Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембранные испарение через мембрану

    Диффузионные мембраны обычно применяются для разделения газовых и жидких смесей методом испарения через мембрану [1]. Для разделения растворов под действием градиента давлений эти мембраны практического применения пока еще не находят, так как скорость процесса при использовании известных мембран этого типа очень низка. Она может быть увеличена путем создания ультратонких анизотропных диффузионных мембран (рис. П-2), а также повышением температуры разделяемой смеси. Перенос вещества через непористые мембраны рассмотрен в работах [1, 11]. [c.47]


    Испарение через мембрану. Это процесс разделения жидких смесей, основанный на различной скорости переноса компонентов смеси через полупроницаемую мембрану вследствие различных значений их коэффициентов диффузии. Из исходного раствора через мембрану в токе инертного газа или путем вакуумирования (рис. 24-8) отводятся пары, которые затем концентрируются в конденсаторе. При разделении происходят растворение вещества в материале мембраны (сорбция), диффузия его через мембрану и десорбция в паровую фазу с другой стороны мембраны. Процесс переноса вещества через мембрану описывается законом Фика [уравнение (24.5)]. Состав паров зависит от температуры процесса (влияние давления на его характеристики незначительно), материала мембраны, состава разделяемой смеси и др. Для увеличения скорости процесса раствор нагревают до 30-60 °С, а в паровой зоне создают разрежение. [c.333]

    Диффузионные мембраны обычно применяют для разделения газов, жидких смесей методами испарения через мембрану, диализа. Диффузионные мембраны являются практически непористыми. Они представляют собой квазигомогенные гели, через которые растворитель и растворенные вещества проникают под действием градиента концентраций (молекулярная диффузия). [c.315]

    Испарение через мембрану. Это процесс разделения жидких смесей посредством полупроницаемых мембран, когда разделяемая жидкая смесь вводится в соприкосновение с мембраной с одной ее стороны, а проникающий компонент (или смесь) в виде паров отводится с другой стороны мембраны в вакуум, либо в поток инертного газа (рис. 17.3). [c.430]

    Диффузионные мембраны обычно применяют для разделения газовых и жидких смесей методом испарения через мембрану. [c.563]

    Для процессов разделения жидких смесей методом испарения через мембрану используют непористые полимерные мембраны, являющиеся квазигомогенными гелями. Растворитель и растворенные вещества проникают через них вследствие молекулярной диффузии, поэтому такие мембраны называют диффузионными. Скорость прохождения молекул через диффузионную мембрану пропорциональна коэффициенту диффузии, зависящему от размеров молекул и их формы. Диффузионные мембраны применяют для разделения компонентов с близкими [c.431]

    При выборе оптимальных условий разделения данной смеси испарением через мембрану и материала мембраны следует иметь в виду, что скорость проницания через мембрану выше для следующих веществ а) с меньшей молекулярной массой в ряду гомологов б) с молекулами меньших размеров при одинаковой [c.333]


    Для процесса разделения испарением через мембрану применяют пористые и непористые мембраны, обычно на основе различных полимеров (например, полипропилена, полиэтилена и др.). На основе неорганических материалов (например, керамики) изготовляют пористые мембраны. Эти мембраны обладают большим гидродинамическим сопротивлением, поэтому их целесообразно изготовлять композитными - в виде закрепленных на пористых подложках ультратонких селективных пленок. Наибольшие селективность и проницаемость наблюдаются у лиофильных систем, т. е. когда полярности мембраны и компонента разделяемой смеси совпадают. [c.334]

    Испарение через мембрану чистых жидкостей и смесей жидкостей. Мембраны, используемые для осуществления процесса испарения через мембрану [c.430]

