Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кофакторы также Металлы

    В формировании активного центра принимают участие также молекулы воды, входящие в гидратационные слои, а в ряде случаев ионы металлов, связанные с белком, и органические- кофакторы. Определенную жесткость такой конструкции придают а-спирали, р-структуры и дисульфидные мостики. [c.19]

    Многие двухвалентные металлы (Mg , Мп , Са ), как будет показано далее, также выполняют роль кофакторов, хотя они не относятся ни к коферментам, ни к простетическим группам. Известны примеры, когда ионы металлов прочно связаны с белковой молекулой, выполняя функции [c.121]


    Ионы металлов, содержащие незаполненную -оболочку (а также /-оболочку), являются переходными—способными иметь различную валентность и образовывать комплексные, координационные соединения. Изучение таких соединений является главной областью современной неорганической химии. Соответственно важный раздел бионеорганической химии занимается ферментами, содержащими атомы переходных металлов в качестве кофакторов или в составе простетических групп (гемсодержащие белки). [c.216]

    Рассмотрение ЭКВ только начато в этой книге. Дальнейшее развитие таких представлений, теоретическое и экспериментальное исследование ЭКВ — одна из наиболее актуальных задач молекулярной биофизики. Здесь особенно перспективным представляется изучение ферментов, содержащих в качестве кофакторов атомы переходных металлов. О металлоферментах коротко рассказано в 6.8. Электронные оболочки переходных металлов являются мягкими в том смысле, что для их перестройки требуются сравнительно малые энергии — речь идет о -электронах. Соответственно координационные связи, образуемые атомом переходного металла, зависят от окружающей среды. Известно явление так называемо й дисторсионной изомерии— существования комплексов переходных металлов в изомерных формах, разнящихся длинами связей и углами между связями. Конформационная перестройка белковой структуры, образующей координационную систему переходного металла, может сильно воздействовать на строение такой системы. Тем самым, в этих случаях непосредственно реализуются электронно-конформационные взаимодействия. Их Изучение требует развития соответствующих разделов квантовой химии. Научная идеология этой области та же, что в современной неорганической химии, и поэтому законно считать исследования металлоферментов, а также любых комплексов биополимеров с металлами, относящимися к бионеорганической химии. [c.609]

    Аффинными лигандами для выделения ферментов могут быть конкурентные ингибиторы, субстраты и их аналоги, продукты, кофакторы и аллостерические эффекторы, а также антитела или соединения, которые содержат ионы металлов или SH-группы, (см. табл. 11.1). [c.108]

    Следует отметить, что при длительном диализе может произойти инактивация ферментов как из-за нестабильности фермента, так и за счет удаления какого-либо кофактора. Не исключено также, что в процессе диализа, а особенно электродиализа, в молекулы ферментов могут попасть из воды ионы металлов, являющихся ингибиторами некоторых ферментов. [c.70]


    Наряду с органическими кофакторами большое значение в каталитической активности многих ферментов имеют различные ионы металлов Ка" ,, РЬ , , Са , С(1 +, Сг +, Си +, Ре +, Со +, и Ар-", а также КН [415]. [c.264]

    Функция необходимых бактериям ионов металлов заключается в том, что они служат активаторами или кофакторами многих ферментов [145]. Кроме того, неорганические ионы (в основном Na+ и К" ) участвуют в транспорте веществ через клеточные мембраны [155] и в регуляции синтеза белка [131]. Они являются также компонентами белковых комплексов, играющих важную роль в метаболизме бактерий, например, железо входит [c.201]

