Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Общая характеристика сплавов

    Глава I. ОБЩАЯ ХАРАКТЕРИСТИКА СПЛАВОВ [c.6]

    Общая характеристика. Сплавы железа с 14—17% 51 и с небольшим содержанием других элементов известны под общими названиями т е р м о с и л и д ы, ф е р р о с и л и д ы, крем п и-с т ы е ч у г у и ы. [c.107]

    Общая характеристика металлов. Положение металлов в периодической системе. Физические свойства металлов. Химические свойства металлов. Металлы и сплавы в технике. Основные способы получения металлов. Электрохимический ряд напряжений металлов. Коррозия металлов. Методы защиты от коррозии. Электролиз расплавов и водных растворов солей. Процессы, протекающие у катода и анода. [c.8]


    Помимо зависимости от общего pH протекание указанных выше различных реакций зависит от величины местных pH, возникающих непосредственно на корродирующих участках, в особенности в условиях застойных зон. Далее тип протекающей реакции зависит от легкости адсорбции заряженных частиц, которая частично определяется природой поверхности, а частично — характеристиками сплава, являющегося материалом электрода. [c.207]

    Некоторые качественные закономерности такого типа, вероятно, имеют общий характер, например улучшение пассивационных характеристик сплавов железа в различных растворах при легировании хромом. Область действия других закономерностей может быть ограниченной. Например, в большом числе систем увеличение pH ускоряет электрохимическое растворение металлов в активной области [28], но в этой же области не ускоряет ионизацию никеля в сульфатных растворах при pH < 2 [62] и железа в нитратных растворах [63] и может тормозить растворение титана [64] и платины [42]. [c.52]

    Домашняя подготовка. Общая характеристика металлов. Физические и химические свойства металлов. Ряд напряжений. Коррозия металлов. Добывание металлов из руд. Сплавы. Щелочные металлы. Калий, его физические и химические свойства. Соли калия. Калийные удобрения. Месторождения калийных удобрений в СССР. Металлы, применяемые в качестве микроудобрений. [c.157]

    Образование твердых растворов и изоморфных смесей. Явления изоморфизма давно известны и являются важной характеристикой многих элементов и их соединений. Изоморфизм способствует выделению с.мешан-ных кристаллов, когда две различные по составу соли, наиример алюминиевые и железные квасцы, образуют общую кристаллическую решетку. Известно, что Д. И. Менделеев считал изоморфизм одной из важных характеристик элементов. Такие кристаллы образуют не только вещества, имеющие близкую ио строению кристаллическую решетку. В более широком смысле такие системы называют твердыми растворами. Хорошо известны твердые растворы разнообразных металлических сплавов, силикатов, соленых систем и т. д. В ряде случаев соосаждение также обусловлено образованием твердых растворов. [c.63]

    Термодинамические свойства сплавов должны зависеть от геометрических факторов (размера радиусов атомов) и характеристик электронов. Для образования двумя металлами непрерывного ряда твердых растворов необходимо, чтобы они имели одинаковую кристаллическую решетку. Так, при температуре выше 910° С железо имеет общую с никелем гранецентрированную кубическую решетку, и в интервале 910—1460° С никель и железо образуют непрерывный ряд твердых растворов. Ниже 910° С [c.510]


    Термодинамические свойства сплавов должны зависеть от геометрических факторов (размера радиусов атомов) и характеристик электронов. Для образования двумя металлами непрерывного ряда твердых растворов необходимо, чтобы они имели одинаковую кристаллическую решетку. Так, при температуре выше 910 °С железа имеет общую с никелем гранецентрированную кубическую решетку, и в интервале 910—1460 °С никель и железо образуют непрерывный ряд твердых растворов. Ниже 910 °С железо имеет объемноцентрированную решетку, в то время как никель сохраняет гранецентрированную, поэтому при 600 °С в объемноцентрированной решетке железа растворяется лишь 7 % никеля. Растворы железа в никеле. имеют гранецентрированную решетку. [c.649]

    Характеристики коррозионных свойств металлов и сплавов /г и ё к предполагают их равномерную коррозию и в большинстве случаев представляет усредненную по поверхности величину скорости коррозии. При ярко выраженном характере локальной коррозии в примечании указывается вид коррозии. Следует отметить, что локальные виды коррозии наиболее опасны, так как при общей небольшой потере массы металла происходит сильное локальное разрушение конструкции, что приводит к преждевременному выходу оборудования из строя. Как отмечает академик Я- М. Колотыркин [3], по некоторым оценкам общая коррозия в химической промышленности составляет около 30%, а локальная—более 52%. Поэтому проверка коррозионного поведения конструкционных материалов в конкретных условиях эксплуатации всегда необходима, особенно если имеется опасность локальной коррозии. [c.5]

    Для изготовления различных конструкций в химическом машиностроении чаще всего применяют листовой металл. Поэтому для коррозионных испытаний использовали листы отожженых сплавов. Конкретный состав сплавов и технология их изготовления бьши приведены в гл. I. Скорость общей коррозии определяли, как это принято, по уменьшению массы образца после коррозионного воздействия агрессивной среды за данный отрезок времени, отнесенному к площади его поверхности и продолжительности испытаний, т.е. размерность скорости коррозии г/(м ч). Зная плотность металла (для опытных сплавов она в каждом случае определяется гидростатическим взвешиванием), скорость общей коррозии легко перевести на глубинный показатель коррозии (мм/год), что имеет больший технический смысл. Этот показатель будет использоваться в дальнейшем в качестве характеристики коррозионной стойкости тугоплавких металлов. [c.59]

    Коррозионная стойкость на воздухе и в электролитах большинства материалов с матрицами из алюминия и магния в общем ниже, чем у гомогенных сплавов. Особенно она понижается, когда воздействию коррозионной среды подвергаются торцы материала. При этом происходит усиленное растворение матрицы вследствие ускоряющего воздействия волокон и других упрочняющих фаз, являющихся катодами. Для защиты от коррозии следует применять те же методы которые используются для обычных алюминиевых и магниевых сплавов с исключением контакта с коррозионной средой торцов материала. Коррозионностойкими материалами могут считаться композиционные материалы с матрицами на основе титана, свинца, меди. Особые преимущества могут быть достигнуты по характеристикам усталости и по торможению развития коррозионных трещин. [c.79]

    Титан и его сплавы используют в возрастающем масштабе в промышленности благодаря преимуществу их специальных характеристик. Такие свойства, как относительно высокая прочность, превосходная общая коррозионная стойкость и плотность, промежуточная между алюминием и сталью, делают титан перспективным конструкционным материалом. Прогресс в производстве титана способствовал получению различных полуфабрикатов из титановых сплавов от проволоки и фольги до крупногабаритных заготовок. Возможно также производство деталей методами литья и порошковой металлургии. Большинство технологических операций на титане совершаются при высоких температурах. Вследствие большой реактивности сплавов титана и тенденции к загрязнению поверхности необходимо соблюдение мер предосторожности при его производстве. Однако реактивность, особенно способность титана растворять собственные окислы, может быть использована в производстве сложных деталей методами диффузионной сварки. [c.413]

    Вышеуказанные положения относятся к усредненной четко выраженной текстуре плит и листового материала и не дают полного описания характеристик микроструктуры. В работе [243] отмечено, что при горячей обработке в области высоких температур в сплаве Т — 6А1 — 4У образуются пластинчатые структуры, в которых группы пластин а-фазы общей ориентации концентрируются в локализованной зоне. Такие структуры без сомнения относятся к структурам с колониями а-фазы, о которых упоминалось выше. Как было показано, такие структуры не оказывают ярко выраженного влияния на КР. Однако осторожность должна быть проявлена в случае изгиба деталей большого сечения с пластинчатой структурой. Возможно, что подобная ситуация может возникать в случае алюминиевых сплавов, в которых высотное направление наиболее опасное. Можно ожидать, что для титановых сплавов важным фактором является боковая протяженность пластин структуры а-фазы, хотя это не было исследовано подробно. Существование таких полос в структуре обусловливает, вероятно, области полосчатости, наблюдаемые на многих поверхностях разрушения (см. рис. 109, а). Если это справедливо, то небольшая боковая протяженность полосчатости указывает, что полосы имеют подобный небольшой боковой размер, поэтому такие структуры могут быть более точно определены как двояковыпуклые, а не пластинчатые. [c.423]


    Основной характеристикой термогальванического элемента является отношение плотности термогальванического тока к разности температур между холодным и горячим электродом — так называемая общая термогальваническая эффективность На-Исследования ряда металлов и сплавов, проведенные в растворах в интервале pH 0—14 с различным анионным составом, показали, что величина Н может изменяться в пределах от 210 доЗ- 10 а-см " град- . Отметим, что термогальванические пары возникают не только на металлах в коррозионно-активной среде, но и в условиях равновесия между металлом и его ионами в растворе. [c.165]