Рис. II-56. Зависимость проницаемости и коэффициента разделения при испарении водного раствора метанола (280 мг/л) через целлофановую мембрану от давления. Мембрана лежит на сетке из медной проволоки, ж = = 22 °С. При одних и тех же условиях могут реализоваться два режима — Л и В. Рис. II-56. <a href="/info/321850">Зависимость проницаемости</a> и <a href="/info/5416">коэффициента разделения</a> при испарении <a href="/info/323601">водного раствора метанола</a> (280 мг/л) через целлофановую мембрану от давления. Мембрана лежит на сетке из <a href="/info/112760">медной проволоки</a>, ж = = 22 °С. При одних и тех же условиях могут реализоваться два режима — Л и В.
    При диффузионно-мембранном процессе испарения через мембрану отводятся пары растворителя, которые затем конденсируются в отдельном конденсаторе. Процесс переноса паров растворителя поперек мембраны описывается законом диффузии Фика (уравнение (5.5)), в котором коэффициент диффузии имеет смысл коэффициента эквивалентного квазидиффузионного переноса целевого компонента в пористой структуре мембраны и определяется опытным путем для каждой конкретной пары компонент - мембрана. [c.468]

    Газопроницаемость органических непористых мембран была обнаружена давно. Б 1831 г. Митчелл установил, что мембрана из натурального каучука обладает различной газопроницаемостью по отношению к азоту и кислороду. Процесс диффузии различных газов через мембраны из натурального каучука изучал затем (в 1866 г.) Грем, который показал, что диффузию газа через такую мембрану следует рассматривать как процесс, состоящий из трех последовательных стадий а) растворение газа в полимере, Ь) собственно диффузия и в) испарение продиффундировавшего газа с поверхности мембраны. [c.221]

    Диффузионные мембраны применяют для разделения газов и жидких смесей методом испарения через мембрану (см. раздел II). [c.30]

    Скорость и селективность процесса испарения через мембрану зависит от ряда факторов температуры и состава разделяемой смеси, давления в паровой фазе, свойств самой мембраны и ряда других. Существенное значение при исследовании процесса и его промышленной реализации имеют гидродинамические факторы. [c.147]

    Как отмечает Лонг [44], главная трудность при создании удовлетворительной теоретической модели для разделения смесей испарением через мембрану заключается в том, что структура полимерных мембран обычно меняется от партии к партии, зависит от температурных условий и предыстории работы мембраны в растворителе. Кроме того, характеристики полимерной мембраны могут меняться [c.150]

    ИСПАРЕНИЕ ЧЕРЕЗ МЕМБРАНУ, метод разделения р-ров, компоненты к-рых имеют различные коэф. диффузии. Осуществляется в мембранных аппаратах. К полупроницаемой мембране подводится исходный р-р, из к-рого через мембрану в токе инертного газа или путем вакууми-рования отводятся пары их состав зависит от т-ры процесса, состава р-ра, материала мембраны и др. При разделении происходит сорбция растворенного в-ва мембраной, его диффузия через мембрану и десорбция в паровую фазу процесс описывается ур-нием Фика (см. Диффузия). Мембранами обычно служат целлофановые, полипропиленовые, полиэтиленовые и др. пленки. Для увеличения скорости процесса р-р нагревают до 30—60 °С. Метод примен. для разделения азеотропных смесей, жидких углеводородов, водных р-ров карбоновых к-т и др. [c.228]

    Чтобы выяснить расположение границы, на которой происходит сорбционный скачок концентраций в целлофановых мембранах, был проведен ряд опытов по испарению растворов красителей. Эти растворы испарялись через многослойные целлофановые мембраны. По окраске отдельных слоев был сделан вывод, что по толщине мембраны краситель распределяется так, как предсказывает модель 1. О существовании именно такого градиента концентраций говорят и результаты разделения растворов труднолетучих компонентов. В соответствии с моделью 1 раствор вода — глицерин испарением через мембрану разделяется хуже, чем обычной перегонкой. [c.193]

    Наиболее перспективно применение данного метода для разделения азеотропных смесей. На рис. 24-9 представлены варианты (кривые 1-3) разделения азеотропной смеси изопропанол-вода при различных температурах в конденсаторе 6 (см. рис. 24-8). На рис. 24-9 приведена также равновесная кривая 4 для этой смеси (без мембраны). Такое эффективное разделение азеотропа объясняется тем, что механизм разделения методом испарения через мембрану принципиально отличается от широко применяемой для разделения жидких смесей ректификации, основанной на разности давления (упругости) паров компонентов смеси. Вместе с тем сочетание мембранных процессов с ректификацией позволяет получать двухтрехкратный экономический эффект. Например, для разделения смеси этанол-вода (рис. 24-10) с использованием баромембранных методов (микрофильтрации и обратного осмоса) и ректификации можно концентрировать разбавленные растворы до составов, близких к азеотропным. Разделение азеотропных смесей экономически выгоднее проводить испарением через мембрану. [c.334]


