Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Новые виды энергии в химической промышленности

    Развитие химической промышленности сопровождается не только количественным ростом энергопотребления, но и качественным изменением его. Это выражается во все более интенсивном внедрении в химическое производство таких новых видов энергии и воздействия на систему как плазмохимическое, ультразвуковое, фото- и радиационное воздействие, действие низковольтного электрического разряда и лазерного излучения. Эти экстремальные воздействия способствуют активации молекул реакционной системы, возникновению в ней возбужденных частиц и инициированию химического, в том числе, с высокой селективностью, процесса. Эта область явлений составляет новую отрасль химии — химию высоких энергий (ХВЭ), изучающую состав, свойства и химические превращения в системах, содержащих возбуждающие частицы. [c.66]


    Новые виды энергии в химической промышленности [c.66]

    Специфика химической промышленности с ее многообразием производственных процессов, большим числом стадий передела, постоянным расширением сырьевой базы, вовлечением в оборот качественно новых видов сырьевых ресурсов, ориентацией на всесторонне комплексное использование природных материалов и энергии способствует развитию комбинирования, т. е. замыканию производственных связей внутри определенных производственных сочетаний и, прежде всего, в рамках предприятий. В химической промышленности как отрасли, применяющей в своей основе методы обработки комплексного сырья, комбинирование в общем и целом проявляется явственнее, чем в других отраслях промышленности. [c.96]

    Развитие химической промышленности идет по пути создания новых технологий, увеличения выпуска продукции, внедрения новой техники, экономного расходования сырья и всех видов энергии, создания безотходных и малоотходных производств. Промышленные процессы протекают в сложных химико-технологических системах (ХТС), каждая из которых представляет собой совокупность аппаратов и машин, объединенных в единый производственный комплекс для выпуска продукции. Связи между элементами ХТС обусловливают их взаимное влияние. Для управления ХТС используют ЭВМ. [c.3]

    Сравнительно новым видом канализации энергий на предприятиях является прокладка кабелей на эстакадах. Этот вид прокладки находит широкое применение на предприятиях химической и металлургической промышленности, где территория до предела насыш,ена всевозможными подземными коммуникациями на [c.201]

    Традиционными направлениями технического прогресса в нашей стране являются полная электрификация страны, совершенствование техники, технологии и организации общественного производства комплексная механизация и автоматизация производственных процессов химизация всех отраслей народного хозяйства, заключающаяся во внедрении материальное производство различных химических продуктов и процессов их получения всемерное развитие новых видов энергии и материалов, экономически эффективных отрасл.ей промышленности. [c.56]

    В разделе, посвященном неорганической химии, в третьем издании более широко рассмотрены основные теоретические вопросы. Вначале даются представления о методе научного исследования. Глава о строении атома расширена за счет нового материала по электронным уровням энергии и атомным орбиталям. В последующих главах сообщается новый материал по классификации элементов и по их валентности. Для интерпретации различных видов химической связи привлечено представление об электроотрицательности. Приведено более полное объяснение явлений окисления и восстановления, а также окислительновосстановительных процессов. Дано определение моляльных растворов и в связи с этим рассмотрены общие свойства растворов. Включен актуальный материал, относящийся к широкому применению ядерной энергии и радиоактивных изотопов в промышленности, медицине и биохимии. Рассмотрены последние достижения в областях аэрозолей, производства тефлона и искусственных [c.7]


    Развитие химической промышленности идет по пути создания новых технологий, увеличения выпуска продукции, внедрения новой техники, экономного расходования сырья и всех видов энергии, создания малоотходных производств. Промышленные процессы протекают в сложных химико-технологических системах (ХТС), которые представляют собой совокупность аппаратов и машин, объединенных в единый производственный комплекс для выпуска продукции. [c.3]

    Сейчас ультрачистые материалы требуются новой технике в сравнительно небольших количествах, но с каждым днем требования зти будут расширяться. Например, для исходных мономеров в производстве полимерных материалов или огнеупоров в металлургической, стекольной, а отчасти и химической промышленности уже сейчас необходимы способы массовой очистки веществ. В ближайшем же будущем создание новой энергетики потребует массовой и самой глубокой очистки полупроводников и других специальных материалов. Я имею в виду разработку новых преобразователей тепловой энергии в электрическую термоэлектрические и магнитогидродинамические генераторы, солнечные батареи. Очень чистые материалы нужны для атомных электростанций, а в дальнейшем и для термоядерных. Ведь несомненно, что еще в этом веке ученые и инженеры найдут пути использования неисчерпаемых запасов термоядерной и солнечной энергии, подземного тепла. [c.36]

