Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт активатор

    Металлические катализаторы часто готовят в восстановительной атмосфере—в присутствии водорода, который служит, таким образом, активатором. Другие катализаторы следует обрабатывать кислородом, сероводородом, окисью углерода или хлорированными углеводородами. Так, активность катализатора, состоящего из молибдата кобальта, восстанавливают сжиганием отложившегося на поверхности угля и затем нагреванием в атмосфере водорода. Некоторые платиновые катализаторы для риформинга бензино-лигроиновых фракций подвергают последовательно окислению и восстановлению и обрабатывают хлорсодержащими соединениями. Нагревание и последующее за ним быстрое охлаждение могут вызвать образование трещин и деформаций, что способствует повышению активности. Иногда можно восстановить активность катализа гора, потерявшего ее из-за отложений на поверхности, истиранием во вращающемся барабане. [c.317]


    Очень интересны кобальтовые катализаторы. Если использовать соли двухвалентного кобальта, то наблюдается индукционный период, который, вероятно, связан с окислением кислородом двухвалентного кобальта в трехвалентный. Применяя трехвалентный кобальт в уксусной кислоте, можно окислить алкилароматические углеводороды, не вводя кислород. Вероятно, в действительности двухвалентный кобальт ингибирует эту реакцию /23/. В качестве активаторов используют Вг /41/, ацетальдегид /31/ или метилэтилкетон /15/. Предполагается, что они способны регенерироваться источниками свободных радикалов, инициирующих цепь. [c.290]

    Катализаторы для синтеза. Было установлено, что для синтеза углеводородов из водяного газа пригодны в качестве катализаторов лишь элементы подгруппы железа—никель, кобальт и железо—в диспергированной форме с добавками активаторов, нанесенные на пористые носители. [c.682]

    Из таблицы видно, что металлические никель и кобальт без добавок мало активны-. Добавки активаторов, стабилизаторов и осаждение на носители позволяют получать активные катализаторы для синтеза углеводородов. На этой базе разработаны современные очень активные катализаторы, содержащие в основе никель или [c.682]

    Некоторые исследователи указывают, что железо Может применяться вместе с кобальтом в смешанных катализаторах как в количестве нескольких процентов, где оно действует в качестве активатора, так и заменять кобальт в больших количествах (например до 35%). [c.332]

    Атомы никеля (кобальта) выполняют роль промоторов (активаторов водорода), способствуют увеличению числа анионных вакансий, появлению качественно новых типов вакансий и т. д. [c.809]

    Активаторы ферментов — это вещества, увеличивающие скорость ферментативной реакции. Чаще всего в качестве активаторов выступают ионы металлов, такие, как железо, медь, кобальт, магний и др. Следует различать металлы, находящиеся в составе металлоферментов, так называемые кофакторы, и выступающие в качестве активаторов ферментов. Кофакторы могут прочно связываться с белковой частью фермента, что же касается активаторов, то они легко отделяются от апофермента. Кофакторы являются обязательными участниками каталитического акта в их отсутствие фермент неактивен. Активаторы усиливают каталитическое действие, но их отсутствие не препятствует протеканию ферментативной реакции. Как правило, металл-кофактор взаимодействует с отрицательно заряженными группировками субстрата. Металл с перемен- [c.78]


    Активацией называют процесс, в результате выполнения которого обрабатываемая поверхность диэлектрика приобретает каталитические свойства, обеспечивающие инициирование реакции химического восстановления металла. Активация может быть осуществлена физическими и химическими способами (рис. 13). Практическое значение имеют последние. Суть их состоит в том, что на поверхность диэлектрика наносят активатор, из которого образуются каталитически активные частицы. В качестве активатора может быть использован раствор одного из благородных металлов (палладия, серебра, золота, платины и др.). Возможно использование растворов меди, железа, никеля, кобальта, но практического применения они не получили. [c.42]

    В промышленности получили применение катализаторы на основе окиси железа с добавлением активаторов — окись хрома, алюминия, калия, марганца и др. Катализаторы на основе кобальта, никеля, меди и некоторых других металлов, хотя и более активны по сравнению с катализаторами на основе окиси железа, но они более чувствительные к отравлению соединениями серы. Кроме того, эти катализаторы по стоимости выше, чем катализаторы на основе окиси железа. [c.230]