    Например, скачки концентраций могут наблюдаться сразу в нескольких местах на входе в капилляры и при переходе в поверхностную пленку. По-видимому, именно поэтому на ацетатцеллюлозных мембранах разделение в процессе испарения лучше, чем в процессе обратного осмоса. Можно предположить, что то же происходит и при испарении через целлофановые мембраны концентрированных растворов спиртов. [c.195]

    Хотя соотношение между гидрофильными и гидрофобными элементами и является ключевым фактором химической характеристики мембран, используемых для водных сред, последние не являются единственными в практике мембранного разделения. Разделение нефтяных фракций, например, может быть проведено с помощью полиэтиленовых мембран разной степени кристалличности. Такие мембраны уже были использованы для выделения испарением через мембрану л-ксилола из раствора, содержащего все три изомера. Аналогично в случае систем с полярностью, промежуточной между полярностью водных и углеводородных сред, разделение можно провести с помощью мембран, в которых установлено нужное соотношение между лиофобными и лиофиль-ными элементами по отношению именно к данному растворителю. Для такого в.одноподобного растворителя, как метанол, можно использовать мембраны те же или близкие к тем, которые используют для разделения водных растворов. Так и ацетатцеллюлозные, и мембраны из метилированного полиамида можно (с небольшими изменениями) использовать для разделения спиртовых растворов, в том числе и для низкомолекулярных спиртов. [c.70]

    Механизмом переноса веществ через неаористые полимерные мембраны в процессах испарения через мембрану так же, как и в процессах газоразделения, является сорбционно-диффузионный механизм. Перенос через мембрану осуществляется в три стадии растворение проникающих через мембрану веществ со стороны жидкости в полимерном материале диффузия этих веществ через мембрану их испарение с другой стороны мембраны. Селективность процесса определяется селективной сорбцией и (или) селективной диффузией. В отличие от газоразделения сильное сродство компонентов жидкой смеси к полимерному материалу мембраны вызывает повыщенную растворимость жидкости в полимере. В процессе первапорации ироисходит значительное анизотропное набухание материала мембраны. Со стороны паровой фазы мембрана остается практически сухой, а со стороны жидкости устанавливается равновесное состояние и степень набухания велика. Перенос компонентов смеси через неравномерно набухшую мембрану определяется величинами локальных коэффициентов диффузии компонентов, зависящими от их концентраций. В результате профиль концентрации каждого из компонентов в направлении, перпендикулярном к поверхности мембраны, оказывается существенно нелинейным. Тогда и коэффициент проницаемости не будет постоянной величиной, а будет существенно зависеть от состава смеси. Например [4], если для разделения системы этанол—вода в качестве полимера использовать поливиниловый спирт, то при низких концентрациях спирта мембрана сильно набухает и селективность равна нулю. При низких концентрациях воды поливиниловый спирт имеет высокую селективность по отношению к воде и достаточно большую проницаемость. [c.431]

    Диффузионный мембранный метод в системе жидкость- твердое тело - газ получил название исиарение через мембрану или первапорация. Метод основан на селективной проницаемости некоторых материалов для различных компонентов жидких смесей. Явление селективной проницаемости впервые обнаружено на каучуковых мембранах для смесей углеводород - спирт. От.чичи-тельной особенностью процесса мембранного испарения от других мембранных процессов является переход проникающих через мембрану веществ из жидкого состояния в парообразное, для чего требуется подвод к системе энергии, 1Ю меньшей мере равной теплоте испарения пермеата. Из этого следует, что испарение через мембрану может быть использовано практически лишь тогда, когда селективность переноса гораздо выше, чем при простом испарении, в частности, для разделения азеотропных и близко кипящих смесей. Движущей силой процесса мембранного испарения является разность химических потенциалов по обе стороны мембраны. Длл поддержания химического потенциала на достаточно высоком уровне необходимо предотвратить конденсацию иермеата на поверхности мембраны со стороны пара. Это достигается непрерывным отводом пара, обдувом инертным газом или вакуумированием. [c.217]

    Испарение через мембрану осуществляется с помощью непористых полимерных мембран. Исходная жидкая смесь, подлежащая разделению, приводится в контакт с одной стороной селективно проницаемой мембраны, проникшие через мембрану вещества в виде пара удаляются с другой стороны мембраны. Низкие значения парциальных давлений проникающих через мембрану компонентов обеспечиваются путем создания вакуума со стороны паровой фазы или с помощью газа-носителя (см. раздел 18). В отличие от большинства других мембранных процессов, для проведения которых не требуется подвода тепла, процесс испарения через мембрану требует испарения части исходной жидкой смеси. Поэтому данный метод разделения целесообразно использовать для выделения из жидких смесей компонентов, содержащихся в небольших количествах. Разделение смеси достигается за счет того, что различные компоненты смеси переносятся через мембрану с различной скоростью. С помощью испарения через мембрану могут эффективно разделяться азеотропные жидкие смеси, проявляющие положительные отклонения от закона Рауля, разделение которых при помощи обычного процесса ректификации невозможно. В настоящее время испарение через мембрану используется главным образом для дегидратации, т. е. удаления воды из органических растворителей или их смсссй. [c.32]

    МЕМБРАННЫЕ МЕТОДЫ РАЗДЕЛЕНИЯ, осуществляются с помощью полупроницаемых мембран (см. Разделительные мембраны). Р-ры разделяются методами обратного осмоса, ультрафильтрации, диализа, электродиализа, испарения через мембрану, коллоидные системы — методами микрофильтрации и ультрафильтрации. О разделении газовых смесей см. Мембранное газоразделеиие. [c.321]

    Разделение жидкостей методом испарения через мембрану также основано на различной диффузионной проницаемости мембран для паров веществ. При этом движущей силой процесса, как правило, является перепад давлений или концентраций. Смесь жидкостей, находящуюся в контакте с мембраной, нагревают. Проникающие через мембрану пары отводят с помощью вакуумирования или потоком инертного газа. Выделяют [13] пять основных стадий процесса 1) перенос вещества из глубины жидкого потока к мембране 2) сорбцию вещества поверхностным слоем мембраны 3) диффузию вещества через мембрану 4) десорбцию вещества с противополо кной [c.16]

    ДиффузиоЕШые мембраны обычно применяются для разделения газов и для разделения жидких смесей методом испарения через мембрану. [c.375]

    Испарение через мембрану (иногда этот процесс называют первапорацией) представляет собой процесс мембвд0юго разделения жидкостей, при котором ис-ходнет жидкая смесь приводится в контакт с одной стороной селективно проницаемой непористой мембраны, а проникпше через мембрану вешества удаляются в виде пара с другой стороны мембраны. Движущей силой процесса переноса ком1юнента / через мембрану является градиент химического потенциала (Д, этого компонента в направлении, перпендикулярном к поверхности мембраны. В случае испарения через мем- [c.430]

    Здесь X — координата, отсчитываемая в направлении, перпендикулярном к поверхности мембраны й, — термодинамическая активность компонента / К — универсальная газовая постоянная Т — абсолютная температура р, — равновесное парциальное давление компонента / над жидкой смесью Р, — давление насыщенного пара чистого компонента при температуре Т. Следовательно, движущая сила процесса появляется при наличии градиента активности компонента и (иди) 1радиента температуры. На практике движущей силой, как правило, является градиент активности. Низкое парциальное давление паров достигается либо путем создания разрежения при помощи вакуум-насоса, либо применением газа-носителя (рис. 15.6.1.1). Парциальное давление со стороны пермеата долж1ю быть существенно меньше давления насыщенного пара. Процесс испарения через мембрану в отличие от больщшства других мембранных процессов требует испарения части исходной жидкой смеси. По этой причине наиболее целесообразно использовать данный процесс для выделения из жидких смесей компонентов, содержащихся в небольших количествах. Продуктом может являться как пермеат, так и ретентат. [c.430]