    На рубеже XIX и XX веков были изобретены бензиновый и дизельный двигатели внутреннего сгорания, положившие начало всеобщей моторизации, коренной перестройке вначале водного, а затем и железнодорожного транспорта, появлению таких новых видов транспорта, как автомобильный и авиационный, созданию машин и механизмов, использующих двигатели внутреннего сгорания (ДВС). Все это привело к резкому увеличению добычи и потребления нефти, отличающейся высокими энергетическими характеристиками, относительной простотой переработки в разнообразные моторные и котельно-печные топлива, смазочные материалы, нефтехимическое сырье и возможностью дальнего транспорта с относительно низкими затратами. Наряду с нефтяной промышленностью, хотя и несколько позднее, значительное развитие получила в ряде стран мира добыча и переработка природного газа. Он стал широко применяться как эффективное и экологически лаиболее чистое топливо для выработки электрической и тепловой энергии, а также как сырье для многих крупнотоннажных химических производств. [c.5]

    Использование электрической энергии в виде электрических разрядов позволило, как известно, освоить за последние несколько десятков лет в химической промышленности ряд принципиально новых технологических процессов. Большинство из них достаточно подробно описано в учебниках электрохимии и в ряде монографий и обзорных статей. Наряду с этим систематические исследования химических реакций в лабораторных масштабах дали возможность расширить область применения электрических разрядов и создать за последние годы еще несколько новых технологических процессов. Цель настоящей статьи заключается в ознакомлении с этими новыми технологическими процессами, сведения о которых появились в журналах за последние 5—8 лет. [c.132]

    В свете этих решений перед азотной промышленностью, вырабатывающей эффективные виды удобрений, поставлены весьма важные и серьезные задачи. Для их выполнения необходимо строительство новых предприятий, расширение и реконструкция на основе прогрессивной технологии действующих заводов, оснащение их высокопроизводительным мощным оборудованием. В связи с этим в производстве аммиака разрабатываются и внедряются новые методы конверсии природного газа с применением повышенного давления создаются более активные катализаторы, работающие при сравнительно низких температурах и обеспечивающие более высокую степень превращения исходных веществ в получаемые продукты применяются более эффективные абсорбенты для удаления из газов двуокиси углерода глубоко используется тепло химических процессов (включая синтез аммиака) для получения водяного пара высокого давления (до 140 ат), перегреваемого до высоких температур (570 °С) в крупных агрегатах синтеза аммиака мощностью 1000—1500 т сутки и более. Энергию получаемого таким путем водяного пара высоких параметров можно использовать в паровых турбинах для привода основных машин аммиачного производства, в частности турбокомпрессоров высокого давления для сжатия азото-водородной смеси до давления процесса синтеза аммиака, воздушных турбокомпрессоров, турбокомпрессоров аммиачно-холодильной установки, центробежных циркуляционный компрессоров совместно с турбокомпрессорами высокого давления. Энергия пара рекуперируется также в турбогенераторе для выработки электроэнергии, потребляемой на приводе насосов. В пу)овых турбинах высокое давление части полученного пара понижается до давления, близкого к давлению процессов конверсии метана и окиси углерода, что позволяет использовать в этих процессах собственный технологический пар. [c.10]


