Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Использование неорганического азота

    Использование неорганического азота [c.446]

    В аналитической химии элемента используют амфотер-ность гидроксида, способность иона А1 + к комплексообра-зованию с галогенид-ионами, оксикислотами и образованию внутрикомплексных соединений. Для определения содержания алюминия применяют титриметрию, гравиметрию (с использованием неорганических и органических реагентов), фотометрию, люминесцентные методы с использованием органических реагентов. Атомно-абсорбционное определение алюминия до недавнего времени было затруднительным вследствие образования в пламени термостойких оксидов. С появлением более совершенных приборов, позволяющих использовать высокотемпературное пламя оксида азота (1) — ацетилена, эти затруднения исчезли. Разработаны методы определения содержания [c.51]


    Наиболее распространенным методом объемного определения меди с использованием неорганических реактивов является йодометрический метод. По точности этот метод очень близок к электролитическому и обладает достаточной специфичностью /5/. Йодометрическому определению меди серьезные помехи оказывают только окислы азота, соединения мышьяка (Ш) и сурьмы (Ш). Прочие катионы и анионы обычно не мешают совсем, в противном случав мешающее действие устраняется введением комплексообразователей (фторид натрия, комплексон Ш и др.) [c.20]

    Применение изотопной техники и хроматографии позволило установить последовательность в образовании растениями отдельных аминокислот за счет использования неорганических источников азота — аммонийных солей или нитратов. В первую очередь синтезируются аланин и дикарбоновые аминокислоты — глутаминовая и аспарагиновая кислоты — путем непосредственного аминирования соответствующих а-кетокислот. Образование [c.328]

    Хороший рост и развитие плесневых грибов (возможны при использовании неорганических солей, содержащих азот как в восстановленной, так и в окисленной формах. Обычно усвоение неорганического азота проходит через стадию превращения го окисленной формы в восстановленную. Исключение данной стадии метаболизма азота путем замены нитратов на аммонийные соли часто сказывается весьма благоприятно на жизнедеятельности (микроорганизмов. [c.186]

    Стрелка обозначает донорно-акцепторную связь о ее наличии говорит тот факт, что данное вещество не образует аддукта с ВРз, следовательно, атом азота не несет неподеленной электронной пары, (Р С1а.)л — прозрачное эластичное вещество — неорганический каучук . Выдерживает нагревание выше 200 °С. К сожалению, фосфонитрилхлорид сравнительно легко гидролизуется, это затрудняет его практическое использование. Заменой атомов С на органические радикалы можно получить водоустойчивые полимеры на основе фосфонитрилхлорида. [c.422]

    Аммиак — ключевой продукт для получения многочисленных азотсодержащих веществ, применяемых в промышленности, сельском хозяйстве и быту. На основе аммиака в настоящее время производятся практически все соединения азота, используемые в качестве целевых продуктов и полупродуктов неорганической и органической технологии. На рис. 14.3 представлены основные направления использования аммиака в промышленности и сельском хозяйстве. [c.188]

    Иначе обстоит дело при использовании газа-носителя с меньшей теплопроводностью, например N2. В табл. 3 приведены коэффициенты теплопроводности X неорганических газов, а также некоторых органических паров. Как следует из табл. 3, коэффициент теплопроводности этана при температуре 100° больше коэффициента теплопроводности азота. Зависимость коэффициента теплопроводности от температуры (в ячейке для измерения теплопроводности самой важной характеристикой является температура нагреваемой нити) приведена в табл. 4. [c.297]


    При использовании пламенно-ионизационного детектора в газовый поток, выходящий из колонки, добавляют водород в качестве газа-носителя при этом используют азот или гелий, причем водород и газ-носитель смешивают в отношении 1 1. Полученную смесь направляют в горелку и сжигают в воздухе или кислороде. Ионы, образующиеся при сгорании органических веществ, уменьшают электрическое сопротивление пламени пропорционально количеству сгоревшего вещества. К горелке и электроду, который расположен над пламенем или сбоку от него, прикладывают разность потенциалов (100—300 В). Величина возникающего при этом тока зависит от сопротивления пламени, и она после усиления непрерывно регистрируется самописцем. Этот детектор имеет прекрасную чувствительность, его характеристика линейна в широком диапазоне концентраций (10 ), он обладает малой инерционностью, замечательно стабилен, чувствителен ко всем органическим соединениям, нечувствителен к неорганическим соединениям, на его работу не влияют небольшие изменения температуры и скорости газового потока. Наряду со всеми этими качествами он прост в обращении и благодаря этому стал одним из наиболее популярных, если не самым популярным, из ГХ-детекторов. Для точного количественного анализа с применением этого детектора для каждого соединения необходимо определить соответствующие коэффициенты отклика. [c.430]