    Здесь и — коэффициенты диффузии компонентов г и У в материале мембраны при бесконечном разбавлении (т. е. в том случае, когда концентрации С и С) близки к нулю). Коэффициенты А характеризуют пластифицирующее действие каждого проникающего компонента, в результате которого ускоряется диффузия либо самого компонента (коэффициенты Ан и AjJ), либо диффузия другого проникающего компонента (коэффициенты A j и AJ ). Эти коэффициенты могут быть найдены лишь на основании экспериментов по испарению через мембрану данной бинарной смеси. Линейные зависимости не всегда адекватно описывают зависимость коэффициентов диффузии от концентраций. Некоторыми авторами предлагалась шестипараметрическая экспоненциальная модель зависимости коэффициентов диффузии от концентраций  [c.432]

    Ссьшки на оригинальные работы можно найти в [9]. Недостатком этих моделей является то обстоятельство, что они пригодш только для расчета изотермического процесса испарения через мембрану. Однако испарение проникших через мембрану компонентов со стороны ц ювой фазы приводит к охлаждению этой стороны мембраны. В результате в мембране возникает градиент температуры. В зависимости от условий цро1 каиия процесса, таких как скорость переноса компонентов через мембрану, состав исходной смеси, значения скрытых теплот испарения и теплоемкостей компонентов смеси, перепад температур может достигать нескольких градусов. [c.432]

    Мембраны, применяемые для процесса первапорации, представляют собой асимметричные или композиционные мембраны. Как и в случае мембран для газоразделения, пористая под)южка должна иметь открытую пористую структуру для уменьшения сопротивления переносу пара и предотвращения капиллярной конденсации. Существенное требование, предъявляемое к пер-вапорационным мембранам, — это устойчивость материалов мембраны к компонентам разделяемой смеси при повышенных температурах. Сравнительно высокие температуры жидкой смеси необходимы для поддержания достаточно большой движущей силы процесса испарения через мембрану, которой является разность парциальных давлений паров компонентов разделяемой смеси по разные стороны от мембраны. Выбор полимерного материала в значительной мере зависит от того, для решения какой задачи предназначена мембрана. В отличие от газоразделения, при испарении через мембрану эластомеры в результате сильного набухания могут обладать не большими проницаемостями, чем стеклообразные полимеры. К полимеру предъявляются два противоречивых требования. С одной стороны, мембрана не должна набухать слишком сильно во избежание существенного уменьшения селективности. С другой стороны, при низкой растворимости выделяемого компонента в полимере и недостаточном набухании слишком низким оказывается поток вещества через мембрану. Полимеры, имеющие аморфную структуру (стеклообразные полимеры или каучуки), могут оказаться [c.432]

    Характерные значения потока вещества при проведении процесса испарения через мембрану обычно не превосходят 2 кг/(м ч). Тогда нормальная к поверхности мембраны составляющая скорости жидкости вблизи поверхности не будет превосходить 6 10 м/с. Это примерно на порядок вели шны меньше, чем значения, характерные для процесса обратного осмоса. Поэтому обычно считают, что влиянием концентрационной поляризации на процесс массопередачи при испарении через мембрану можно пренебречь. Однако, как указывается в [8, 9], во многих практически важных случаях разделения жидких смесей путем испарения через мембрану концентрационная поляризация может оказывать существенное влияние на поток вещества через мембрану. Для предотвращения вредного влияния концентрационной поляризации толщина канала для подачи жидкости при использовании плоскорамных или спиральных модулей, или радиус полых волокон при использовании половолоконных модулей не должны превышать 0,2-Ю,5 мм. [c.433]