    Проектируя морское сооружение из низколегированной стали, конструктор, при заданной прочности мог бы взять меньшую толщину стенок, чем при использовании углеродистой стали. Однако при более высокой скорости коррозии это может привести к ускоренному разрушению конструкции. Таким образом, при проектировании, в принципе, следовало бы предусматривать больший допуск на коррозию низколегированных сталей, чем для углеродистой стали. В то же время при использовании подходящего защитного покрытия более высокие прочностные характеристики низколегированных сталей позволяют добиться общего выигрыша. Катодную защиту в случае низколегированных сталей следует применять с большой осторожностью, поскольку эти сплавы нередко более склонны к водородному охрупчиванию, чем углеродистая сталь. [c.57]

    Для совокупности характеристик тонкой структуры наиболее общее правило, применимое к сплавам систем А1—Мд А1—Си А1— [c.235]

    Сплавы по степени возрастания размеров зерен составляющих их фаз располагаются в ряд (по степени охлаждения) резкое — на воздухе — медленное. Размеры зерен фазы СиАЬ изменяются в сплавах с разным соотношением меди и алюминия в пределах от 20 до 100 мкм. Другим характерным признаком является некоторое увеличение площади эвтектики при уменьшении скорости охлаждения. Измерения микротвердости фаз и относительной общей твердости сплавов показали, что при увеличении скорости охлаждения сплавов обе эти характеристики возрастают. [c.55]

    В табл. 27 приведены также составы и дана общая характеристика других типов никелевых сплавов с высоким содержанием хрома и молибдена. Первые результаты испытания нового сплава МР35М показывают, что по стойкости в морских условиях он не уступает Хастел-лою С. Следует отметить, что новый сплав не склонен к коррозионному растрескиванию под напряжением. Не испытывают коррозии в морских атмосферах и сплавы Иллиум Я и Элгилой. [c.79]

    Глава XI. Электрометаллургия алюминия—415—446. 89. Свойства и применение алюминия. Развитие производства—415. 90. Сырье и общая характеристика методоз его переработки. Свойства алюминатных растворов — 417, 91. Производство глииочема — 420. 92. О производстве угольных электродов — 425. 93. Физико-химичсские свойства электролита. Теория электролиза криолито-глиноземных расплавов — 427. 94, Устройство и характеристика работы электролизеров — 432, 95. Рафинирование алюминия — 440. 96, Электротермия алюминия и его сплавов — 444, [c.540]

    Ранее ГI, 2 было изучено коррозионное поведение сплавов титана в концентрированных растворах квг и ывг, а также влияние изменения параметров среды и условий на некоторые характеристики сплавов. Исследовали устойчивость сплавов титана к общей коррозии [ I] и закономерности питтинговой коррозии Г 2]. [c.33]

    Преобразователи для контроля анизотропии механических и электрофизических свойств металлов. Одной из важнейших характеристик современных металлов и сплавов, во многом определяющей их механические и физические свойства, является степень совершенства кристаллографической текстуры, под которой понимается преимущественная пространственная ориентация зерен в полюфисталле. Текстура, обусловливая анизотропию свойств, обеспечивает избирательно в различных направлениях повышение пластичности, прочности, модуля упругости, магнитных свойств, стойкости металлических покрытий против коррозии и т. д. Создание в материалах совершенной кристаллографической текстуры является в ряде случаев одним из путей повышения их эксплуатационных характеристик. Для этого исследователям и специалистам-пракгикам необходимы методы и средства для получения сведений о типе и степени совершенства кристаллографической текстуры. Другой не менее важный аспект необходимости измерения анизотропии физических свойств металлов, обусловивший рождение на свет разнообразных конструкций датчржов, вызван необходимостью определения механических остаточных напряжений в деталях машин и механизмов, элементах строительных конструкций и т. д., выполненных из различных марок конструкционных сталей. Для этих целей используется явление магнитоупругого эффекта, под которым в общем случае принято понимать изменение магнитных свойств материала под воздействием механических напряжений. Измерив изменение величины или характера анизотропии магнитных свойств, можно, используя градуировочные кривые зависимости магнитных свойств исследуемого материала от величины механических напряжений, судить об их наличии в металле, а иногда и оценить их величину [50]. [c.134]

    КЛАССИФИКАЦИЯ И ОБЩ.АЯ Х.АРАКТЕРИСТИК.А МЕТОЛОЕ ИССЛЕДОВАНИЯ КОРРОЗИОННОЙ СТОЙКОСТИ Коррозионная стойкость не является абсолютной характеристикой только металла или другого конструкционного материала, а в равной степени зависит от коррозионной среды. Один и тот же материал, обладая высокой коррозионной и химической стойкостью в одних средах, может оказаться совершенно нэпригодным в других. Большое разнообразие видов коррозии, как по механизму, так и по условиям протекания и характеру коррозионного разрушения, требует использования различных методов исследования коррозионной стойкости металлов и сплавов. Главным здесь является по возможности более полная имитация условий их эксплуатации. [c.5]

    Качественная характеристика, механотехнологические свойства и общая оценка коррозионной стойкости в агрессивных средах цветных металлов и сплавов, применяемых в технологическом аппаратостроении [c.150]

    Следует отметить, что на основании недавних исследований [31 ] при растворении твердых растворов и даже гетерогенных сплавов не всегда можно представить анодное растворение сплава рядом парциальных кривых, соответствующих растворению отдельных структурных составляю1дих. В общем случае при рассмотрении парциальных кривых нужно учитывать взаимное влияние компонентов. Так, например, прн растворении сплавов Ре—Сг в кислых растворах [32] было установлено, что по характеру зависимости парциальных скоростей растворения железа и хрома от потенциала и pH в активной области сплавы можно разделить на две группы. Для сплавов с низким содержанием хрома каждая структурная составлятщая характеризуется парциальными поляризационными кривыми, совпадающими по кинетическим параметрам о чистым железом. При концентрациях хрома в сплаве больших 13% кинетические характеристики железа и хрома еоответетвуют характеристикам чистого хрома  [c.40]

    Для сплавов, склонных к питтинговой коррозии, важной характеристикой коррозии является коэффициент питтингообразования — отношение средней глубины всех питтингов к условной глубине, вычисленной по потере массы при допущении, что коррозия носит равномерный характер. Если коэффициент питтингообразования равен 50 или 100, это означает, что глубина проникновения коррозии в отдельных точках в 50—100 раз больше по сравнению со средними разрушениями, вычисленными по потере массы металла. Коэффициент питтингообразования зависит как от общей коррозионной стойкости сплава, так и от склонности к точечной коррозии. [c.22]

    Во-вторых, предшествующая деформация основного материала может повлиять на определение характеристик КР. Поскольку большинство полуфабрикатов из титановых сплавов поставляются в отожженном или закаленно-состаренном состояниях, вероятно, наиболее общие виды холодного наклепа могут приводить к напряжениям, возникающим в процессе изготовления конструкции. Влияние холодного наклепа на характеристики КР не было ши роко изучено. В работе [100] показано, что величины Ки и Кшх> для титана Т1-70 А зависят от предварительного наклепа. Согласно данным табл. 2 величина Кгкр вначале снижается с ростом степени наклепа, а затем возрастает. В а-сплавах Т1—5 А1—2,5 5п и Т1—5 5п—5 2г холодный наклеп, по-видимому, незначительно увеличивает 1кр [100]. Фактически данные по влиянию холодного наклепа на характеристики КР других титановых сплавов отсутствуют. Единственный результат, полученный на сплаве И—7 А1— 2,5 Мо, показывает, что холодный наклеп увеличивает /С р [ЮО]. [c.320]

    При сравнении эксплуатационных характеристик при использовании сплавов на основе железа, алюминия и титана очевидна недостаточность таких данных для титановых сплавов. Это объясняется, во-первых, тем, что использование титановых сплавов началось сравнительно недавно, во-вторых, нсЕШТорые данные, полученные на военных конструкциях, составляют секретную информацию. Следует отметить различия в поведении алюминия и титановых сплавов в водных растворах, которые, вероятно, являются общими и для других сред. Алюминиевые силавы проявляют КР при очень низких величинах К- При этом часто трудно определить величину Л хкр [230]. Для титановых сплавов сравнительно легко определить пороговую величину Кгкр и установить, развивается процесс КР или нет. Кроме того, скорости роста трещин в титановых сплавах обычно более высокие (10 см/с). Таким образом, в противоположность алюминиевым сплавам коррозионное растрескивание титановых сплавов легче предотвратить, чем уменьшить скорости роста трещин. В алюминиевых сплавах последнее достигается перестариванием [230]. Доступные эксплуатационные данные для титановых сплавов указывают на отсутствие проблем КР для большинства случаев применений немногие, скорее впечатляющие, исключения были даны в тексте. Можно надеяться, что этот обзор, суммирующий известные особенности КР, создаст основу для распознания и устранения потенциальных проблем КР в будущем. [c.414]

    Важной характеристикой коррозионностойких сталей и сплавов, в том числе и нержавеющих, является величина предела текучести при повышенных температурах, поскольку в таких условиях эксплуатируются многие аппараты и технологическое оборудование, выполненные из аустенитных хромоникелевьгх сталей. Знание этого параметра необходимо как потребителям стального оборудования, так и металлургам, так как на металлургических и трубопрокатных" заводах для интенсификации технологических процессов применяют подогрев сталей (например, при теплой прокатке листовой стали, теплой прокатке и волочении труб, проволоки и т. п.). Следует иметь в виду, что при повышении содержания С в аустенитных хромоникелевых сталях наряду с возрастанием прочности происходит снижение их коррозионной стойкости, пластичности и ударной вязкости после отпуска при 600-800 " С. Стабильность этих характеристик наблюдается только при содержании около 0,02 % С в отпущенной при 500-800 °С после закалки стали. Отрицательное- влияние повышенного содержания С обьлно частично устраняется присадкой стабилизирующих элементов (Ti, КЪ). Аустенитные хромоникелевые стали с очень низким содержанием С по сравнению со стабилизированными обладают большей стойкостью к МКК и к общей коррозии, имеют лучшие технологические свойства. [c.29]

    Характеристики общей коррозии алюминиевых сплавов в горячей воде, касающиеся структуры, морфологии, механизма образования и кинетики роста оксидных пленок подробно изучены в системе технический алюминий — дистиллированная вода в интервале 37—125 °С [6.18]. Для температур 250 и 300 °С аналогичные данные получены в работе [6.19]. Высокая коррозионная стойкость металла в горячей воде, при кипячении и в перегретом паре до 150 °С обусловлена многослойной оксидной пленкой. В интервале 20—90 °С (при давлении 70 МПа — до 120 °С) она трехслойная непосредственно на поверхности металла — аморфный оксид или гидроксид толщиной в несколько нанометров далее — слой псевдобемита и поверх него слой байе-рита рис. 6.029, а). Толщины псевдобемита и байерита измеряются микронами. Состав байерита — А120з-ЗН20 псевдобемита — AlgOs-1,ЗНаО, однако содержание воды и плотность могут колебаться [6.18]. В интервале 100—374 °С наружный слой оксидной [c.241]

    Если данный образец сплава однофазен и равновесен по составу, в раздельном определении удельной поверхности необходимости нет при этом остается неясным только соотношение состава поверхности образца и объемной фазы, этот вопрос рассматривается в одном из последующих разделов. Однако, если на поверхности находится несколько фаз, при исследовании и массивных, и дисперсных образцов приходится решать, каков вклад каждой фазы в общую удельную поверхность металла. Эту проблему можно решить, используя хемосорбционные данные, только если удастся найти такой адсорбат, который специфичен для разных фаз. Хемосорбционные свойства однокомпонентных фаз, находящихся на поверхности, можно оценить по соответствующим свойствам однокомпонентных образцов. Например, на образце, который, как можно предполагать, содержит на поверхности только никель и медь, долю поверхности никеля мoлiнo измерить по быстрой хемосорбции водорода при комнатной или более низкой температуре [112], поскольку медь в этих условиях не поглощает водорода Однако хемосорбционные свойства двухкомпонентной фазы мо гут значительно зависеть от ее состава, как, например, досто верно установлено для систем N1—Си [114, 115] и Pt—Си [116] Чаще всего только хемосорбция оказывается недостаточно спе цифичной и не позволяет дать полную характеристику биметаллического катализатора, В принципе специфичность [c.329]


Смотреть страницы где упоминается термин Общая характеристика сплавов: [c.106]    [c.316]    [c.106]    [c.138]    [c.324]    [c.476]    [c.591]    [c.96]    [c.55]    [c.95]    [c.156]    [c.243]    [c.236]    [c.71]    [c.492]    [c.618]    [c.41]    [c.733]   
Смотреть главы в:

Сплавы для нагревателей -> Общая характеристика сплавов




ПОИСК





Смотрите так же термины и статьи:

Металлы. Сплавы Общая характеристика металлов

Никелевые сплавы коррозия, общая характеристика



© 2025 chem21.info Реклама на сайте