое количество тепла (68,5 ккал1модь воды). Этим пользуются для плавления тугоплавких металлов, кварца и т. п. Водород применяют в качестве топлива для реактивных двигателей и двигателей внутреннего сгорания, так как при его горении не образуется нагара и в выделяющихся газах не содержится вредных примесей. Однако он очень огнеопасен, смеси его с воздухом и особенно с кислородом чрезвычайно взрывчаты ( гремучий газ ). Эти смеси при низкой температуре находятся в кажущемся (ложном) равновесии, и при местном нагреве или при введенни в них катализатора, например платинированного асбеста, происходит взрыв. [c.314]

    Топаз — минерал из класса силикатов. Цвет зависит от примесей встречается бесцветный (прозрачный), желтый, голубой, фиолетовый, зеленый и розовый. Применяют Т. в стекловарении, электросталелитейных печах, производстве электрофарфора и других огнеупорных и керамических материалов. Благодаря высокой твердости Т. используют в качестве абразива. Прозрачные, красиво окраиден-ные кристаллы или гальки Т. издавна употребляются как драгоценные камни. Топливные элементы — химические источники тока, в которых энергия горения топлива (водород, спирты, альдегиды и др.) непосредственно превращается в электрическую энергию. Т. э. применяются в космических аппаратах, двигателях внутреннего сгорания, в военном деле. [c.137]

    Химические источники электрической энергии (ХИЭЭ) или, как их чаще называют, химические источники тока (ХИТ) —устройства, позволяющие получать. электрическую энергию за счет какой-либо химической реакции. В ХИТ переход химической энергии в электрическую осуществляется непосредственно без промежуточного образования тепловой и механической энергии, как это имеет место при использовании химической энергии горения топлива под паровыми котлами тепловых электростанций или в двигателях внутреннего сгорания. [c.315]

    Бензпирен. Одним из канцерогенных веществ, который поступает в атмосферу при горении углеводородных топлив, является, 3,4-бензпирен — полициклический ароматический углеводород (кристаллическое вещество желтого цвета, т. пл. 179°С, т. кип. 500—510°С, хорошо растворим в органических растворителях и нерастворим в воде). В зависимости от температуры дымовых газов он может менять свое агрегатное состояние, оседая в виде капель жидкости или в виде твердого вещества на поверхности почвы и накапливаясь со временем. В силу этого 3, 4-бенэпирен загрязняет не только атмосферу, но и почву и водоемы. Органами здравоохранения в нашей стране установлены очень жесткие нормы ПДК этого вещества 0,1 мкг/100 м воздуха и 15—16 мкг/100 м продуктов сгорания топлива. Содержание канцерогенных веществ в атмосферном воздухе промышленных предприятий и в крупных городах возрастает в зимнее время года, когда сжигается больше топлива. Для автомобильных бензинов на образование канцерогенов может влиять и содержание в них тетраэтилсвинца. К сожалению, влияние фракционного и химического состава топлива на образование канцерогенов при сжигании топлива в различных двигателях внутреннего сгорания не исследовалось. Недостаточно изучен и меха-нием образования 3,4-бензпирена при сгорании топлива. Однако известно, чto своим возникновением он обязан пиролизу углеводородных топлив. Вероятно, при горении низкомолекулярных газов 3,4-бензпирен образуется в результате реакций синтеза, а при горении тяжелых углеводородных топлив — в результате деструкции высокомолекулярных соединений и синтеза. [c.47]

    Аналогично ингибиторам и антиоксигенным веществам действуют антидетонаторы. Антидетонаторами называют вещества, противодействующие детонации и замедляющие скорость горения газа. Они препятствуют взаимодействию топлива и кислорода и представляют собой вообще вещества, легко разлагаю1циеся с образованием твердых частиц. Известно, что сжигание топлива в двигателях внутреннего сгорания может сопровождаться детонацией или протекать без детонации. Явление детонации наблюдается при горении газсв в определенных условиях. Для детонации характерна определенная, большая скорость распространения химического процесса по всей газовой фазе. Эта скорость близка к скорости звука [131], достигая ее при критическом давлении, которое определяет характер горения. Указывают, что детонация индуцируется определенными органическими соединениями, которые действуют с различной силой. Установлено, что соединения, содержащие этильный радикал, соединенный с бромом, кислородом и серой, а также более простые соединения, содержащие этильную группу, вызывают относительно слабую детонацию, между тем как алкилнитраты и нитриты [132], если они вводятся в топливовоздушную смесь, вызывают сильную детонацию. Способность вызывать детонацию приписывалась в молекуле атому, который в наибольшей степени изменен связанными с ним радикалами или группами. Вещество, индуцирующее детонацию, должно быть или смешано со всасываемым воздухом, или растворено в топливе. Предполагали, что механизм детонирующей реакции представляет собой видоизмененный механизм цепной реакции [3] в том смысле, что он содержит не отдельный центр, но группу центров, дающих микроцепи . [c.348]