    Трудности в получении производных вызваны невозможностью надежного предсказания свойств белковых молекул. Поэтому приходится применять метод проб и ошибок. В случае металлсодержащих белков (металлопротеинов) (т. е. для весьма ограниченных случаев) атомы металлов могут быть замещены на другие атомы, что делает возможным получение целого ряда производных. Кроме того, к специфическому присоединению тяжелых атомов может привести химическая модификация белка, а также добавление кофакторов или ингибиторов. Одпако, как правило, места присоединения тяжелых атомов удается выяснить только после расшифровки структуры связывание этих тяжелых атомов определяется особенностями трехмерной организации боковых цепей аминокислот в кристалле. Поскольку пространственная организация экспонированных боковых цепей может зависеть от pH и ионной силы, то именно эти параметры и являются переменными прн поиске условий получения производных. Особое внимание следует уделять оптимизации условий получения производных так, чтобы они приводили к воспроизводимым продуктам, а число металлических атомов, присоединившихся к каждой молекуле, было невелико. Возможно также, что выдерживание кристаллов в течение разного времени и/или в растворах с разной концентрацией одной и той же соли тяжелого металла будет иметь своим результатом два продукта с различным содержанием тяжелого атома (в одном производном этот атом присоединен по одному положению, а другом — по двум). [c.540]

    Макеты можно эффгктивно использовать для представления стереохимических данных. Помимо общей информации, т. е. обозначений атомов и их координат, при описании полной структуры белка обычно приводят целый ряд важных дополнительных сведений, касающихся водородных связей и других видов невалентных взаимодействий между атомными группами скелета и боковыми цепями, а также данных о любом взаимодействии полипептидной цепи (включая ковалентное) с простетическими группами, кофакторами, субстратами, металлами и другими лигандами, молекулами воды и т. д. Обычно эти сведения объединены в дпинный перечень, из которого по мере необходимости извлекается нужная информация. Значительно лучшей формой записи в некоторых случаях могут, однако. [c.170]

    В состав многих ферментов, помимо полипептидных цепей из десятков, сотен и тысяч молекул аминокислот, составляющих специфическую белковую (протеиновую) его часть, входит одна или несколько молекул относительно низкомолекулярного органического соединения небелковой природы (основания, кислоты, спирта, кетона и т. д. алифатического, алициклического или гетероциклического ряда) — так называемая простетическая группа, или кофермент. В таком случае протеиновая часть фермента назь1вается апоферментом. В состав некоторых ферментов также входят неорганические кофакторы — ионы металлов Ре, Со, Си, Мп и др. [c.12]

    Различают две группы кофакторов ионы металлов (а также некоторые неорганические анионы) и коферменты, представляющие собой органические вещества. Примерно треть из всех известных в настоящее время ферментов активируется ионами металлов. Прочность связи ионов металлов с белковой частью фермента колеблется в широких пределах. Некоторые металлокомплексы ферментов в процессе их выделения из биологических материалов вследствие достаточной лабильности теряют ион металла. Эти особенности приходится учитывать при исследовании фи-зико-химических и биохимических характеристик таких ферментов, восстанавливая их активность путем добавления в среду соответствующих ионов. Такие белки образуют группу ферментов, активируемых ионами металлов. Другие металлоферментные комплексы отличаются большей стабильностью, т. е. сохраняют ион металла при выделении и очистке ме-таллоферменты). В роли кофакторов ферментов могут выступать различные по природе ионы металлов. [c.95]

    Многие белки используют в качестве кофактора не металлы, а небольшие молекулы органических соединений. Большинство этих молекул связывается, по-видимому, с лизи-новым остатком. Некоторые из них изображены на рис. 2.8. Все органические кофакторы сообщают белку химические свойства, которыми не обладают составляющие его обычные аминокислоты. Например, длинная гибкая цепь в биотине и в липоевой кислоте позволяет этим коферментам перемещать связывающийся с ними субстрат с одного места связывания в ферменте на другое. Детальное расположение этих органических молекул в белках неизвестно неясно также, что происходит с локальной структурой в их присутствии. Тем не менее пиродоксали и ретиналь служат очень полезными спектроскопическими зондами, позволяющими получить информацию об их окружении в белках. [c.65]


    Многие ферменты для проявления каталитической активности нуждаются в присутствии некоторых веществ непептидной природы — кофакторов. Различают две группы кофакторов ионы металлов (а также некоторые неорганические анионы) и коферменты, которые представляют собой органические вещества. [c.68]