    Другая важная особенность, которую необходимо учитывать при проектировании усгановок для проведения процесса испарения через мембрану, заключается в том, что для данного процесса набхподается перепад температур по разные стороны от мембраны. Перепад температур возникает в результате того, что тепло расходуется для испарения части жидкости, подаваемой на разделение. Как указывается в [8], при удалении воды путем испарения через мембрану из ацетата цeJnlюлoзы перепад температур может достигать 12 К. Если процесс осуществляется без подвода тепла извне, то температура жидкости будет существенно понижаться. Изменение температуры жидкости вдоль поверхности мембраны в свою очередь приводит к уменьшению движущей силы процесса. Для того чтобы уменьшить вредное влияние понижения температуры жидкости на протекание процесса, можно использовать расположенные последовательно короткие мембранные модули с промежуточным подогревом жидкости в теплообменниках. [c.433]

    Для расчета мембранного модуля необходимо располагать эмпирической информацией. В отличие от процессов газоразделения коэффициенты проницаемости существенно зависят от состава смеси, и расчет не может основываться на данных по проницаемости чистых жидкостей. В мембранном модуле со стороны паровой фазы создается вакуум, и движение пара направлено в основном в нормальном к поверхности направлении. Поэтому мембранный модуль для проведения процесса испарения через мембрану работает по схеме поперечного тока. Будем считать, что известны зависимости потока вещества через поверхность мембраны J и отношения концентраций в паре и в жидкости (фактор обогащения) Р от концентрации жидкости. Введем следующие обозначения. Расход исходной смеси обозначим через qf, расходы пермеата и ретентата через и дг соответственно, концентрации легко проникающего через мембрану ком1юнента в исходной смеси, пермеате и ретентате обозначим через ду, Ур и соответственно. Переменные вдоль поверхности мембраны расход жидкости, концентрации кошюнента в жидкой и паровой фазах обозначим через д,х и у. Будем считать, что известными величинами являются расход исходной смеси и ее состав и концентрация ретентата. Предположим, что жидкость перемещается вдоль поверхности мембраны в режиме идеального вытеснения. Тогда уравнение материального баланса в дифференциальной форме можно записать так  [c.433]

    Особый случай обычной газовой проницаемости за счет диффузии представляет собой процесс, известный как испарение через мембрану (жидкостная проницаемость), в котором мембрана отделяет исходный раствор в жидком состоянии от потока пермеата в газообразном состоянии. На стороне мембраны, контактирующей с паром, поддерживается низкое давление, что препятствует проникновению жидкости. Несмотря на то что отмечается сильная зависимость скорости диффузии от концентрации растворителя в полимерной пленке, по-видимому, не будет наблюдаться существенного различия между значениями, найденными для случая испарения через мембрану, и значениями для диффузии паров. Станнетт и Ясуда [31] использовали мембраны, находящиеся в равновесии с пермеатом, и не отметили различий в проницаемостях жидкости и пара для растворов бензола и циклогексана через полиэтилен, а также ацетона и ацетонитрила — через резину. Таким образом, даже в том случае, когда скорости проницаемостей паров и жидко- [c.36]

    Поток информации по мембранной технологии как в СССР, так и за рубежом стремительно возрастает. Однако этот материал недостаточно систематизирован (особенно по таким методам, как обратный осмос, ультрафильтрация и испарение через мембрану). Кроме того, среди вышедших за рубежом монографий отсутствуют книги, посвяш енные проблеме в целом. Например, в монографии Кйстинга Синтетические полимерные мембраны (США, 1971 г.) рассматриваются только вопросы синтеза и получения полупроницаемых мембран, а книга Сурираяна Обратный осмос (Англия, 1970 г.) при обилии экспериментального материала страдает некритическим изложением фактов. К тому же в названных книгах совершенно не отражены работы советских исследователей. [c.7]

    Испарение через мембрану (первапора-ция) является одним из мембранных процессов разделения. При первапорации исходная жидкая смесь контактирует с одной из сторон мембраны, а пермеат в виде паров удаляется с про- [c.585]


Смотреть страницы где упоминается термин Мембранные испарение через мембрану: [c.122]    [c.32]    [c.468]    [c.41]    [c.431]    [c.432]    [c.88]    [c.88]   
Процессы и аппараты химической технологии Часть 2 (2002) -- [ c.333 ]

Процессы и аппараты химической технологии Часть 2 (1995) -- [ c.333 ]




ПОИСК





Смотрите так же термины и статьи:

Испарение через мембрану

Мембранные



© 2025 chem21.info Реклама на сайте