    Однако объективная реальность свидетельствует о том, что к середине текущего столетия при сохранении ведущей роли традиционных ископаемых топлив должны быть созданы необходимые технические и экономические предпосылки для обязательного перехода к альтернативным источникам энергии, а нефть должна занять свое главенствующее место в отрасли органического синтеза для выпуска промышленных и бытовых товаров народного потребления химического профиля. Это связано с истощением запасов, нарастающей тенденцией по существенному ухудшению качества и обеднению нефтяного сырья, а также увеличением ее стоимости (высокая стоимость разведки, добычи и транспортировки) до тех пределов, когда производство топлив будет уже экономически невыгодным. В этом случае Ярославский нефтеперерабатывающий завод может быть не только топливным предприятием, но и стать центром нефтехимического синтеза, обладающим мощной сырьевой базой для промышленности органического синтеза. Сырьем для этого могут явиться отходящие газы первичной нефтепереработки, газы легкого крекинга — висбрекинга и гидрокрекинга, риформинга и планирующихся к строительству новых термических и каталитических процессов переработки нефтяного сырья, а также низкооктановые бензины и другие малоценные фракции, получаемые в качестве побочных продуктов практически на всех каталитических установках и используемые сегодня только в виде газообразных или жидких топлив на технологические нужды завода. [c.305]

    Всеобъемлющий характер движения за чистоту определяется самой сущностью новой промышленной технологии. Ее главные и отличительные черты — это проведение процессов при наиболее оптимальных условиях с максимальным коэффициентом выхода продуктов по сырью и энергии комплексная переработка сырья и ликвидация отбросов производства автоматизация процессов интенсификация производства и сокращение числа стадий процессов борьба с коррозией оборудования и отравлением катализаторов устранение вредных побочных процессов. Опыт, да и логика убеждают, что эти задачи неизбежно сопряжены со все более жесткой регламентацией состава веществ, вступающих в производственный цикл. Естественно, например, что получение фенола в одну стадию прямым окислением бензола или синтез нитрила акриловой кислоты непосредственно из пропилена и аммиака нуждается в более качественном исходном сырье, чем многостадийные процессы. Или возьмем такой традиционный вид химического сырья, как целлюлоза. Чтобы стать пригодным сырьем для производства искусственного волокна высшего качества, целлюлоза должна быть химически чистой и молекулярно однородной. На это требование промышленность отвечает возросшим объемом производства целлюлозы повышенной чистоты. В ней 98,5—99,5% а-целлюлозы и совсем мало экстрагируемых эфиром веществ. Из этого сорта по упрощенной технологии (минуя дорогостоящий диализ) вырабатывают штапельное волокно и кордную ткань высших сортов, губки, абсорбирующую бумагу и др. [c.54]

    Топлива. 1. Для всех промышленных процессов, а также транспортных средств требуется расход энергии. Важнейшим источником энергии, используемым человеком до сих пор для указанных выше целей, является химическая реакция между кислородом воздуха и топливом, т. е. веществом, способным соединяться с ним. Меньшие количества энергии получают при использовании гидроэнергии (в виде электрической энергии). В прошлом столетии рациональное использование этих двух источников энергии привело к беспримерному развитию техники. Недавнее открытие способов использования энергии ядерных реакций открывает перед техникой новые пути, которые в настоящее время еще трудно предвидеть. [c.490]

    Современная химическая технология ставит задачи всемерного комплексного использования сырья и энергии, комбинирования и кооперирования различных производств, ликвидации возможности загрязнения воздушного и водных бассейнов вредными промышленными выбросами и т. д. Современная химия дает возможность вводить отходы и отбросы процессов производства и потребления обратно в круговорот процессов воспроизводства. Еш,е Д. И. Менделеев указывал, что главная цель передовой технологии — отыскание способов производства полезного из бросового, бесполезного . Технологический процесс нельзя считать завершенным и совершенным, если в нем имеются отходы и отбросы, если он периодичен, если он идет не в оптимальных параметрах. При этом необходимо иметь в виду, что кибернетика сама по себе не может решить, например, проблемы очистки сточных вод, комплексного использования сырья или какую-нибудь иную проблему химической технологии. Автоматическое устройство становится революционной силой тогда, когда оно управляет новым, наиболее прогрессивным технологическим процессом. Автоматизация неминуемо приведет к разработке и внедрению в практику таких интенсивных химических процессов, которые не осуществимы при обычных условиях управления ими, например процессов, идущих со скоростями, граничащими с переходом в детонацию и взрыв. Химические процессы и материалы, химическая технология обладают качеством всеобщности. Сейчас трудно найти, а вероятно, нри глубоком осмысливании и невозможно, такую область человеческой деятельности, где применение химических методов и материалов не революционизировало бы десятилетиями сложившиеся процессы. В этом заключается важное значение идей химизации. [c.141]