    Одна группа монооксигеназ, для которых точно известно, что ион металла не нужен, требует присутствия в качестве кофактора флавина. Отсутствие потребности в ионах металла означает также, что некоторые стадии реакции с кислородом могут протекать по свободнорадикальному механизму. Однако, поскольку радикалы субстрата очень неустойчивы, то кажется более вероятным, что кислород реагирует с восстановленной формой флавина с образованием промежуточного соединения, которое затем реагирует с субстратом по ионному механизму. В этом случае спины свободных электронов кислорода сохраняются. Цикл оксигенации для флавинмонооксигеназ приведен на рис. 7.6. [c.418]

    Остальные Ре8-белки имеют более сложно организованные Ре8-цент-ры, в состав которых входит также неорганическая кислотолабильная сера. Известны Рс282-центры (содержат по два атома железа и неорганической серы), Рез8з- и Рс484-центры (рис. 58, Б, В). Ре8-белки могут содержать один или более центров в молекуле. У больщинства Ре8-со-держащих ферментов помимо Ре8-центров в молекуле имеются и иные кофакторы металлы (молибден, селен), хромофорные группы (флавин, гемы, птеридины), витамины (табл. 16). [c.234]

    Нуклеопротеиды образуются, как правило, в результате нековалентных взаимодействий белков и нуклеиновых кислот. В связывании принимают участие электростатические и гидрофобные взаимодействия, водородные связи, а также уже упоминавшиеся с тзкинг -взаимодействия стабилизирующую роль в комплексах часто играют ионы металлов и другие кофакторы. [c.398]

    В гл. IV мы показали на двух примерах (см. стр. 148), что с помощью сефадекса G-25 можно определить число центров связывания в молекуле фермента, или сродство ферментов к различным реагентам, а также изучить влияние кофакторов на фермент (см. стр. 142). Аналогичным образом, измеряя способность к связыванию восстановленного ДПН, удалось найти эквивалентный вес семи дегидрогеназ (30 000— 40000) [20]. Иногда образуются стабильные комплексы фермента с реагентом, как, например, при действии свободной от цинка карбоксипептидазы на пептидный субстрат [21]. Этот комплекс, который с помощью гель-хроматографии можно отделить от избытка субстрата, уже не активируется ионами цинка. Очистка гель-фильтрацией на сефадексе G-50 является стандартным приемом при определении металла в карбоксипепти-дазе [22]. Лизоцим образует нерастворимый комплекс с продуктом, получающимся при действии этого фермента на- определенный гликопептид. Растворение этого комплекса (в растворе Na l) и последующий анализ с помощью гель-хроматографии на сефадексе (j-75, а затем на G-25 дает информацию о кинетике ферментативной реакции [23]. При добавлении цито-хромоксидазы к избытку цитохрома с и последующем разделении на сефадексе G-200 в некоторых случаях получают высокомолекулярную фракцию, содержащую эквимолярные количества обоих ферментов эта фракция есть по сути не что иное, как часть дыхательной цепи [24]. В некоторые ферменты цикла лимонной кислоты, для которых кофактором служит биотин, удалось ввести метку (С Ог) в результате реакции с соответствующими субстратами с последующей очисткой на сефадексе G-50 это дало возможность после деградации под действием проназы [c.214]

    Ферментами, или энзимами, называются катализаторы, обеспечивающие протекание всевозможных биохимических реакций в живых организмах. Все без исключения ферменты относятся к классу белков. В одних случаях ферментативная активность присуща простым белкам — протеинам, состоящим только из полипептидных цепей. Другие простые белки — апоферменты — проявляют каталитическую активность лишь в присутствии определенных органических промоторов, называемых коферментами. Встречаются среди ферментов также сложные белки, протеиды, состоящие из полипептидной части, соединенной с так называемой простетической группой, относящейся к другим классам соединений. Существуют ферменты, активные только в присутствии определенных ионов, обычно ионов металла, называемь1Х ионным кофактором. [c.427]

