Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлористый водород жидкий, получение

    В результате охлаждения происходит конденсация хлороформа и четыреххлористого углерода. Жидкий хлорметан нейтрализуется 20%-ным раствором щелочи и подвергается ректификации для получения товарных продуктов. Неконден-сирующийся абгаз, содержащий некоторое количество хлора, хлористого водорода и следы хлорметана, подвергают очистке в сульфитно-щелочной санитарной башне, а инертные газы, в основном азот, сбрасывают в атмосферу. [c.284]


    Литературы по производству неорганических хлорпродуктов крайне мало. В последние годы издано несколько инженерных монографий, посвященных производству хлора, каустической соды и некоторых неорганических хлорпродуктов. Так, с участием автора и под его редакцией вышли книги по производству хлора и каустической соды Методом электролиза с диафрагмой, а также с ртутным катодом, по подготовке и очистке рассола для электролиза, по хи1ши и технологии получения безводных хлоридов металлов, методам получения жидкого хлора. Однако по многим производствам — хлористого водорода и соляной кислоты, хлоратов натрия, калия, кальция, магния, перхлоратов и хлорной кислоты, водных растворов хлоридов железа, алюминия и некоторых других продуктов — [c.7]

    Синтетические цеолиты, получившие название молекулярных сит, обладают интересными структурными особенностями и специфическими свойствами. Одним из наиболее замечательных свойств цеолитов является их способность к избирательной адсорбции. Они иред-ставляют собой новое эффективное средство для осушки, очистки и разделения углеводородных и других смесей (газообразных и жидких) с целью получения чистых и сверхчистых веществ. Цеолиты применяют для извлечения из газовой смеси непредельных углеводородов (этилена), для очистки этилена от примесей ацетилена и двуокиси углерода, для очистки изопентана от примесей к-пентана, для разделения азеотропных смесей (метилового спирта и ацетона, сероуглерода и ацетона) и смесей, содержащих неорганические вещества (сероводород, аммиак, хлористый водород) и т. д. Они используются также для повышения антидетонационных свойств бензинов нутем избирательной адсорбции из них нормальных парафиновых углеводородов, а также для выделения ароматических углеводородов из смесей углеводородов с близкими физико-химическими константами, например извлечение бензола из смеси его с циклогексаном. В качестве осушителей цеолиты являются незаменимыми при наземном транспортировании газов в условиях севера и особенно при осушке трансформаторных масел. [c.12]

    Жидкий хлор — очень удобное сырье для большого числа хлор-потребляющих производств как на территории хлорных заводов, так и вне ее. Для ряда предприятий особое значение имеет применение хлора высокой концентрации. Так, в процессе хлорирования по цепному механизму примеси кислорода в хлоре затрудняют протекание реакции. Поэтому, несмотря на то что хлор, полученный испарением жидкого хлора, значительно дороже хлора, непосредственно получаемого из цеха электролиза, на некоторых предприятиях предпочитают работать на более чистом, хотя и более дорогом, испаренном хлоре. К числу таких производств относятся производства синтетического хлористого водорода для нужд гидрохлорирования ацетилена, хлористого аллила хлорированием пропилена, гексахлорциклогексана фотохимическим хлорированием бензола, хлорирование полихлорвинила, полиэтилена и других продуктов. [c.314]


    Экстракции жидкими парафиновыми углеводородами - подвергали дифенилолпропан, полученный конденсацией фенола с ацетоном (мольное соотношение 5,5 1 и 10 1) в присутствии хлористого водорода и этилмеркаптана при 22—52 °С и времени контакта 30 мин. Дифенилолпропан-сырец имел т. пл. от 148 до 153 °С и содержал 85—95% целевого вещества. Гептан, предварительно нагретый до 100 С, профильтровывали через слой дифенилолпропана в течение 2—6 ч. Растворитель, покидающий слой, отгоняли и гептан возвращали в аппарат. Очищенный и высушенный дифенилолпропан имел т. пл. 155,8—156,3 С и содержал 98—99% основного вещества. [c.166]

    Например, водный раствор хлористого аммония может быть получен из газообразных аммиака и хлористого водорода и жидкой воды следующими двумя путями  [c.57]

    Подобным же образом реакцией изопентана с изобутилхлоридом при 70° в присутствии раствора хлористого алюминия в нитрометане получался пропан с выходом только 15% [39]. Выход жидкого продукта был высокий (180% вес. на пропилен, который можно получить из расчета на изопропилхлорид) большую часть его составлял октан (23% вес.), полученный с выходом 16% от теоретического. При нагревании изопентана (с хлористым водородом) или изопропилхлорида при 60—70° в присутствии раствора [c.332]