    Эгертон [74] гфедполагает, что антидетона цис иное действие тетраэтилсвинца при детонации топливо-воздушных смесей в двигателях внутреннего сгорания мсжно объяснить разрушением промежуточных перекисей, получаемых в процессе горения. [c.351]

    Среди сложных физико-химических превращений, которые претерпевает топливо в двигателях, процессу горения принадлежит определяющая роль. Дальнейшее совершенствование двигателей внутреннего сгорания в значительной мере зависит от возможности управления процессами воспламенения и горения топлив. От скорости и полноты сгорания топлива в основном зависят устойчивость и надежность работы двигателя, а также его мощиостные и экономические показатели. [c.124]

    Следует отметить важность этого обстоятельства, так как двигатель внутреннего сгорания, в обеих своих разновидностях потребляющий около 70% добываемой нефти в виде моторных топлив, в современном конструктивном решении чрезвычайно чувствителен к их углеводородному составу. Поэтому мероприятия по улучшению воспламенения и основного горения, направленные на уменьшение зависимости рабочего процесса в двигателе от углеводородного состава топлива, как бы увеличивают их ресурсы и снижают их TOiiMO Tb. Кроме тсршофорсироБанйя, мы испытали действие кинетического фактора—увеличение концентрации кислорода в воздушном заряде, а также суммарное влияние обоих факторов. [c.118]

    Во всех типах двигателей внутреннего сгорания началу горения топлива всегда предшествует его полное или частичное испарение. В поршневых бензиновых двигателях с искровым воспламенением началу горения предшествует практически полное испарениё топлива, В поршневых двигателях с воспламенением от сжатия, а тв1кже в газотурбинных двигателях горение может начаться и тогда, когда только часть топлива перешла в парообразное состояние, образуя разрозненные очаги гомогенной топливно-воздушной смеси, [c.82]

    Детонацией моторного топлива называют чрезвычайно быстрый, приближающийся к взрыву, процесс горения топлива в двигателе внутреннего сгорания, нарушающий нормальную работу мотора. Скорость горения при детонации намного больше обычной скорости горения данного сорта топлива в этом же двигателе. Детонация в отличие от нормального сгорания вызывается не электрической искрой от запальной свечи двигателя, а лишь высокой температурой, развивающейся от сильного сжатия газовой смеси. При детонации пары горючего сгорают неполностью, выделяются окись углерода и водород, образуются клубы дыма — выхлоп мотор издает характерный звук, падает мощность двигателя. Детонация вызывает преждевременный износ двигателя, а иногда и разрушение. Чем меньше детонационная способность моторного топлива, тем сильнее можно сжимать горючую смесь под поршнем, тем большую мощность может развивать двигатель и тем экономнее расходуется горючее. Чтобы избел<ать детонации, необходим правильный подбор горючего. [c.216]

    Горение смеси горючего с воздухом в цилиндрах двигателей внутреннего сгорания, нормально протекающее сравнительно спокойно со скоростью нескольких метров в секунду, приобретает в некоторых случаях характер взрыва, распространяющегося с громадной скоростью (2000—3000 м/сек). Это явление получило название дет,онации оно ощущается при работе мотора появлением особого рода стуков и влечет за собой не только резкое понижение мощности двигателя, но и усиленную его изнашиваемость. Отсюда понятно, что изучение явления детонации и борьбы с нею является одной из важнейших задач технологии топлива двигателей внутреннего сгорания. Актуальность этой задачи особенно определилась за последнее время, когда в конструк-тировании всех двигателей внутреннего сгорания легких типов, т. е. авиационных, автомобильных и тракторных, отчетливо выявилась тенденция перехода к моторам с повышенной степенью сжатия как более экономичным между тем с повышением степени сжатия при данном топливе возрастает склонность его к детонации. [c.112]


Смотреть страницы где упоминается термин Двигатели внутреннего сгорания горение топлива: [c.436]    [c.354]    [c.284]    [c.385]    [c.166]    [c.218]   
Химия окружающей среды (1982) -- [ c.205 , c.207 ]




ПОИСК





Смотрите так же термины и статьи:

Сгорание топлив



© 2024 chem21.info Реклама на сайте