    В качестве аффинных лигандов можно использовать любые соединения, прочно, специфично и обратимо связывающиеся с выделяемым веществом. Химическое строение аффинных лигандов может быть самым различным. Поскольку в настоящее время метод аффинной хроматографии применяется главным образом для выделения ферментов и их ингибиторов [89J, мы рассмотрим примеры, взятые из этой области. Как уже упоминалось, при выделении фермента аффинными лигандам1И могут служить его ингибитор, аналогичный субстрату, а также эффектор, кофактор и в отдельных случаях даже субстрат. Это справедливо и для фермента, требующего длл реакции два субстрата, но способного достаточно сильно связываться только с одним из них. Субстрат также можно использовать для адсорбции фермента в таких условиях, когда фермент связывается, но сам не способен катализировать реакцию (например, в отсутствие ионов металлов, необходимых для реакции), а также когда константа Михаэлиса зависит от pH или температуры. Аффинный адсорбент для выделения белков обычно трудно получить из аффинного лиганда, если константа диссоциации его комплекса с белком превышает (0,5—1,0)-Ю [16]. Однако Стире и сотр. [84] показали, что очень эффективный адсорбент для р-галактозидазы можно получить даже из такого относительно слабого ингибитора, как н-аминофенил-р-о-тиогалактопирано-зид (/i , 5-10 ). Этого удается достигнуть, повышая концентрацию нерастворимого аффинного лиганда и увеличивая расстояние между аффинным лигандом и матрицей носителя, что приводит к максимальной доступности аффинного лиганда, для белка в растворе.  [c.9]

    Помимо аминокислот, составляющих основу белковой структуры, многие ферменты для проявления своей. активности нуждаются в присутствии небольших количеств других химических компонентов. Эти компоненты— ионы металов или органические молекулы (иногда также содержащие ионы металлов) — получили наименование кофакторов . По своей химической природе кофакторы весьма разнообразны и соответствено выполняют самые разнообразные функции в ферментативном [c.30]

    Таким образом, в образовании истинных фермент-субстратных комплексов могут участвовать силы молекулярного взаимодействия практически всех типов, характерных для белков, за исключением, быть может, ковалентного связывания. Следует также отметить, что при связывании некоторых кофакторов резко увеличивается способность фермента к связыванию субстрата например, при координировании или хелатированни иона металла может создаваться мощный катионный центр. [c.60]

    Возможность образования связей с различными лигандами, входящими в состав белков, обусловливает и способность катионов металлов повышать прочность высших структур белков фиксация определенной конформации, которая благоприятна для катализа, оказывается таким образом косвенным средством влияния на катализ. Ион металла может также входить в состав самого активного центра (металлопорфириновые комплексы в каталазе, пероксидазе и др.) ионы металлов часто активируют субстрат не вполне выясненным образом или облегчают возникновение связей между кофактором и белковой частью фермента. Несомненно, в некоторых случаях ион металла действует как мостик , облегчающий окислительно-восстановительный процесс, т. е. перенос электронов (на это указал еще Сцент-Дьерди). Деформация молекул кофактора под влиянием иона металла, например деформация молекулы АТФ под действием иона магния (Сцент-Дьерди), необходима для целого ряда реакций. [c.181]

    Моунтера [445, 450, 451 ] указывается, что при гидролизе ДФФ кофактором фермента, гидролизующим это вещество, являются ионы Мп. Показано также, что скорость образования комплекса протекает во времени и является, по-существу, стадией, определяющей скорость реакции. Аналогичные результаты были получены в работах Аугустинсона [4491. Несмотря на то что строение активных центров ферментов, гидролизующих фосфорсодержащие ингибиторы холинэстераз пока еще окончательно н изучено, тем не менее можно полагать, что механизм действия этих ферментов во многом подобен металл-хелатному катализу, который уже рассматривался ранее (см. стр. 568). [c.592]