    Впервые жидкий хлористый водород был получен в Германии примерно в 1930 г. [63, 94]. Концентрированный хлористый водород, содержащий 95—96% НС1, после осушки в башнях, орошаемых серной кислотой, сжимался четырехступенчатым поршневым компрессором до 60 ат и конденсировался в теплообменнике, охлаждаемом водой. [c.510]

    Реакция восстановления кислорода изучалась во многих неводных растворителях. В растворителях с относительно высокими протонодонорными свойствами были получены те же результаты, что и в воде. Подобным образом восстанавливается кислород в формамиде [97] и в диметилсульфоксиде или диметилформамиде в присутствии таких доноров протонов, как фенол или хлористый водород. Результаты, полученные при измерении полярограмм кислорода в жидком аммиаке, также были интерпретированы как подтверждение перекисного механизма восстановления [29]. Однако это объяснение было поставлено под сомнение более поздними результатами, полученными в других растворителях [98]. [c.443]

    Дегидрохлорирование. При температурах выше-200°С в объеме либо на катализаторах, например активированном-угле, или при действии слабых растворов щелочей, например гидроокиси кальция, или в присутствии водных растворов аммиака, жидкого аммиака, или при кипячении с пиридином в присутствии аммиака от 1,1,2,2-тетрахлорэтана отщепляется хлористый водород с получением трихлорэтилена  [c.181]

    Оксихлорирование осуществляют с использованием новых, разработанных фирмой Pe hiney-Saint-Gobain медных катализаторов в псевдоожиженном слое. Псевдоожиженный слой обеспечивает получение реакторной системи с очень легкой регулировкой, а следовательно и с одинаковой температурой, что сводит к минимуму образование местных перегревов. Реакцию оксихлорирования ведут под давлением и при относительно низкой температуре. Реакторы охлаждаются высокотемпературным жидким органическим теплоносителем. В качестве окислителя используют воздух. Соотношение хлористый водород/этилен поддерживают на требуемом уровне добавлением этилена. [c.412]

    Схема процесса получения хлоропрена в вертикальном реакторе с газлифтом приведена на рис. 12.18. Винилацетилен, пройдя испаритель 2, заполненный горячей водой и подогреваемый острым паром, вместе с водяными парами при 40— 48 °С поступает в нижнюю часть реактора-гидрохлоринатора 3. Хлористый водород подают в трубу газлифта реактора, где он поглощается катализатором, представляющим собой солянокислый водный раствор хлористой меди и хлористого железа следующего состава [в % (масс.)] u l 20, Fe lg 12, H l 14, HjO остальное. В реактор поступает также возвратный жидкий винилацетилен. Для предотвращения образования ацетиленидов меди в реактор подают соляную кислоту. [c.418]

    К реакторам данной группы следует условно отнести аппараты, в которых процесс протекает в объеме с высокой скоростью по типу окисления (сжигания) газообразных или жидких топлив кислородом воздуха в топках, поскольку рассматривать указан- ный процесс, протекающий по некоторой, хотя бы условной длине реакционной зоны, практически трудно. На рис. П1-5 представлен реактор такого типа, применяемый для получения ацетилена на рис. 111-6 — для синтеза хлористого водорода и на рис. 1П-7 — для хлорирования метана . [c.49]

    Наиболее пригодными для нанесения покрытий из растворов являются жидкие каучуки. По своей химической природе они представляют низкомолекулярные полихлоропрены и родственны стандартному хлоропреновому каучуку — наириту. Основным сырьем для получения жидкого наирнта, так же как и для получения обычного высокомолекулярного наирита, являются дешевые п доступные газы — ацетилен п хлористый водород. [c.444]

    ПОЛУЧЕНИЕ ЖИДКОГО ХЛОРИСТОГО ВОДОРОДА [c.510]

    Жидкий бензол подвергается хлорированию в аппарате периодического действия. При условии, что реактор снабжен мешалкой, обеспечивающей полный расход поступающего хлора, и выделяющийся из аппарата гаа представляет только хлористый водород, определить количество хлора, необходимого для получения максимального выхода монохлорбензола. Процесс протекает изотермически при 55° С с отношением констант скоростей реакций [c.196]


    Гидрохлорид природного каучука был получен действием жидкого хлористого водорода и последующим нагреванием под давлением пропусканием газообразного хлористого водорода в раствор вальцованного каучука подвешиванием тонких пластин каучука в емкости, заполненные газообразным хлористым водородом. Газообразный хлористый водород можно также пропускать в латекс природного каучука при условии, что латекс предварительно стабилизирован путем добавки к нему катионного мыла, типа фиксанол , т. е. бромида цетилпиридина, или же неионного мыла типа эмульфор О , олеилалкоголь-полиэтиленоксид.. Гидрохлорид природного каучука, используемый для производства прозрачных пленок, применяемых для упаковки пищевых продуктов, гидро-хлорируется в бензольном растворе, затем смесь оставляется на некоторое время для созревания избыток хлористого водорода нейтрализуется. Теоретически вычисленное содержание хлора — 33,9%, но продукты с желательными свойствами получаются уже при содержании в них хлора в пределах 28—30%. Если реакция проходит слишком далеко, продукт становится нерастворимым. [c.222]

    Крупным потребителем водорода в химической промышленности является производство аммиака, львиная доля которого идет иа получение азотной кислоты и удобрений. Кроме того, водород широко используется для синтеза. хлористого водорода и метилового спирта. Значительные количества водорода расходуются в процессах каталитической гидрогенизации (гидрирования) жиров, масел, углей и нефтяных прогонов. В процессе гидрогенизации твердых топлив (каменного угля, сланца), а также тяжелого жидкого топлива (мазута и каменноугольной смолы) получается легкое моторное топливо. Гндрнроваинс жиров лежит в основе производства марга-рииа. [c.106]

    Этот цепной механизм легко объясняет значительное различие продуктов, получаемых алкилированием изобутана 1-бутеном и 2-бутеном при применении хлористого алюминия в качестве катализатора, хотя нри сернокислотном и фтористоводородном алкилировании оба эти олефина образуют практически одинаковые продукты. Например, октановые числа бензиновых фракций с концом кипения 125°, получаемых алкилированием пзобутана 1-бутеном И 2-бутеном при 30° в присутствии хлористого алюминия и хлористого водорода, составляют соответственно 74,5 и 83,5 в обоих случаях алкилат содержит только 21—23% октанов [28в]. Если применять модифицированный катализатор на основе хлористого алюминия, а именно монометанолат хлористого алюминия, побочные реакции подавляются, вследствие чего при алкилировании 1-бутеном ири 55° получают жидкий продукт, содержащий 70% октанов октановое число бензиновой фракции с концом кипения 125° в этом случае равно 76 [28в]. Алкилирование 2-бутеном при 28° в присутствии монометано-лата хлористого алюминия дает жидкий продукт, содержащий 69% октанов бензиновая фракция с концом кипения 125° имеет октановое число 94. Основной причиной различия октановых чисел является изомерный состав октановых фракций бензин, полученный алкилированием 1-бутеном, содержит 71% диметилгексанов и 11% триметилиентанов, в то время как бензин, полученный с применением 2-бутена, содержит лишь 4,5% диметилгексанов и 76% триметилиентанов. С другой стороны, продукт, полученный алкилированием пзобутана 1-бутеном в присутствии жидкого фтористого водорода при 19°, аналогичен полученному с применением 2-бутена. При перегонке обоих алкилатов получают бензиновые фракции с концом кипения 150°, имеющие октановые числа соответственно 92,7 и 95,3 [20, 21]. Октановая фракция, полученная с выходом 57% от теоретического при алкилировании 1-бутеном, содержит 18% диметилгексанов и 82% триметилпентанов аналогичная фракция, полученная с выходом 68% при алкилировании 2-бутеном, содержит 9% диметилгексанов и 91% триметилпентанов. Аналогично алкилирование пзобутана в присутствии 97%-ной серной кислоты при 20° дает бензиновую фракцию с концом кипения 185° и октановым числом 92,9 при алкилировании [c.182]

    В начале разработки процесса производства хлористого металлила газообразный хлор барботировади через жидкий изобутилен. При этом в качестве побочного продукта образовывалось большое количество хлористого трет-бутпла, так как хлористый водород, выделявшийся в результате реакции замещения, очень легко присоединялся к непрореагировавшему изобутилену. Указанное затруднение было преодолено тем, что процесс стали проводить по непрерывной схеме, стараясь как можно быстрее удалять из зоны реакции хлористый водород [26]. Для этого жидкий изобутилен и хлор (молярное отношение 1,5 1) пропускали через форсунку (инжектор), обеспечивавшую хорошее перемешивание реагирующих веществ. Полученная смесь поступала затем в короткий реактор, охлаждаемый водой (время пребывания смеси в реакторе при 0° составляло 0,0057 сек.), откуда попадала в колонну, в которой хлористый водород отмывался теплой водой. Все хлорированные продукты конденсировали, после чего смесь подвергали ректификации для выделения хлористого металлила. [c.181]

    Важным является метод поликонденсации на поверхности раздела двух несмешивающихся жидких фаз. По этому методу получены полиэфиры, полиамиды, поликарбамиды, полиуретаны и другие полимеры. В качестве исходных продуктов используют диамины или гликоли и хлорангидриды соответствующих кислот при этом в качестве простей шего вещества выделяется хлористый водород. Например, для получения полиуретанов используют пиперазии и этиленхлорформиат  [c.143]

    Для получения ле/тга-алкилированных фенолов можно осуществить перегруппировку в условиях термодинамического контроля, т. е. в присутствии большого избйтка кислоты Льюиса и таких сока-тализаторов, как хлористый алюминий — хлористый водород. Из алкильных групп метильная мигрирует труднее всего, поэтому перегруппировку, например /г-крезола, проводят в жидком бромистом водороде в автоклаве [7] [c.309]

    Алкилирование н-бутиленами. Выше уже указывалось, что алкилирование изобутана 1-бутеном в присутствии хлористого алюминия как катализатора ведет к образованию диметилгексанов в качестве основного продукта, в то время как алкилирование 2-бутеном дает триметилпентаны (см. стр. 182). Алкилирование при 30° в присутствии чистого хлористого алюминия и хлористого водорода ведет к многочисленным побочным продуктам выход октанов составляет только 21—23% [28в]. Побочные реакции значительно подавляются при применении монометанолата хлористого алюминия в качестве катализатора в этом случае алкилат содержит 69—70% октанов. Октаны (70% жидкого продукта), полученные при алкилировании 1-бутеном при 55°, содержали 87% диметилгексанов (25% 2,3-, 50% 2,4- и 2,5- и 12% 3,4-диметилгексана), и 13% триметилпентанов (9% 2,2,4- и 4% 2,3,4-триметилпентана). С другой стороны, октаны, полученные при алкилировании 2-бутеном (69% суммарного продукта), содержали только 5,5% диметилгексанов (0,5% 2,3- и 5% [c.192]

    Процессы изомеризации с применением системы хлористый алюминий — хлористый водород начали применять в нефтепереработке для получения изобутапа из к-бутана и изопентана из к-пентана с первой половины 40-х годов [56]. При применении хлористого алюминия возникают серьезные трудности, связанные с его летучестью и необходимостью сохранения его в зоне непосредственного протекания реакции. При парофазных процессах хлористый алюминий испаряется из обогреваемой (100—125° С) зоны реакции и переносится в более холодные зоны, где он осаждается в твердом состоянии и может забивать аппаратуру. Растворимость хлористого алюминия в жидких углеводородах невелика, но Возрастает с повышением температуры поэтому при жидкофазпых процессах возникают трудности, связанные с уносом катализатора. [c.192]

    Обычно применяемый способ заключается в обработке метилового или этилового эфира кислоты гидразином. В большинстве случаев пользуются не безводным гидразином, а технически доступным 85 /о-ным водным гидразингидратом. Образование гидразидов из сложных эфиров часто протекает самопроизвольно при комнатной температуре и сопровождается заметным выделением тепла если реакция не начинается самопроизвольно, то обычно достаточно нагревания на водяной бане в течение промежутка времени от 5 мин. до нескольких дней, чтобы получить превосходные выходы гидразидов. Трудно реагирующие сложные эфиры были превращены в гидразиды путем нагревания при высокой температуре в бомбе [62, 176], но при этом может произойти декарбоксилирование, поэтому следует избегать нагревания выше 180°. Гидразиды обычно кристаллизуются при охлаждении (иногда и во время нагревания), и для получения их в чистом виде часто требуется только отделить их и высушить. Иногда образуются небольшие количества вторичных гидразидов. Отделение их не представляет трудностей, так как они нерастворимы в разбавленной кислоте и гораздо менее растворимы в органических растворителях, чем первичные гидразиды. Образование вторичных гидразидов может быть сведено к минимуму путем прикапывания сложного эфира к избытку кипящего раствора гидразингидрата с такой скоростью, чтобы не происходило никакого накопления второй жидкой фазы [11, 177, 178]. Для очистки гидразидов можно также превратить их в кристаллические изопропилиденовые производные путем нагревания с ацетоном, а затем выделить из этих производных солянокислые соли гидразидов путем обработки их в эфирном растворе сухим хлористым водородом [179]. Лишь в редких случаях очистка гидразидов производилась посредством перегонки [176] этот способ не следует применять, так как при высоких температурах, требующихся для его осуществления, 1идразиды часто вступают в реакцию конденсации, образуя гетероциклические соединения [180]. [c.348]

    Соляная кислота расходуется в производстве различных хлоридоЬ, красителей, каучука, применяется для омыления жиров и масел, травления металлов при получении сахаря, дублении и окраски кож, в гальванопластике. Жидкий и газообразный хлористый водород используют при хлорировании различных органических соединений и т, д. [c.414]

    Величина коэффициента продольного перемешивания увеличивается с ростом нагрузки по газовой фазе, что свидетельствует об интенсификации процесса гидравлического взаимодействия потоков контактируюш,их фаз в насадке. С другой стороны, исследование процесса абсорбции хлористого водорода водой показало, что число единиц переноса, реализуемых в исследуемых насадках, практически постоянно и не зависит как от расхода абсорбента, так и от расхода газовой фазы. Полученный результат можно объяснить незначительным влиянием продольного перемешивания в жидкой фазе на эффективность массопередачи в уголковых насадках исследованных типов. [c.17]

    Бромуксусная-1-О кислота (примечание 5). В колбу емкостью 25 мл, содержащую 0,082 г (1,0 лмоля) ацетата-1-С натрия и 1,5 лг красного фосфора, при охлаждении жидким азотом перегоняют в вакууме 0,0375 г (1,0 жмоля) безводного хлористого водорода, 0,079 г (1 жмоль) свежеперегнанного хлористого ацетила и 0,192 г (1,2 жмоля) брома (примечание 6). Колбу запаивают в вакууме и нагревают на кипящей водяной бане до исчезновения окраски свободного брома (1—5 час.) Полученное вещество растворяют в 1 мл воды. Выход 75—80% (примечание 7). [c.365]

    Смесь 6,0 г (20 лшолей) Ы-окиси морфина (примечание 1) и метилата натрия, полученного из 0,46 г (20 имолей) натрия в 20 мл абсолютного метилового спирта, замораживают жидким азотом и к ней прибавляют 2,22 г (15,6 л1молей) йодистого ме-тила-С путем вакуумной перегонки (примечание 2). Смесь нагревают с обратным холодильником на паровой бане в течение 4 час. К охлажденной смеси добавляют 5 мл воды и через раствор пропускают сернистый газ в течение 1 часа. Добавляют 30 мл воды и отгоняют метиловый спирт при пониженном давлении. Остаток обрабатывают 10 мл 6 н. раствора едкого натра (для растворения морфина) и экстрагируют кодеин хлороформом дважды порциями по 25 мл и четыре раза порциями по 10 мл. Экстракт промывают водой (две порции по 10 мл), сушат карбонатом калия, фильтруют и выпаривают досуха. Кодеин растворяют в минимальном количестве бензола и добавляют петролейный эфир до прекрашения появления мути желтовато-оранжевого цвета. Примеси отфильтровывают, добавляют к фильтрату избыток петролейного эфира и выдерживают смесь в холодильном шкафу для полного осаждения кодеина. Твердое вещество отделяют (т пл. 155°), а маточный раствор вновь обрабатывают для получения дополнительного количества продукта. Кодеин растворяют в небольшом количестве абсолютного спирта, и для высаживания продукта насыщают раствор сухим хлористым водородом. Упаривают смесь досуха на паровой бане, перекристаллизовывают продукт из 95%-ного спирта, отделяют, промывают холодным абсолютным спиртом и сушат. Общий выход 3,65 г (62,8%). Молярная удельная активность не отличается от активности исходного соединения (примечание 3). Анализ [1] методом двухмерной бумажной хроматографии и радиоаутографии указывает на присутствие только одного радиоактивного соединения, [c.640]


Смотреть страницы где упоминается термин Хлористый водород жидкий, получение: [c.323]    [c.37]    [c.181]    [c.240]    [c.259]    [c.390]    [c.354]    [c.729]    [c.287]    [c.131]    [c.502]    [c.24]    [c.179]    [c.47]    [c.507]    [c.24]    [c.138]    [c.170]    [c.229]    [c.600]   
Производство хлора, каустической соды и неорганических хлорпродуктов (1974) -- [ c.510 , c.511 ]




ПОИСК





Смотрите так же термины и статьи:

Водород жидкий

Водород получение

Хлористый водород

Хлористый водород жидкий

Хлористый жидкий

Хлористый получение



© 2025 chem21.info Реклама на сайте