    Парафиновые углеводороды Ароматические углеводороды Алюмо-хромовый, алюмо-кобальт-молибденовый 480—500° С, 0,3 Йодоформ действует как активатор [1160] [c.252]

    Парафиновые углеводороды Ароматические углеводороды Алюмо-кобальт-молибденовый в присутствии йодоформа или метилтрихлорсилана (активаторы), 480—500° С, 0,3 1720, 721] [c.822]

    Получение ненасыщенных углеводородов Металлические или окисные катализаторы, например никель, кобальт, медь или цинк (с активаторами, например карбонатом кальция) Пемза 125 [c.472]

    Металлические или окисные катализаторы, например, никель, кобальт, медь или цинк (с таким активатором, как углекислый кальций) [c.513]

    Стекловидная глина с активаторами никелем, медью, серебром, окисью меди, окисью хрома, окисью марганца, сернистым цинком, сернистым кобальтом Углекислый калий (безводный) [c.27]

    Синтез метана Никель, кобальт, железо с активаторами 172 [c.47]

    Дегидратация этилового спирта Стекловидная глина с активаторами никелем, медью, серебром, окисью меди, окисью меди и окисью серебра, окисью хрома, закисью марганца, сернистым цинком, сернистым кобальтом, а также селенидами и фосфидами 1046 [c.125]

    Восстановление угольной кислоты в метан температура выше 300° (ниже 300° происходит образование только окиси углерода) Чистое железо, медь, кобальт и никель служат активаторами 2179 [c.146]

    Сплав алюминия и никеля с медью, цирконием, церием или кобальтом как активаторами сплав дробят на куски, проходящие через сито в 2 меш, и обрабатывают водородом или раствором щелочи в виде углекислого натрия или едкого натра катализатор регенерируют обработкой едким натром этот катализатор можно применять и при гидрогенизации фенола, нафталина, нитробензола, фурфурола, пиридина, пинена и дипентена [c.278]

    Металлы или окиси металлов, например, никель, кобальт, медь или цинк, с добавками активаторов углекислый кальций на носителе, например пемзе [c.342]

    Тем не менее химическая и физическая природа хемилюминесценции еще очень мало изучена. В наименьшей мере изучена роль неорганических катализаторов или активаторов . Роль их в явлении весьма важна. Достаточно сказать, что хорошо очищенные растворы люминола и перекиси водорода в щелочной среде почти не дают свечения при смешивании введение следов меди (или кобальта) вызывает яркую вспышку света. Очевидно, этот эффект может представлять значительный интерес для разработки чувствительных методов анализа. Известно, что чувствительность аналитического метода существенно зависит от величины фона . В этом отношении хемилюминесцентные методы могут иметь преимущество по сравнению с фотометрическими или обычными люминесцентными методами в последних случаях (по условиям опыта) фон довольно велик. Чувствительность многих методов может быть повышена, если определяемый компонент многократно вступает в реакцию в этом, как известно, заключается преимущество каталитических методов. Хемилюминесцентные методы также принадлежат к группе каталитических. [c.84]

    Со(СНзСОО)2 4Н2О в жидкой фазе, в присутствии ацетальдегида, 1 бар, оптимальная температура 90° С. Максимальный выход 97,5% [801] Тетрагидрат ацетата кобальта, активатор — бутанол-2 в ледяной уксусной кислоте, Ро = = 17,6 бар, 130—140° С. Выход 77,6% от теоретического [802] [c.633]

    Реакция изучалась в жидкой фазе в присутствии катализатора— ацетата двухвалентного кобальта, активатора—метилэтилкетона и уксусной кислоты. С целью выбора лучших условий синтеза было изучено влияние различных факторов па реакцию жидкофазного каталитического окисления этилацетата. Результаты реакцни оценивали по степени превращения этилацетата и выходу уксусной кислоты. Из рис. 1,а видно, что при увеличеннп давления до 2,0 МПа степень превращения этилацетата значительно возрастает, дальнейшее увеличение давления до 5,0 МПа практически не влияет на степень превращения этилацетата. При изучении влияния концентрации катализатора (рис. 1,6) было показано, что в зависимости от концентрации, катализатор может как инициировать, так и ингибировать реакцию окисления этилацетата. [c.3]