    В конце XVIII в. в развитии химии наблюдался быстрый прогресс. Многие историки относят его исключительно за счет теории флогистона. В действительности же успехи химии этого периода связаны с иными причинами. Быстрое развитие промышленного производства, начавшаяся в Англии промышленная революция, а также социальные процессы во Франции и т. д. потребовали решения многих химико-технических проблем, и прежде всего поисков новых видов сырья, особенно металлических руд, и источников энергии. В свою очередь вновь открытые руды и минералы требовали соответствующей оценки (пригодности) и химикоаналитического исследования. Все это привело к развитию методов химического анализа. С середины XVIII в. в химии начался длительный химико-аналитический период. Его непосредственными результатами было быстрое расширение фактического экспериментального материала, что вскоре и привело химической революции конца XVIII в. [c.41]

    Столь неоптимистические прогнозы ясно указывают на необходимость расширения знаний, которые могут послужит созданию новых энергетических технологий. Химические и электрохимические системы относятся к числу наиболее компактных и эффективных средств сохранения энергии. Можно с уверенностью предсказать, что среди новых источников энергии важнейшими станут низкосортные химические топлива, например уголь с высоким содержанием серы, горючие сланцы, смоляные пески, торф, бурый уголь и биомасса. Ни для одного из перечисленных видов сырья пока не разработано такой технологии, которая была бы экономична и отвечала строгим требованиям защиты окружающей среды. Химикам предстоит выполнить колоссальную работу по созданию новых катализаторов, разработке новых процессов, новых топлив, новых методов извлечения, более эффективных режимов горения, улучшенных способов контроля за промышленными выбросами, по повышению чувствительности методов контроля за состоянием окружающей среды и многое другое. Необходимо направить усилия на использование биомассы, так как это позволит сократить количество сжигаемого ископаемого тогишва и тем самым будет способствовать решению проблемы роста содержания углекислого газа в атмосфере. Всестороннему исследованию должны быть подвергнуты проблемы, связанные с использованием солнечной энергии. Мы должны разработать искусственные фо-тосинтетические и электрокаталитические методы, полностью исключающие [c.75]

    На промышленных предприятиях вырабатьшается и потребляется значительное количество местных видов энергоносителей. При этом полезный расход энергии на производство, например, сжатого воздуха в компрессорных установках не превышает 55—60% [5]. Доля компрессоров устаревших конструкций в отрасли составляет примерно 20%. Замена их на новые может дать годовую экономию (в расчете на 1 компрессор) около 100 тыс. кВт.ч, или по всей химической промышленности около 20 млн. кВт.ч. [c.10]

    Дены на химические продукты зависят от соотношения между стоимостью сырья и готовых продуктов, от энергоемкости их производства и доли условно-постоянных затрат. Рост цен на энергосырьевые ресурсы приводит к удорожанию строительства новых предприятий и поэтому вносит существенные изменения в развитие химической промышленности. В 1960-е годы улучшения экономических показателей химических предприятий добивались в основном за счет концентрации производства и увеличения мощности агрегатов. Рост мощности этиленовых установок с 10 до 320 тыс. т/год позволил снизить капитальные вложения в 4, а себестоимость этилена в 2 раза. Предпосылкой такого подхода была стабильная сырьевая база. В настоящее время стремятся к созданию производств с гибкими технологическими схемами, способных перерабатывать несколько видов сырья, с более глубокой рекуперацией энергии. Таким образом, если в прошлом для экономики крупнотоннажных химических предприятий первостепенное значение имели мощность агрегата и технологическое оформление процесса, то теперь основным показателем стала стоимость энергосырьевых ресурсов и строительства установки. [c.14]

    В результате такого нового направления прежняя узко-энергети-ческая оценка значения ископаемого топлива постепенно сменилась на энерго-химическую. По современным воззрениям на топливо можно счи- тать общепризнанным положение, что при выборе топлива для напосред- (ственного сжигания следует подходить к этому диференцированно — бо-1ее ценные виды топлива должны предварительно перерабатываться, чтобы не сжигать тех продуктов термического разложения топлива, которые имеют значение как сырьевой ресурс. С точки зрения интересов народного хозяйства каждый вид топлива должен быть использован комплексно. Такой принцип вполне усвоен в отношении нефтей все реже встречаются случаи сжигания сырой нефти до ее переработки и извлечения светлых продуктов это имеет место, главным образом, в странах, лишенных развитой нефтеперерабатывающей промышленности. Но не вполне выдерживается это общее правило в отношении каменных и бурых углей во многих случаях коксующиеся угли не используются по прямому назначению, а направляются в топки паровозов или паровых судов вместо переработки на кокс с отъемом жидких и газообразных продуктов коксования. Особенно значительными продолжают оставаться потери при непосредственном сжигании бурых углей и торфов, так как отсутствии их предварительной химической переработки теряются Не ценные продукты, как горный воск, парафин и пр. [c.17]

    Если наш чернозем, при хорошей обработке паровых полей, еще может обходиться без азотистых удобрений под хлеба и требует их пока лишь под интенсивные культуры, как свекловица (так как паровые поля, по мере увеличения густоты населения, обречены на исчезновение, но в недалеком будущем и чернозем предъявит большие требования на азотистые удобрения), то почвы всей нечерноземной полосы одновременно с недостатком фосфора бедны и азотом, и культура на них без внесения азота извне (хотя бы в виде навоза) невозможна то же относится и к туркестанскому лёссу, поднятие плодородия которого столь важно с точки зрения обеспечения нашей промышленности должным количеством хлопка. Поэтому предстоящее строительство в области азотной промышленности и связанное с ним удешевление азотистых удобрений должно сыграть видную роль в поднятии наших урожаев, начиная с промышленных культур, как свекловица, лен, хлопчатник, картофель, и кончая (в меру прогресса азотной промышленности и снижения цен на продукты) самыми серыми хлебами, как рожь и овес. Если до последнего времени главная роль среди азотистых удобрений принадлежала селитре, то теперь успехи химической промышленности выдвинули на первый план синтетический аммиак или продукты, дающие в почве начало образованию аммиака (цианамид, карбамид). Заводов воздушной селитры теперь уже больше не строят, как требующих слишком большой траты электрической энергии, и даже природная (чилийская) селитра отступила на второй план по размерам добывания по сравнению с производством заводским путем аммиачных солей и цианамида. Поэтому агрономам приходится изучать свойства новых удобрений, чтобы согласовать выбор формы и регулировать дозировку сообразно с особенностями растения и местных почв, считаясь с влиянием новых удобрений на реакцию почвенного раствора. Соли аммония (сернокислый, азотнокислый аммоний) как азотистые удобрения, конечно, изучались уже раньше, причем в выяснении их агрономического и физиологического значения существенная роль принадлежит русским исследователям (П. С. Коссович, Д. Н. Прянишников, Г. Г. Петров, И. С. Шулов и др.). Работы последнего десятилетия принесли и в этой области ряд существенных дополнений к прежде установленным фактам. [c.71]

    Научно-технический и социальный прогресс всегда сопровождался увеличением потребляемой энергии и освоением новых, более эффективных видов энергоресурсов. Особенно велико современное экономическое значение природного газа. Эго не только высококачественное топливо для выработки электроэнергии, тепла, но п широкопримеияемое в промышленности н химической индустрии уникальное полезное ископаемое. [c.4]

    Химические превращения, протекающие в полимерах при действии на них лучистой энергии, уже давно интересовали человека. До последнего времени из различных видов излучений внимание исследователей привлекал главным образом свет. Та роль, которую играет свет в биохимических превращениях полимеров, а также в процессах их деструкции или старения, определяет необходимость того, что в будущем, как это было и в прошлом, большое число исследований в области полимерной химии будет по-прежнему посвящено исследованию фотохимических проблем. Преобладающее значение при этом приобретают работы по использованию световых воздействий в определенных контролируемых условиях для модификации свойств полимеров. Однако в последнее десятилетие еще более интенсивно, чем фотохимические превращения полимеров, исследовались вопросы взаимодействия полимерных веществ с ионизирующими излучениями (излучениями высокой энергии). Развитие исследований в этой области в большой степени связано с созданием промышленной ядерной технологии и новых более совершенных электронных и ионных ускорителей. Но оно было вызвано также и тем ожидаемым многообразием химических реакций, протекание которых должно стать возможным под действием излучений высокой энергии. Одновременное присутствие электронов, ионов, свободных радикалов и молекул в возбужденных и термолизованных состояниях явилось причиной появления многочисленных гипотез, имеющих целью объяснение наблюдаемых радиационно-химических превращений. Все более сложные экспериментальные исследования обеспечили получение данных, которые позволяли проверять и изменять эти гипотезы. Как будет видно из дальнейшего рассмотрения, ни один из предложенных механизмов нельзя считать однозначно доказанным. [c.95]

