Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Первый закон термодинамики и химические процессы

    Теплоту в термохимическом понимании обозначают Q. Тепловые-эффекты химических реакций выражают в кДж/моль. Различают тепловой эффект реакции при постоянном объеме (изохорный тепловой эффект) и при постоянном давлении (изобарный тепловой эффект). Применяя первый закон термодинамики к химическим процессам (уравнение 11.17), можно записать [c.42]


    Так как внутренняя энергия и энтальпия являются функциями состояния, то согласно уравнениям (62.2) и (62.3) тепловой эффект еакции не зависит от пути процесса (промежуточных стадий), а определяется только начальным и конечным состояниями системы. (т. е. состоянием исходных веществ и продуктов реакции). Это следствие первого закона термодинамики применительно к химическим процессам называется законом Гесса. Этот основной закон термохимии был установлен Гессом на базе экспериментальных исследований в 1840 г., т. е. несколько раньше, чем был сформулирован первый закон термодинамики. Комбинируя уравнения (62.2) и (62.3), получаем [c.206]

    Согласно первому закону термодинамики теплота есть функция процесса. Закон Гесса утверждает, что тепловой эффект химической реакции не зависит от пути процесса. Дайте объяснение этому противоречию. [c.13]

    Для объяснения свойств растворов на разных этапах развития науки были предложены различные теории растворов. Вначале самостоятельно развивались химическая и физическая теории растворов. Первая основывалась на изучении закономерностей химических процессов, протекающих в растворах, вторая — на исследовании физических свойств растворов на базе общих законов термодинамики. Химическая точка зрения наиболее последовательно развивалась Д. И. Менделеевым, физическая — Я. X. Вант-Гоффом, С. Аррениусом и др. В дальнейшем, в результате работ И. А. Каблукова, В. А. Кистяковского и других ученых успешно стала развиваться физико-химическая теория растворов, впитавшая в себя достижения химической и физической теории растворов. [c.208]

    В середине прошлого века М. Бертло на основании большого числа определений тепловых эффектов химических реакций выдвинул принцип, согласно которому химическое сродство определяется количеством тепла, выделяющегося при реакции. Из принципа Бертло следует, что самопроизвольно могут протекать только экзотермические реакции. Легко видеть, что этот принцип неправилен хотя бы потому, что существуют самопроизвольные процессы, протекающие с поглощением тепла, например растворение многих солей в воде. Казалось бы, принцип Бертло оправдывается для реакций образования многих соединений из элементов, которые происходят с выделением тепла и идут практически до конца. Однако в действительности это справедливо лишь при относительно низких температурах. При достаточно высоких температурах эти же реакции самопроизвольно протекают в обратном направлении, т. е. происходит диссоциация соединений, сопровождающаяся поглощением тепла. Мы уже видели, что полнота завершения реакций зависит от температуры и концентраций. По существу принцип Бертло находится в противоречии с самим фактом существования химического равновесия. Это обусловлено тем, что М. Бертло основывался лишь на величинах ДЯ, т. е. на представлениях первого закона термодинамики, который, как отмечалось, дает лишь балансы тепловых явлений. Поэтому величина изменения энтальпии при реакции ДЯ не может служить мерой химического сродства. Такой мерой является величина ДО, определяемая уравнением [c.53]


    Если известен закон изменения параметров в данном процессе, то уравнение первого закона термодинамики можно записать в дифференциальной форме и исследовать математически. В области применения химических реакций наиболее часто встречаются процессы, протекающие при постоянном объеме (изохорический) и при постоянном давлении (изобарический). [c.141]

    Как известно, только часть электрической энергии, затраченной в процессе электролиза воды, используется на целевую реакцию разложения воды на водород и кислород. Остальная часть энергии в конечном счете выделяется в виде тепла. Наиболее распространено определение количества тепла, выделяющегося в процессе электролиза, по разности между общей затратой электрической энергии на электролиз и химической энергией полученных при этом газов — водорода и кислорода. Такое представление основано на первом законе термодинамики. Высказывалось также мнение, что количество тепла, выделяющегося в процессе электролиза, определяется разностью между общим количеством электрической энергии, затрачиваемой на электролиз, и максимальной работой процесса Однако при этом не учитывается количественное различие значений максимальной работы и теплового эффекта процесса. [c.83]

    Указанный закон независимости суммарной ,теплоты химической реакции от пути процесса был открыт в 1836 г., еще до установления первого закона термодинамики, русским ученым Г. И. Гессом и носит его имя. [c.57]