    Черезвычайно широкое применение нашли нафтенаты тяжелых металлов в качестве катализаторов в процессах нефтехимии. Это-катализаторы окисления углеводородов (нафтенаты кобальта, марганца), катализаторы полимеризации диенов (кобальта), акрилонитрила (марганца), катализаторы реакций оксосинтеза (кобальта), активаторы вулканизации каучука (кобальта, цинка, меди), аминирования стеариновой кислоты (нафтенат марганца) и др. Обзор этой литературы выходит за рамки данной работы и мог бы служить предметом самостоятельных монографий. [c.13]

    Разработан двухстадийный метод хлорирование и пиролиз [199, 200]. В качестве катализаторов используются Fe lg при 425—525 °С [201], u lj—Ba lj на активированном угле, иногда в присутствии солей кобальта, никеля или церия в качестве активаторов (промоторов) [202] рекомендуется также фотохимическое инициирование [203]. Смолообразования во время пиролиза можно избежать использованием четыреххлористого углерода и перхлорэтилена в качестве разбавителей [202]. Чтобы добиться оптимального баланса хлора, обр азующийся при пиролизе хлор вводят в реакцию обмена со свежим углеводородом и пиролизуют образовавшуюся смесь хлорированных углеводородов при 425—525 °С [204]. [c.203]

    Ф. И. Боротицкая и Ю. С. Прессанализируя вопрос о целесообразности того или иного способа очистки цинковых растворов от кобальта, пришли к выводу, что очистка а-нитрозо-р-нафтолом целесообразнее очистки ксантогенатом. Цементация цинковой пылью в присутствии активаторов типа арсенат натрия целесообразна, если, кроме кобальта, из раствора необходимо выделить еще никель и другие примеси вроде мышьяка и сурьмы. Авторы экспериментально подтвердили целесообразность удаления избытка органических реагентов и некоторых продуктов реакции, образующихся при очистке как посредством адсорбции ионообменной смолой Вофатит Е, так и активированным углем. [c.430]

    Классические представители активаторов - оксиды кобальта и никеля. Добавление 1 % СоО к силикатной эмали в 7 раз увеличивает прочность соединения. Важно, чтобы активаторы были способны адсорбироваться на границе раздела фаз. Эффективным активатором адгезии является кислород, в присутствии которого на поверхности металлов образуются оксидные плёнки, ул ч-щающие смачивание и адгезию. [c.50]

    Активаторами для ОНЭ являются кобальт, литий, барий, марганец, ртуть. Ионы Li+ (из LiOH, присутствующего в составе электролитов, см. табл. 1.4), адсорбируясь на зернах гидроксида никеля (И), препятствуют их укрупнению, т. е. сохраняют массу в высокодисперсном состоянии. Аналогично действует и барий в качестве активирующей добавки. Избыточное количество Li+ ухудщает работоспособность электрода вследствие внедрения этого иона в решетку активной массы с образованием электрохимически инертного соединения LiNiOj. [c.102]

    Нагреванием с дибензоилперекисью можно отверждать конденсационные смолы, например полиэфиры, причем образование поперечных связей между молекулами полимера происходит, по-видимому, за счет отрыва реакционноспособных атомов водорода в полиэфирной цепи. Полиэфиры на основе гликольмалеи-натов, используемые в стеклопластиках, часто отверждают путем обработки перекисями кетонов или гидроперекисью кумола при 80—85°С или комнатной температуре в присутствии активаторов (например, нафтенатов кобальта илн марганца или аминов). Имеются данные о критической температуре разложе- [c.452]