    С использованием энергии сопряженного окисления нефти образуется в конечном счете и вся сложнейшая гамма соединений, входящих в состав живого вещества. Во всех этих и в других подобных случаях в живом ор-я анизме действуют биокатализаторы — ферменты. Некоторые из ферментов удалось выделить в индивидуальном виде с сохранением вне живого организма их специфического каталитического действия. Ферментативные препараты широко используются в пищевой и легкой промышленности и приобретают применение в медицине. Следовательно, для проявления каталитических свойств многих ферментов участие живого организма не требуется. Это показывает отсутствие принципиальных, непреодолимых границ между биологическим и обычным катализом, хотя пока в биокатализе господствуют органические катализаторы, а в обычном — неорганические, и по химическому строению и каталитическим свойствам ферменты сложнее и совершеннее. Нои эти различия смягчаются благодаря появлению новых классов органических и металлоорганичееких искусственных катализаторов. Это органические полимерные иониты и полупроводники, разноо бразные комплексы переходных металлов с органическими и неорганическими лигандами и т. д. Поэтому каталитические процессы, встречающиеся пока только в живом организме, можно надеяться осуществить в будущем с помощью искусственных катализаторов. Это же справедливо и для многих других реакций, пока не осуществленных ни в обычном, ни в биологическом катализе. [c.10]

    Фторсодержащие полимеры с высоким содержанием фтора - политетрафторэтилен (ПТФЭ), сополимер тетрафторэтилена с гексафторпропиленом (тефлон ГЕР) и сополимер тетрафторэтилена с перфтор-алкилвиниловым эфиром (тефлон РГА) - имеют низкую энергию когезии между молекулами и широко используются в тех отраслях промышленности, где требуются материалы с антиадгезионными и антифрикционными свойствами. Кроме того, фторсодержащие смолы обладают негорючестью, износостойкостью, атмосферостойкостью и хорошими электрическими свойствами. Вследствие этого фторсодержащие смолы (около 10 видов) и фторсодержащие каучуки, в первую очередь сополимеры винилиденфторида с гексафторпропиленом, нашли широкое применение в промышленности. Ниже сообщается об основных свойствах фторсодержащих материалов, приведены примеры исполь-зонания их химической стойкости и антиадгезионных свойств и рассмотрены новые фторсодержашие материалы. [c.289]

    Широкое использование электронного излучения в промышленных радиационно-химических процессах, как уже отмечалось выше, началось в 60-х годах, когда появилось несколько новых типов ускорителей электронов с энергией в диапазоне 300—500 кэв и высокой мощностью пучка. На базе этих ускорителей были созданы пилотные установки для реализации наиболее эффективных из разработанных к тому времени радиационно-химических процессов в тонких слоях, таких, как сшивание полиэтилена (в виде тонких пленок или тонкостенных трубок) для повышения его термостойкости, химической стой кости и прочности, а также с целью получить новое свойство способность к термоусадке отверждение покрытий на различных основах (полимер, металл, дерево, бумага, керамика и т. п.) прививка мономеров на пленки, листы, ткани для изменения их свойств (полярности, адгезии, гидрофильности, гид рофобности и др.). [c.93]


Смотреть страницы где упоминается термин Новые виды энергии в химической промышленности: [c.17]    [c.9]    [c.386]    [c.7]   
Смотреть главы в:

Химическая технология. Т.1 -> Новые виды энергии в химической промышленности




ПОИСК





Смотрите так же термины и статьи:

Химическая энергия



© 2025 chem21.info Реклама на сайте