    Изменение внутренней энергии dU в процессе химического превращения происходит, согласно первому закону термодинамики, за счет поглощения (или выделения) теплоты 6Q и совершения работы бЛ. Запишем аналитическое выражение первого закона термодинамики в форме [c.5]

    Кинетическая система не находится в состоянии равновесия. Подчиняясь первому закону термодинамики (сохранение энергии), она свободна от ограничений второго закона. Чем меньше ограничений накладывается на систему, чем больше степеней свободы она имеет, тем труднее ее описать. Действительно, как будет видно из дальнейшего, эта трудность становится одним из реальных препятствий на пути удовлетворительной кинетической обработки. Однако основное препятствие для кинетического описания химических систем заключается во множественности существенно неравновесных факторов, которые могут играть решающую роль в определении пути реакции. Таким образом, априори нельзя сформулировать те положения, которыми определяется адекватное описание кинетической системы. В этом нетрудно убедиться на следующем простом примере. Вода, находящаяся на вершине холма, может быть описана уравнениями равновесного состояния. В некоторый следующий момент времени вода может стечь в озеро у основания холма. Оба эти состояния (исходное и конечное) могут быть описаны совершенно точно, и можно определить разности энергий этих состояний. Однако если попытаться описать сам переход, т. е. процесс течения воды с вершины холма, то будет видно, что он может зависеть почти от бесчисленных факторов от наличия стоков, контура склона холма, структурной устойчивости контура, множества подземных каналов в холме, через которые может проникать вода, и т. п. И наконец, если на холме будет кем-либо пробурена скважина, то появится необходимость в тщательном экспериментальном исследовании для того, чтобы учесть и этот дополнительный фактор, влияющий на течение воды. [c.14]

    Примечания 1. Способность тела производить работу называется энергией. Энергия измеряется теми же единицами, что и работа. Из всех видов энергии в химических процессах особо важную роль играет внутренняя энергия (I7) тела, на которой более подробно остановимся ниже при рассмотрении первого закона термодинамики. [c.19]

    К тому же периоду относится развитие термохимии, одним из основателей которой был Г. И. Гесс (1802—1850), профессор Горного института в Петербурге. В результате обширных экспериментальных исследований он в 1840 г. опубликовал основной закон термохимии (названный впоследствии его именем), который можно рассматривать как одно из выражений открытого позднее первого закона термодинамики применительно к химическим процессам. [c.15]

    Первый закон термодинамики непосредственно связан с законом сохранения энергии. Он позволяет рассчитывать тепловые балансы различных процессов, в том числе и химических реакций. [c.180]

    Формулировки первого закона термодинамики. Внутренняя энергия и энтальпия. В 1840—1849 гг. Джоуль впервые с помощью разнообразных и точных опытов установил эквивалентность механической работы и теплоты AIQ = J, где J — механический эквивалент теплоты — постоянная, не зависящая от способа и вида устройств для превращения работы А в теплоту Q . В дальнейшем было доказано постоянство отношений других видов работы к теплоте, введено обобщающее понятие энергии и сформулирован закон сохранения и эквивалентности энергии при всевозможных взаимных превращениях различных видов энергии переход одного вида энергии в другой совершается в строго эквивалентных количествах в изолированной системе сумма энергий есть величина постоянная. Первый закон термодинамики является законом сохранения энергии в применении к процессам, которые сопровождаются выделением, поглощением или преобразованием теплоты в работу. В химической термодинамике действие 1-го закона распространяется на ту универсальную форму энергии, которая называется внутренней энергией. [c.73]


    Если при исследовании химических и физико-химических процессов с позиций первого закона термодинамики широко используется понятие внутренней энергии, то при исследовании их на базе второго закона термодинамики потребовалось введение новой функциональной величины — энтропии. [c.181]

    Термодинамика основана на нескольких фундаментальных законах, обобщающих накопленный человечеством опыт наблюдений над превращениями энергии. Первый закон термодинамики (изложенный еще в гл. 4) известен как закон сохранения энергии. Это означает, что в таких процессах, как падение камня, плавление льда или химическая реакция, энергия не создается и не уничтожается. Она передается из одной части Вселенной в другую или превращается из одной формы в другую, но в сумме [c.171]

    При формулировке первого закона термодинамики предполагается, что энергия может преобразовываться только в теплоту или работу. Однако принципиально энергия системы можег меняться также при изменении количества вещества при удалении вещества из системы оно уносит часть внутренней энергии этой системы, а при поступлении вещества в систему последняя получает дополнительное количество энергии. Системы, в которых возможно изменение количества вещества за счет его притока или выноса из системы, называют открытыми. Если такой процесс невозможен, систему называют замкнутой. Следует отличать еще изолированную систему, в которой невозможен обмен с внещней средой не только веществом, яо и энергией. В изолированных системах энергия всегда остается постоянной. Термодинамическое исследование открытых систем приобрело важное значение при переходе к живым организмам, которые находятся в обмене веществом с внешней средой. Эти системы также широко используются при моделировании непрерывных процессов в химической промышленности, где в химический реактор (систему реакторов) непрерывно поступают исходные вещества, а на выходе— конечные продукты. Теория открытых процессов (систем) достаточно хорошо разработана, поскольку исторически она возникла одновременно с термодинамикой необратимых процессов, однако при дальнейшем изложении теория открытых процессов не будет рассматриваться более глубоко. [c.220]

    Первый закон термодинамики и химические процессы [c.19]

    Применение первого закона термодинамики к химическим процессам [c.83]

    Закон Гесса. В 1836 г. Г. И. Гесс открыл основной закон термохимии, который является частным случаем первого закона термодинамики применительно к химическим реакциям, протекающим в изохорных или изобарных условиях. Закон Гесса устанавливает если из данных исходных веществ можно получить заданные конечные вещества различными путями, то суммарная теплота на одном каком-нибудь пути равна суммарной теплоте процесса на любом другом пути, т. е. тепловой эффект химических реакций зависит только от начального и конечного состояний системы, но не зависит от пути перехода. [c.83]

    Термодинамика химическая — изучает химические реакции и фазовые переходы (растворение, испарение и кристаллизация чистых веществ и растворов и обратные им процессы), а также переход энергии из одной формы в другую и от одной части системы к другой в различных химических процессах и т. д. Важнейшими разделами этой науки являются термохимия, учение о химических и фазовых равновесиях, учение о растворах, теория электродных процессов, термодинамика поверхностных явлений и др. В основе Т. х. лежат общие положения и выводы термодинамики (первый закон термодинамики служит основой термохимии, второй закон термодинамики лежит в основе всего учения о равновесиях и др.). [c.135]

    При химических реакциях происходят изменения внутренней энергии, которые обусловлены переходами электронов от одних веществ к другим или вообще изменением состояния электронов в атомах реагирующих веществ. Такие изменения внутренней энергии проявляются в виде выделения или поглощения тепла. Из первого закона термодинамики вытекает важнейшее свойство внутренней энергии — ее изменение не зависит от характера и пути процесса, переводящего систему из одного состояния в другое. Чтобы это доказать, рассмотрим круговой процесс или цикл, в котором система переходит сначала из состояния 1 в состояние 2 по пути I, а затем возвращается в то же самое исходное состояние по любому другому пути П (рис. 1.1). Очевидно, при таком цикле в системе не произошло никаких изменений, ее внутренняя энергия осталась постоянной и, следовательно, AU=0. Поэтому из уравнения (1.1) вытекает, что алгебраическая сумма всех затраченных и полученных в цикле системой количеств тепла и работы должна быть равна нулю, т. е. Ai/=S<7—2Л = 0. В противном случае единственным результатом цикла было бы создание или уничтожение энергии, что противоречило бы закону сохранения энергии. Таким образом, поскольку при за- [c.16]

    В соответствии с первым законом термодинамики (IV.2) тепловой эффект реакции (или просто теплота реакции), не являясь изменением функций состояния системы, зависит от пути и способа проведения процесса. Однако по крайней мере при соблюдении одного из двух условий теплота химической реакции не зависит от пути и способа осуществления взаимодействия  [c.89]

    С помощью первого закона термодинамики устанавливаются такие характеристики вещества, функции состояния, как внутренняя энергия и и энтальпия Н. Характер их изменения в химических процессах, т. е. энергетика химических реакций, имеет, очевидно, важнейшее значение для их характеристики и практических приложений. [c.169]

    Первый закон термодинамики не позволяет судить о способности физических и химических процессов к самопроизвольному протеканию. Он лишь констатирует сохранение энергии при любых превращениях. Известно, что многие превращения протекают самопроизвольно камни скатываются с горы, тепло переходит от нагретых предметов к более холодным, а химические реакции достигают состояния равновесия. По-видимому, протекание всех этих процессов определяется какой-то причиной или, как принято говорить, движущей силой. Для того чтобы началось протекание некоторых химических реакций, им необходим, подобно камням, скатывающимся с горы, определенный толчок, однако. [c.313]

    Если в системе происходят химические процессы, то уравнение (1) для первого закона термодинамики следует заменить более общим соотношением [c.262]

    Термодинамический метод синтеза теплообменных систем [16]. Анализ процессов химической технологии на основе первого закона термодинамики находит широкое практическое применение. Наряду с этим все большее распространение получают методы анализа на основе второго начала термодинамики, в частности (используемые исходя из концепции эксергии как меры превратп-мости энергии), при оптимизации и проектировании технологических производств (см. гл. 7). Привлекательность этих методов заключается в том, что имеется возмо кность оценить в общем случае минимально возмо кные потери энергии за счет необратимости процесса и тем самым определить реальные перспективы совершенствования процесса. Развитие этих термодинамических методов идет по пути получения количественной информации о совершенстве протекания отдельных явлений. Что касается качественных выводов, то они хорошо известны. Например, потери превратимой энергии отсутствуют при смешении потоков, находящихся в термодинамическом равновесии, или потери энергии в противоточном теплообменнике выше, чем в прямоточном, равно как с увеличением поверхности теплообмзна потери за счет необратимости нроцесса снижаются. [c.466]

    Химическая термодинамика. В этом разделе физической химии рассматриваются основные соотношения, вытекающие из первого закона термодинамики, которые позволяют рассчитать количество выделяемой или иоглощаемой теилоты и определить, как будет влиять иа него изменение внешних условий. На основе второго закона термодинамики определяется возможность самопроизвольного течения процесса в интересуюи ,ем нас направлении, а также условия и положение равновесия и его смещения иод влиянием изменения внешних условий. [c.23]

    Выражения (11.31) и (II.31а) показывают, что Qp и различаются на работу расширения, равную AnRT. Действительно, если процесс идет при V = onst, то вся теплота, направленная в систему, расходуется на приращение ее химической энергии (допускается, что в рассматриваемой системе единственно возможная работа—это работа расширения). Если тот же процесс проводится при Р — onst, то к приращению химической энергии добавляется еще и работа расширения системы, в результате чего расход теплоты увеличивается (см. Формулировку первого закона термодинамики, второй вариант). [c.70]

    Реакция (460) протекает самопроизвольно, что соответствует понижению свободной энтальпии. При протекании электродных реакций (461) и (462) между электродами измеряется разность потенциалов е. При этом потенциал водородного электрода оказывается отрицательнее хлорного. Пр1и образовании 1 моля соляной кислоты ток совершает работу Рг, где F — число Фарадея, равное количеству электричества, необходимому для выделения при электролизе 1 г-экв. вещества (/ = 96491 А-с/г-экв.). Если в реакции принимает участие п электронов, то суммарная работа равна пР , например, для реакции (460) 2Ръ. В том случае, если процесс проводится обратимо (при бесконечно малом токе), работа системы равна изменению свободной энтальпии химической реакции. Согласно первому закону термодинамики, [c.310]

    Таким образом, тепловой эффект представляет собой изменение общей энергии системы, и поскольку U я Н являются функциями состояния системы, изменение которых зависит не от пути процесса, а лишь от начального и конечного состояний, то тепловой эффект реакции как при р = onst, так и при К= onst не зависит от того, протекают ли эти реакции в одну или несколько стадий, т. е. тоже не зависит от пути процесса, а определяется начальным и конечным состояниями системы (закон Гесса — следствие первого закона термодинамики). Иначе говоря, количество тепла, выделяющегося или поглощаемого при химических процессах, зависит только от начального и конечного состояний системы тел, участвовавших в этих процессах. [c.228]

    Первый закон термодинамики. Раздел химической термодинамики, посвященный изучению тепловых эффектов химических реакций, теплоемкостей веществ и других связанных, с ними величин, называется термохимией. В основе изучения термохпмических процессов лежит первый закон термодинамики, закон сохранения и превращения энергии. Согласно первому закону теплота Q, поглощенная системой при переходе из начального состояния в конечное, идет на увеличение ее внутренней энергии U и на соверщение работы против внещних сил, в частности против внешнего давления =p(v2 Vi) =pAv  [c.33]

    При изучении химических взаимодействий очень важно оценить возможность или невозможность их самопроизвольного протекания при заданных условиях, выяснить химическое сродство веществ. Должен быть критерий, при помощи которого можно было бы установить принципиальную осуществимость, направление и пределы самопроизвольного течения реакции при тех или иных температурах и давлениях. Первый закон термодинамики такого критерия не дает. Тепловой эффект реакции не определяет направления процесса самопроизвольно могут протекать как экзотермические, так и эндотермические реакции. Так, например, самопроизвольно идет процесс растворения нитрата аммония ЫН4ЫОз (к) в воде, хотя тепловой эффект этого процесса положителен А/Йэв > О (процесс эндотермический), и в то же время невозможно осуществить при Т = 298,16 К и р = = 101 кПа синтез к-гептана С,Н1в (ж), несмотря на то, что стандартная теплота его образования отрицательна АЯгэа обр <0 (процесс экзотермический). [c.104]

    Энергетика химических процессов, К числу энергетических характеристик процесса относятся изменения энтальпии АН и изобарной теплоемкости АСр. Из уравнения первого закона термодинамики (И1.1) с учетом только работы против сил внешнего давления при р = сопз1 следует, что [c.154]

    Задачи практики требуют сведений о возможности протекания химических реакций, о полноте их завершения, т. е. о выходе продуктов. Такие задачи связаны с предсказанием направления процессов, и они не могут быть решены на основе первого закона термодинамики. Простейший пример смесь газов — неон и аргон — находится в одном сосуде и представляет собой изолированную систему. Возможно ли самопроизвольное разделение этих газов Так как внутренняя энергия системы в целом не изменяется, то этот процесс не противоречил бы первому закону термодинамики. Подобным же образом этот закон не позволяет предсказать направление реакции СаСОз (т)=СаО (т)4-С02 (г) при тех или иных параметрах состояния (например, р и 7). Он ограничивается лишь утверждением, что слева направо реакция [c.18]

    Создание нового производства или процесса получения нового вещества прежде всего требует выяснения возможности протекания химических реакций, которые при этом предполагается осуществлять. Первый закон термодинамики оказывается недостаточным для решения подобных задач, В пределах этого закона возможно составление энергетических балансов тепловых процессов, но не рассмотрение вопроса о направлении, в котором они могут проходить, В некоторых случаях первый закон термодинамики позволяет предвидеть возможность тех или иных процессов. Например, температура изолированного тела не может сама собой увеличиваться. Невозможен вечный двигатель, т. е. машина, производящая работу без затраты энергии (вечный двигатель первого рода), что также является примером процессов, запрещаемых первым законом. Однако в природе есть такие процессы, которые, хотя и не противоречат первому закону, все же в действительности не осуществляются, Так, тело не может приобрести поступательного движения за счет убыли своей внутренней энергии (охлаждения), хотя при этом соблюдался бы энергетический баланс, Не было бы противоречия с первым законом и в том случае, если бы тепло самопроизвольно переходило от холодного тела к горячему. Однако факты показывают, что все действительно происходящие в природе процессы отличаются определенной направленностью. Они совершаются сами собой только в одном направлении, хотя первый закон не запрещает их протекания в обратном направлении. Например, в нагретом с одного конца металлическом стержне происходит выравнивание температуры и установление теплового равновесия. Чтобы понять общность этого закона, достаточно вспомнить о таких процессах, как взрывы, взаимная диффузия двух газов или жидкостей с образованием раствора. После окончания таких процессов изолированная система уже не может сама собой вернуться в какое-либо из своих предыдущих состояний. Образовавшийся раствор не может сам разделиться на составляющие его компоненты, а продукты взрыва не могут сами вновь образовать исходные вещества. Можно сделать общий вывод в -иптемах, предоставленных самим себе, все процессы текут односторонне, т, е, в одном направлении, и достигают [c.36]

    Несмотря на большую сложность процесса и на то, что система может оказаться многофазной, первый закон термодинамики позволяет увеличение теплосодержания ДЯ приравнять тенлу др, поглощенному при этих условиях. Калориметрия и химический анализ позволяют определить ДЯ для большинства химических реакций. [c.256]

    Теплопроводность, внутреннее троние и химические реакции в потоке вызывают необратимые процессы, связанные с рассеянием, т. е. переходом в тепло (диссипацией) энергии. При составлении уравнения переноса энергии мы исходим из закона сохранения энергии (для тепловых явлений — первого закона термодинамики), а также из второго закона термодинамики. На основе этих двух законов и составлено уравнение (5. 16) гл. V. В нем не учитывается диссипация энергии внутреннего трения. [c.513]


Смотреть страницы где упоминается термин Первый закон термодинамики и химические процессы: [c.29]   
Смотреть главы в:

Физическая химия -> Первый закон термодинамики и химические процессы




ПОИСК





Смотрите так же термины и статьи:

Закон первый

Закон термодинамики

Закон термодинамики первый

Термодинамика химическая

Термодинамика химических процессов

Термодинамики первый



© 2025 chem21.info Реклама на сайте