    Множество проблем, описанных выше для алкогольдегидрогеназы, не являются особенностью этого фермента. Аналогичные трудности могут встретиться для любого металлофермента, если не применять со всей строгостью критерии Вейлли [4], предложенные для идентификации таких ферментов, а именно 1) прочное связывание иона металла белком 2) ловышение -соотношения металл — белок и специфической активности фермента в ходе его очистки 3) постоянное число грамм-атомов металла на моль очищенного фермента и 4) постоянное соотношение между содержанием металла и содержанием кофактора (или его связыванием). Хотя эти критерии вполне применимы для идентификации простых металлоферментов, например алкогольдегидрогеназы из дрожжей, в которой связанный металл и активные центры присутствуют в эквимолярных количествах, они могут привести к ошибкам в более сложных случаях, примером чего может служить история исследований алкогольдегидрогеназы из печени. В последнем случае получению ошибочных результатов также способствовала неопределенность в молекулярной массе и молярном коэффициенте поглощения фермента [91], и надо заметить, что неточность в определении этих параметров также приводит к ошибочному определению соотношения металл — белок. [c.459]

    Ustilago sphaerogena, возможно являющаяся медьсодержащим металлоферментом [325] (однако см. Уилсон и др. [326]). Мало что известно о роли ионов металла в реакциях, катализируемых этими ферментами. Однако многие другие гидролиазы не являются металлоферментами, например дегидратазы аминокислот, которым в качестве кофактора необходим пиридоксальфосфат [327], а также такие ферменты, как фумараза и кротоназа, которые не нуждаются в кофакторе [328, 329]. [c.487]

    Другой областью применения гель-хроматографии в биохимии является отделение белков от низкомолекулярных мешающих анализу примесей, например аминокислот, сахаров, стероидов или реагентов, используемых для химической модификации белка. Методом гель-хроматографии чаще всего удаляют реагенты, предназначенные для введения в белок радиоактивной и флуоресцентной меток. Гель-хроматография позволяет также быстрее и эффективнее, чем диализ, осуществить обессолива-ние или смену буфера, требуемые в определенных схемах фракционирования, а также удаление кофакторов и ингибиторов, используемых при изучении кинетики ферментативных реакций. Кроме того, с помощью этого метода можно изучать связывание белков с низкомолекулярными соединениями, например лекарственными веществами, ионами металлов и красителями [10]. Коэффициент распределения Ка некоего стандартного белка с из- [c.106]

    Из приведенных выше примеров наиболее хорошо изучена, по-видимому, глюкозо-оксидазная редокс-электродная система [3, 10-12]. Глюкозооксидаза катализирует реакцию между р-В-глюкозой и О2 с образованием глюконолактона и пероксида водорода. Как отмечено во введении, в биокаталитических ферментных редокс-элект-родных системах оксидоредуктазный фермент иммобилизован на поверхности электрода, а определяемое вещество находится в растворе. Другие редокс-системы могут включать 1) иммобилизацию кофактора фермента, например порфирина или флавина, на поверхности электрода в расчете на то, что содержащиеся в пробе апоферменты смогут катализировать окисление или восстановление иммобилизованных редокс-цент-ров 2) иммобилизацию фермента и медиатора на поверхности электрода. Работая с глюкозооксидазой, мы иммобилизовали фермент на электроде из благородного металла или углерода. Предполагается, что потенциал этих электродов зависит от концентрации глюкозы, кислорода и пероксида водорода в растворе, а также наличия функциональных групп на поверхности платины или углерода. Ниже приведена методика и результаты работы с глюкозооксидазным редокс-электродом. [c.134]


Смотреть страницы где упоминается термин Кофакторы также Металлы: [c.243]    [c.248]    [c.43]    [c.652]    [c.709]    [c.121]    [c.223]    [c.243]    [c.248]    [c.199]    [c.225]    [c.248]    [c.190]    [c.104]    [c.219]    [c.275]   
Биофизическая химия Т.1 (1984) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте