Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы комплексообразования

    Спектрофотометры. Использование спектрофотометров с призмой или дифракционной решеткой обеспечивает высокую моно-хроматизацию потока излучения. Это открывает большие возможности для повышения чувствительности и для увеличения избирательности методов определения отдельных элементов, а также для исследования состояния вещества в растворе и процессов комплексообразования. Например, только спектрофотометр пригоден для изучеиия спектров поглощения редкоземельных элементов, которые имеют большое число узких максимумов поглощения. Нерегистрирующие однолучевые спектрофотометры СФ-4, СФ-4А, СФ-5, СФД-2 имеют общую оптическую схему, представленную на [c.473]


    В комплексе находится шесть молекул мочевины в гексагональной ячейке. Изучение чистых кристаллов мочевины показывает, что они принадлежат к тетрагональной системе и имеют плотную упаковку без каких бы то ни было каналов или свободного пространства, в котором могли бы быть заключены другие молекулы. Таким образом, в процессе комплексообразования наблюдается изменение кристаллической структуры с тетрагональной на гексагональную. [c.214]

    Здесь приведена условная схема гидролиза. В действительности он протекает через сложные процессы комплексообразования, катионной и анионной полимеризации, и его механизм для многих случаев изучен недостаточно. Гидролиз может сопровождаться также окислительно-восстановительными процессами. [c.212]

    Процессы комплексообразования широко используются в аналитической химии. При выборе условий наиболее эффективного разделения ионов исходят из соотношения констант устойчивости образуемых ими ко.мплексных соединении. [c.603]

    Сырье насосом 1, активатор насосом 2 и (если необходимо понизить вязкость сырья) растворитель (бензин Бр-1) насосом 3 подаются в реактор комплексообразования 11. Туда же поступает рециркулят I из центрифуг 14 ступени III центрифугирования, представляющий собой часть бензинового раствора депарафината и 80 %-ную суспензию (пульпу) кристаллического карбамида в этом растворе. В реакторе 11 при механическом перемешивании протекает реакция комплексообразования. Теплота экзотермического процесса комплексообразования передается через рубашку холодной воде. [c.91]

    Анализ процесса комплексообразования в свете закона действующих масс [c.140]

    Рентгеноструктурными исследованиями установлено, что чис — ый карбамид (мочевина) имеет тетрагональную структуру. В процессе комплексообразования происходит перестройка его крис— [c.270]

    Влияние процессов комплексообразования на растворимость. Маскировка [c.94]

    Из равенства (47.И ) видно, что константа равновесия процесса комплексообразования К характеризует предельное сниже-пие содержания парафина в растворе, которое можно достигнуть обработкой карбамидом. Величина, обратная Л , т. е. К). может служить мерой устойчивости комплекса. [c.140]

    Процесс комплексообразования обратим образующийся ком — пл( кс при нагревании распадается  [c.271]

    Процесс комплексообразования проводят при интенсивном перемешивании, которое способствует более тесному контакту компонентов реагирующей смеси и тем самым интенсифицирует процесс. Время контакта зависит от качества сырья и обычно составляет 30 — 60 мину г. [c.272]


    Физико-химические закономерности процесса комплексообразования [c.138]

    Большое значение при комплексообразовании имеют температурные условия. Изменения температуры оказывают на процесс комплексообразования двоякое действие. С одной стороны, при возрастании температуры повышается взаиморастворимость действующих веществ, усиливается диффузия, снижается вязкость [c.145]

    При депарафинизации нефтяных продуктов как твердым карг бамидом, так и его водными растворами процесс комплексообразования протекает обычно не в водной среде, а в среде нефтяного продукта или растворителя, в котором этот продукт растворен. Водный же раствор карбамида является в этом случае лишь поставщиком карбамида, пополняющим его расход в зоне реакции. Поэтому в выражение зависимости активной концентрации карбамида от его концентрации в водном растворе должен быть введен еще и коэффициент распределения, показывающий отношение растворимости карбамида в воде к его растворимости в смеси нефтяного продукта с растворителем. [c.140]