    Активность катализаторов, применяемых в реакциях гидрирования нитросоединений, зависит от их химического состава и физического состояния. Чаще всего применяются металлические катализаторы, особенно металлы VIII группы периодической системы — платина, палладий, родий, никель, кобальт, а также сплавы никеля и хрома, никеля и меди и другие. Доказано, что активность катализатора увеличивает находящиеся в них примеси некоторых веществ — загрязнения или же специальные добавки — так называемые активаторы. Большое значение имеет также степень измельчения катализатора. Максимальное раздробление достигается осаждением каталитически активного вещества на так называемый носитель. [c.120]

    Особенно широко используются водорастворимые соли железа, кобальта, никеля и других металлов переменной валентности, окисленная форма которых легче восстанавливается по сравнению с инициатором, а восстановленная легче окисляется, чем активатор [89]. Соли вводят в количествах 0,001—0,01% по -отношению к воде. pH среды регулируют введением буферов. Полимеризацию ТФХЭ с системой персульфат — бисульфит — соль металла переменной валентности проводят при массовом соотношении воды к мономеру 1 -4- 5 1, давлении, поддерживающем мономер в жидкой фазе, температуре 5—40 °С, с интенсивным перемешиванием реакционной среды. Выход полимера достигает 95% и выше. Скорость полимеризации 2—6 /о/ч. Получаемые полимеры в зависимости от температуры и количеств инициирующих компонентов имеют показатель М5Т в пределах от 210 до 350 С. [c.57]

    Основные кинетические закономерности этих реакций в присутствии Ni и Со-катализаторов такие же, как и при гидроформилировании. Так, например, синтез насыщенных монокарбоновых кислот и гидрокарбоксилирование олефинов проводят в присутствии соединений и комплексов металлов УП группы при 120—280 С и 10—30 МПа. Наиболее активными катализаторами являются карбонилы кобальта и никеля, а в качестве активаторов можно использовать Mg, Al, Мп, u. При повышенном давлении СО гидрокарбоксилирование олефинов протекает в присутствии катализаторов. Наиболее легко вступают в реакцию а-олефины нормального строения, образуя смесь нормальных и а-метилзамещенных карбоновых кислот, причем в присутствии кобальтовых катализаторов получаются главным образом кислоты нормального строения, а в присутствии никелевых больше выход кислот изостроения. Добавка в реакционную систему 1г, HI, H3I, KI ускоряет реакцию и повышает выход кислот нормального строения. Скорость гидрокарбоксилирования возрастает также при добавке к СО небольших количеств водорода. Этилен в среде водяного пара в присутствии 0I2 или Со(СНзСОО)2 и 2H5I при 195 С и 7 МПа с селективностью 99% превращается в пропионовую кислоту. При проведении реакции в метаноле, содержащем 2% Н2О, гидро-карбоксилируются и гомологи этилена. Выход карбоновых кислот из олефинов Сз—Сю при 170—190 °С и давлении СО, равном 14—22 МПа, достигает 94%- [c.339]

    Значительный интерес представляет сополимеризация ФМ с ненасыщенными полиэфирными олигомерами для получения композиционных материалов с пониженной горючестью [33]. В этом случае композиции отверждают с применением органических пероксидов, распад которых активируют введением различных ускорителей. Универсальной инициирующей системой, обеспечивающей получение прочных изделий без внутренних напряжений, в том числе, при температуре окружающей среды, является гидропероксид изопропилбензола - пафтенат кобальта. В качестве активаторов используют различные соли кобальта, марганца, хелаты металлов. С применением для инициирования наряду с гидропероксидом изопропилбензола и нафтенатом кобальта марганцевоорганического катализатора, образующего донорно-акцепторный комплекс с фосфорсодержащим акрилатом, удается в мягких условиях повысить глубину отверждения и получить полимерные материалы с улучшенными свойствами [32]. Установлено, что ряд исследованных катализаторов синтеза ФМ оказывает ускоряющее влияние на процесс сополимеризации фосфорсодержащих диметакрилатов с ненасыщенными полиэфирными олигомерами. Выявлена взаимосвязь между количеством катализатора и ингибитора в полимеризуемой системе и временем желатинизации композиций. [c.98]