    Иногда при обработке продуктов водным раствором карбамида процесс комплексообразования ведут при изменяющейся температуре, — в начале процесса повышенной, а к концу — более низкой. Это позволяет поддерживать раствор карбамида все время в насыщенном состоянии и иметь в течение всего процесса максимальную активную концентрацию карбамида, близкую к единице, несмотря на убыль свободного карбамида для образования комплекса. [c.146]

    Равновесие сдвигается в сторону диссоциации при добавлении растворителей карбамида или углеводородов и повышении температуры [1—4, 16, 27]. Низкомолекулярные -парафины образуют менее стабильный комплекс, чем высокомолекулярные, однако скорость образования комплекса для них выше. Комплекс образуется в присутствии так называемых активаторов, к числу которых относятся вода, низшие спирты, кетоны, некоторые хлорорганические соединения, а также насыщенные водные или спиртовые растворы карбамида. Существует несколько мнений о механизме действия активаторов в процессе комплексообразования с карбамидом. По данным [3], роль активаторов заключается в удалении неуглеводородных примесей с поверхности кристаллов карбамида, что дает возможность молекулам углеводородов проникать в эти кристаллы. Высказано предположение [29], что сначала структура кристаллов карбамида преобразуется из тетрагональной в гексагональную, а действие растворителей карбамида заключается в осаждении его в тонкоизмельченном виде, что обеспечивает мгновенное образование комплекса с углеводородами. [c.203]

    В других случаях при разделении катионов с помощью ионо-обме[1Ников используют процессы комплексообразования. Например, В1- + может быть отделен от и путем поглощения их к атиэнитом и последующей обработкой катионита раствором К1. При этом В - образует устойчивый комплекс [В114] и в таком виде вымывается из колонки, тогда как Си + и РЬ " остаются в ней. [c.133]

    Если все процессы комплексообразования находятся в равновесии, то легко видеть, что [c.169]

    Энтропийный фактор также играет большую роль в устойчивости комплексного соединения. С ростом энтропии протекает процесс комплексообразования, в котором положительный ион, взаимодействуя с отрицательными лигандами, образует комплекс с более низким зарядом. Например, в водном растворе может идти реакция [c.193]

    Да-в— нормальная ковалентная энергия связи . Логику вывода уравнения (4) удобно проследить по статье [32], где процесс комплексообразования в газовой фазе расчленяется на три стадии передачу электронов от лиганда к катиону металла, электростатическое взаимодействие между образовавшимися частицами и образование ковалентных связен. [c.184]

    Комплексные ионы и молекулы обычно образуются в результате протекания процессов комплексообразования в растворе  [c.450]

    Разработанная методика исследования кинетики процесса комплексообразования дает возможность произвести качественную и количественную оценку любого вида депарафинируемого сырья по наличию н-алканов и ароматических углеводородов. [c.46]

    Наши исследования показали, что при размерах частиц карбамида О,2-0,3 мм процесс комплексообразования в промышленных условиях заканчивается через 10-15 мин. [c.68]

    На процесс образования комплексов отрицательно сказывается присутствие во взаимодействующих веществах примесей и загрязнений. Так, А. В. Топчиев с сотрудниками установили, что к-октадекан высокой степени чистоты способен образовывать комплексы с чистым карбамидом без растворителей-активаторов [47]. Недостаточно же очищенный к-октадекан комплексов с карбамидом при непосредственном контакте не дает, и для образования комплекса требуется добавка активатора. Выло отмечено отрицательное влияние па процесс комплексообразования смолистых веществ [48]. Кроме них, отрицательно действуют на процесс комплексообразования также нафтеновые кислоты и продукты окисления обрабатываемого сырья воздухом [38, 49]. Препятствуют комплексообразовапию и продукты разложения карбамида, образующиеся при его регенерации. [c.147]


    Одиако собствеиным поглощением в растворах в видимой части спек1ра обладает лишь ограниченное число веществ. Поэтому в спектрофотометрии используют различные химические реакции образования соединений, которые поглощают излучение. Чаще всего используются реакции комплексообразования. Определяя оптимальные условия проведения фотометрических реакций, химик-аналитик прежде всего вынужден изучить процессы комплексообразования. С этой целью может быть использован тот же метод спектрофотометрии. Таким образом, любое спектрофотометрическое определение состоит в основном из двух этапов а) проведения химических реакций для получения систем, удобных для фотометрирования (фотометрическая реакция) б) измерения поглощения приготовленного раствора. [c.460]

    При процессе комплексообразования важное значение имеет также и длительность контакта реагирующих веществ. Большинство авторов считает для этого достаточным 30—40 мин. Но в отдельных вариантах процесса длительность контакта приходится удлинять до 2—2,5 часа. Для ускорения комплексообразования К. В. Гопалан рекомендует вводить в реагирующую смесь некоторое количество ранее приготовленного кристаллического комплекса [32]. Это облегчает и ускоряет выкристаллизовыва-ние вновь образующегося комплекса, что снижает его концентрацию в растворе и способствует смещению равновесия взаимодействующих веществ в сторону образования комплекса. [c.146]

    Отрицательное действие на процесс комплексообразования указанных выше продуктов можно объяснить их способностью адсорбироваться па поверхности взаимодействующих веществ, препятствуя контакту парафина с карбамидом, а также и на образующемся комплексе, затрудняя его кристаллизацию и выделение из раствора. Последнее приводит к повышению концентрации комплекса в растворе, вследствие чего в соответствии с законом действуюпщх масс затормаживается реакция образования комплекса. [c.147]

    Технологическая схема процесса следующая (рис. 34). Сырье и раствор карбамида, насыщенный при 35°, подают из емкостей и 2 в первый реактор комплексообразования 4. Туда же вводят раствор от промывки комплекса па вакуумном фильтре 6 и раствор от промывки метилизобутилкетоном водного раствора непрореагировавшего карбамида из отстойника 9. В реакторе 4 смесь обрабатывают при температуре, повышенной по сравнению с конечной температурой комплексообразования и близкой к температуре насыщения рабочего водного раствора карбамида. Из реактора 4 реагирующую смесь перекачивают в реактор 5, в котором процесс комплексообразования завершается при установленной конечной температуре. Смесь продуктов реакции, состоящая из раствора депарафинированного продукта в метилизобутилкетоне, водного раствора пепрореагировавшего карбамида и образовавшегося твердого комплекса, из реактора 5 подают в вакуумный фильтр 6., [c.213]

    Сведений о термодинамике и кинетике процесса комплексообразования твердых парафиновых углеводородов с карбамидом мало. Влияние ряда факторов, в том числе расхода карбамида на скорость и глубину процесса комплексообразования, исследовано на смесях н-парафинов С18—С20 с чистотой 987о (по данным газожидкостной хроматографии). В качестве растворителя применяли бензол, в качестве активаторов—метанол и этанол. Степень извлечения н-парафина определяли по составу компонентов жидкой фазы, для чего использован показатель преломления бинарных смесей с различным содержанием н-парафина. На кинетических кривых зависимости содержания углеводорода в комплексе (на примере н-октадекана) от расхода карбамида (рис. 94, 95) можно выделить два участка, первый из которых характеризуется быстрым ростом С18 в комплексе, что соответствует начальному периоду процесса, а второй указывает на установление равновесного состояния и выражается прямой, параллельной оси абсцисс. [c.226]

    Явления адсорбции в процессе комплексообразования. При приближении к поверхности кристалла карбамида молекулы н-алкана она адсорбируется на этой поверхности при этом кристалл-карбамида получает достаточно энергии для перехода из тетрагональной форумы в гексагональную. Калориметрическим методом была определена [16] теплота адсорбции н-октана арбамидом с размерами частиц 0,1-0,15 мм. Авторы этой работы установили, что теплота адсорбции н-алкана на твердой поверхности карбамида несколько больше вычисленной теплоты образования комплекса, составляющей 6,7 кДж на одну метильную группу. Поэтому они считают, что н-алканы удерживаются в решетке адсорбционными силами. В работе [8]явление адсорбции отрицается. [c.46]

    Комплексообразование. Разделение нри помощи комплексов может быть названо комплексообразованием, термином, но смыслу аналогичным, дистилляции. Существует много вариантов такого разделения. В процессе комплексообразования фракциоинрованпе может быть выполнено не только отделением структур, вступающих в комплексы, от некомплексообразующих, но также фракционированием органических веществ. [c.223]

    Чистый карбамид имеет тетрагональную структуру [9]. Его молекулы упакованы плотно, и свободные пространства, в которых могут разместиться молекулы другого вещества, отсутствуют (рис. 76). При образовании комплекса происходит перестройка кристаллической структуры карбамида из тетрагональной в гексагональную. При помощи рентгеноструктурного анализа установлена идентичность рентгенограмм комплексов двух парафиновых углеводородов нормального строения ( н-ундекана и н-гексадека-на), при этом положение линий спектров этих комплексов отличалось от таковых для чистого карбамида (табл. 26). Различие в параметрах элементарной ячейки кристаллов карбамида и комплекса подтверждает способность карбамида изменять в процессе комплексообразования кристаллическую решетку из тетрагональной в гексагональную. [c.196]

    Серосодержащие органические соединения тормозят процесс комплексообразования карбамида с парафинами /в том случае, если их содержание выше лредельноро. Так, при содержании сероорганических соединений в дизельной фракции более 0,5% (масс.) выход жидких парафиновых углеводородов, образующих комплекс, уменьшается [32]. [c.204]

    При увеличении расхода растворителя равновесие сдвигается вправо, при этом расход активатора, участвующего в процессе комплексообразования, уменьшается. Это приводит к необходимости одновременно повышать расход активатора, что снижает экономичность процесса. Кроме того, растворитель в какой-то степени разрушает комплекс, поэтому повышение его содержания приводит к повышению расхода карбамида. С увеличением расхода хлористого метилена выше оптимального [54] (табл. 31) снижается скорость и глубина извлечения комплексообразующих компонентов из фракций долинской нефти. Так, при обработке этих фракций (100% (масс.) карбамида оптимальный расход хлористого метилена составляет 100—1150% (масс.) на нефть. В связи с этим авторы [63] предлагают использовать для рецир,куляции депарафинированное дизельное топливо и раствор парафина. Следовательно, выбор растворителя и активатора для карбамидной депарафинизации и их оптимального расхода зависит от качества сырья, природы растворителя и активатора, их взаимной [c.221]

    ТОГО как В ОСНОВНОЙ дериод комплексообразования большая часть углеводородов образует комплекс с карбамидом (до 60—вО% масс.) и реакционная поверхность покроется кристаллами комплекса, а в прилегающем к ней слое масла уменьшится концентрация углеводородов, способных к комплексообразованию, скорость процесса резко снижается. В этом периоде процесс комплексообразования зависит от диффузии комллексообразующих молекул на поверхность через слой кристаллов комплекса. Перемешивание системы приводит к разрушению этой кристаллической блокировки, что увеличивает скорость комплексообразования. При обработке кристалли чеаким карбамидом гача парафинового дистиллята 275—480°С с целью выделения твердых парафинов показано (рис. 100), что при частоте вращения мешалки 60 мин комплек- [c.237]

    Константа распределения МеЛ между водой и разбавителем, а = [МеА 1орг/а, во многих случаях поддается непосредственному измерению [2—41. Константа экстракции является прямой мерой соответствуюш ей константы образования в ряде различных лигандов Ь и в тех еще более многочисленных случаях, когда константа вследствие своей малости не может быть точно измерена. Детальный анализ изотерм распределения является поэтому мощным средством изучения процессов комплексообразования в неводных средах. [c.70]

    Системы с многокомпонентными водными фазами. Водная фаза рассматривавшихся экстракционных систем представляла собой водный раствор одного электролита (неэлектролита в случае Н С12). Большой практический и научный интерес представляет задача количественного описания систем с водной фазой, содержащей несколько электролитов (кислоты, высалива-тели и др.), требующая определения среднего ионного коэффициента активности распределяющегося электролита в водной фазе как функции ее состава, а во многих случаях также количественного учета процессов комплексообразования в водной фазе. Для водных систем со слабым комплексообразованием большие возможности открывает расчет коэффициентов активности с помощью уравнения Мак-Кея и Перринга при использовании правила Здановского (см. [91). Если стехиометрия процессов в органической фазе и константы экстракции известны, возможно также экспериментальное определение коэффициента активности извлекаемой соли в смешанном воднол растворе. [c.70]

    В начальный момент скороси. комплексообразования мала, так как молекулы кристалла карбамида, расположенные на его поверхности, должны изменить положение и структуру, обвивая прямую цепь я-алкана. В этот период в энергетическую связь вступают не сразу все углеродные атомн, каждый из которых обладает энергией 4,19 кДж. На втором этапе скорость возрастает, по-видимому, за счет ослабления межмолекулярных связей карбамида в кристалле в период внедрения н-алканов и вследствие ак1 ивной диффузии новых молекул в зону свежего кристалла карбамида. Процесс заканчивается медленно. так как молекулам н-алканов трудно преодолеть слой образовавшегося комплекса. Следовательно, величина снижения скорости реакции н-алканов с карбамидом зависит от длины их молекул, а скорость процесса комплексообразования - от диффузионной подвижности, н-ал-канов. Таким образом, н-алканы с короткими цепями вступают в реакцию комплексообразования в первув очередь и заканчивают ее быстрее, чем н-алканы с длинными цепями. [c.43]

    Результаты экспериментов позволили установить следующее. В момент образования калплекса карбамида с н-алканами молекулы ароматических углеводородов, адсорбируясь на поверхности кристаллов карбамида, блокируют некотврые его участки и исключают их из процесса комплексообразования. что, естественно, приводит к снижению аффекта реакции, [c.51]

    Эти данные свидетельствуют о том, что метанол в процессе комплексообразования является не только хорошим активатором процесса, но и эффе стивным растворителем ароматических углеводородов, предотвращая адсорбцию их на кристаллах карбамида. Ацетон и МЭК неодинаково растворяют различные ароматические углеводороды. Ксли-ацетон растворяет антрацен на 58 . а 0 -метилнафталин на 29%, то НВК растворяет лучше о( -метилнафталин. чем антрацен. Этанол растворяет в равной степени исследуемые углеводороды, но он слабее метилового спирта. [c.52]

    Температура. Одно из достоинств процесса депара и-низации нефтепродуктов с карбамидом - возможность осуществления его при невысоких температурах (20-30°С). Повышение температуры приводит к увеличению взаимной растворимости реагирующих продуктов, понижению вязкости их смеси, улучшению условий контакта. Однако вследствие увеличения константы равновесия процесса происходит разложение комплекса и уменьшается отбор н-а. [канов от потенциала. Выбор температуры комплексообразования зависит от требуемой глубины депарафинизации, пределов выкипания сырья и состояния карбамида (кристалличе ский или водный его раствор). Деиарафинизацию низкокипящей фракции нужно осуществлять при более низкой температуре. Депарафинизации нефтяных фракций водным или спиртовым растворам карбамида Ьначале ведут при повышенной температурё -от 35 до 40°С, а затем ее постепенно снижают до 29°С. Пониженная температура необходима для поддержания раствора карбамида в насыщенном состоянии в период всего процесса комплексообразования. При использовании кристаллического карбамида максимально активная концентрация карбамида равна единице. Поэтому весь процесс ведут при постоянной температуре. [c.61]


Смотреть страницы где упоминается термин Процессы комплексообразования: [c.130]    [c.239]    [c.271]    [c.147]    [c.214]    [c.217]    [c.233]    [c.464]    [c.41]   
Смотреть главы в:

Теоретические основы неорганической химии -> Процессы комплексообразования




ПОИСК





Смотрите так же термины и статьи:

Комплексообразование

Комплексообразованне



© 2025 chem21.info Реклама на сайте