    При автокатализе проявление антиоксигенного действия В связано с соединением этого вещества и активного продукта ЛО с образованием неактивной комбинации. Спектроскопическое исследование [73] позволило установить наличие ассоциации. Получены три адсорбционные полосы 1) от нейтрального. абиетата кобальта — фиолетово-розовая, соответствующая волнам с длиной от 460 до blOlfiii] 2) от окисленного абиетата кобальта и абиетиновой кислоты — коричнево-зелена я полоса и 3) от комплексного соединения абиетата кобальта и окисленной абиетиновой кислоты —зеленая полоса с длиной волны менее 550 ц л. Антикислородное действие гидрохинона вызвало исчезновение дополнительной цветной полосы и появление первоначального спектра адсорбции полагали, что механизм действия гидрохинона состоит в разрушении комплексного соединения, дающего зеленую окраску, в результате ассоциации с ним и выделения абиетата кобальта и окисленной абиетиновой кислоты. Таким образом, действие отрицательных катализаторов и ингибиторов рассматрива-лось как образование неактивных комплексов, между тем как активные комплексы (активаторы, стабилизирующие нормальный автокатализ ЛО) ведут себя как положительные катализаторы. Установлены определенные соотношения для количеств окиси, присутствующей в реакционной смеси в роли катализатора ЛО, и количеств антиокислителя, необходимых для прекращения процесса окисления. Окисление могло проходить полностью в начале реакции оно замедлялось гидрохиноном, если его брали в количестве 0,1 100, а соединения кобальта в количестве 1 100, но когда процесс окисления достигал максимальной скорости, то для его замедления гидрохинона нужно было брать в количестве 1,4—1,6 100. Влияние количества катализатора на скорость окисления также исследовано и, повидимому, для высших концентраций закиси кобальта, которые должны быть не ниже 0,01 100, скорость окисления была наибольшей и соответствовала положительному катализу. Для концентрации закиси кобальта 0,001 100 скорость окисления была наименьшей и соответствовала отрицательному катализу. Промежуточная концентрация закиси кобальта, соответствующая и положительному и отрицательному катализу, была равна 0,005 100. Абиетиновая кислота Л окисляется в две после- [c.346]

    Определение ферри- и ферроцианидов. В отличие от меди и кобальта простые СОЛИ железа не являются катализаторами хемилюминесцентных реакций в системе люминол — перекись водорода. Катализаторами являются лишь некоторые комплексные соединения железа. При этом, очевидно, имеет значение строение комплексов, а не их прочность. Так, катализаторами (активаторами) реакции Н2О2 + Ь являются как весьма прочные комплексы (гемин или КзРе(СН)е), так и некоторые непрочные комплексы например с триэтилентетрамином). Комплекс железа с триэтилентетрами-ном разрушается в щелочной среде с выделением гидроокиси железа тем не менее во время разрушения он является одним из весьма энергичных активаторов хемилюминесценции. [c.93]

    Двуокись тория является также активатором контактов на основе металлов группы железа, кобальта и никеля. Окислы магния, алюминия и кремния служат главным образом носителем добавки карбоната калия играют важную роль в про-мотировании железных контактов. Окись хрома применяется как носитель,а окислы марганца — как активаторы никелевых контактов. Окись цинка является одним из компонентов катализатора изосинтеза. Медь, способствующая понижению температуры восстановления железного катализатора, улучшает его свойства. Этот перечень можно было бы продолжить, но перечисленные вещества являются распространенными компонентами катализаторов синтеза углеводородов. Катализаторы на основе кобальта и никеля применяются в виде нанесанных контактов используемые в промышленности плавленые железные катализаторы не содержат носителя рутениевые контакты используются без носителя и без промоторов. [c.143]


Смотреть страницы где упоминается термин Кобальт активатор: [c.628]    [c.294]    [c.628]    [c.523]    [c.302]    [c.97]    [c.35]    [c.523]    [c.45]    [c.349]    [c.240]    [c.66]    [c.162]    [c.285]   
Неорганические люминофоры (1975) -- [ c.37 , c.92 ]




ПОИСК





Смотрите так же термины и статьи:

Активаторы



© 2025 chem21.info Реклама на сайте