    Прн получении под вакуумом в чистом внде можно также запаивать эти вещества в ампулы. Последние вносят затем в реакционный сосуд и разбивают магнитным бойком (см. выше). Гигроскопичные жидкости и растворы можно, кроме того, вслед за операциями нх очистки перенести в реакционный сосуд при помощи инъекционного шприца нли с использованием специальной техники работы, описанной выше (ч. I, разд. 13). Гигроскопичные твердые вещества в ряде случаев целесообразно вносить в тонкостенных разбиваемых ампулах. Отдельные части установки следует по возможности спаивать друг с другом, а число кранов в ней должно быть небольшим. Если это окажется невыполнимым, то уплотнение мест соединения должно выполняться с особой тщательностью. В местах соединения аппаратуры с вакуумной системой или с атмосферой помещают трубки с осушающими веществами нли, еще лучше, вымораживающие ловушки, охлаждаемые жидким азотом, ч-го предотвращает попадание в аппаратуру влаги из воздуха. Поскольку большинство неорганических соединений дейтерия способно так же, как и тяжелая вода, обменивать в присутствии обычной воды часть дейтерия на водород, указанные выше меры предосторожности необходимо учитывать при проведении всех описываемых ниже реакций. [c.158]

    Достоинством катарометра является его универсальность. Катарометр может быть использован для детектирования постоянных газов, различных неорганических соединений (в том числе и таких агрессивных, как двуокись азота, хлористый водород, фтористые газы и т. п., если применяется катарометр специальной конструкции) и паров органических соединений. При количественных расчетах необходимо учитывать, что сигнал детектора зависит от вида анализируемых соединений [21—26]. [c.23]

    Большинство данных по константам ионизации предельных гетероциклов относится к циклическим иминам ( H2)nNH и их Н-метильным производным [275]. Эти данные несколько проигрывают от того, что они были получены с использованием стеклянного электрода, который не дает надежных показаний для рЯа>11.. Авторы частично компенсировали этот недостаток, исключив все неорганические катионы. Тем не менее, найденное ими для пиперидина р/Са = 11,22, несомненно, менее надежно, чем р/Са= 11,123, полученное с использованием водородного электрода [56]. Если отвлечься от этого, то интересно отметить, что циклические имины (СН2)пНН и нециклические вторичные амины имеют весьма близкие значения рКа- Так, азетидин, пирролидин, пиперидин (см. табл. V, стр. 73) имеют рКа в интервале 11,1—11,3, а рКа диметил- и диэтиламина соответственно равны 10,8 и 10,9 (все значения при 25° С). Относительно низкую основность азиридина (рКа = = 8,04) пытались объяснить его частично ароматическим характером , так как делокализация неподеленных электронов азота может способствовать некоторой резонансной гибридизации [275]. Однако это можно объяснить и стерическими факторами. [c.29]

    Вторую группу реакций составляют различные методы окисления. Хотя третичные фосфины, особенно с алкильными заместителями, легко окисляются кислородом воздуха, эту реакцию из-за трудности ее контроля редко применяют для получения фосфиноксидов. В качестве окислителей широко используют другие реагенты, в том числе оксиды металлов, азота, а также органические и неорганические пероксиды. Использование описанных выще методов для синтеза оптически активных фосфиноксидов иллюстрируется схемой 119. [c.90]

    Как правило, аммиачная селитра и карбамид содержатся в выбрасываемом воздухе в виде твердых частиц размерами меньше 10 мкм. Удаление таких частиц абсорбционными методами весьма затруднено, степень очистки не превышает 60—80%. Сомнительно ожидать ощутимых результатов и от использования циклонов. В этом случае следует отдать предпочтение очистке отходящих газов от аммиачной селитры и карбамида, а также аммиака и окислов азота с помощью различных фильтрующих материалов, например волокнистых. Поскольку улавливаемые компоненты хорошо растворимы в воде и растворах различных неорганических и органических соединений, фильтрацию можно сочетать с промывкой и охлаждением газов. [c.175]


    В газовые колбочки емкостью 100—150 мл вносили по 2,5— 5 мл свежей гепаринизированной крови, плазмы или отмытых эритроцитов. К ним добавляли 2,5 мл бикарбонатного буфера (pH 7,6) и нейтрализированные кето-, окси- или аминокислоты, так чтобы конечная концентрация их в растворе составляла 0,25 М. В опытах по изучению синтеза аминокислот за счет использования неорганического азота добавляли хлористый аммоний (конечная концентрация 0,01 М). Общий объем пробы составлял 10 мл, время инкубации 8—24 часа. Инкубация производилась в водяном термостате при 37° в атмосфере кислорода. По окончании опыта пробы осаждались 8 —10-кратным объемом спирта при слабом подкислении уксусной кислотой. Коагулированные белки отфильтровывали, спиртовой фильтрат упаривали в вакууме до небольшого объема (примерно до 0,5 мл). Образовавшиеся аминокислоты идентифицировались методом бумажной хроматографии. [c.155]

    Фосфаты и неорганический азот выводятся из раствора при фотосинтезе водорослей. Однако доказано, что выращивание и сбор водорослей для удаления из сточных вод питательных веществ представляют собой сложную в экономическом отношении задачу. Трудности, возникающие в связи с поддержанием требуемых отношения углерода к азоту и фосфору, значения pH и темперятуры, интенсивность солнечного освещения, невозможность отвода больших земельных участков для обеспечения требуемой длительности пребывания и высокая стоимость механизмов для сбора водорослей — все это служит препятствием к практическому использованию фотосинтеза для удаления питательных веществ. [c.368]

    Схема восстановления сточной воды (рис. 14.3) включает процессы традиционной обработки и доочистки. После первичного отстаивания и вторичной очистки с использованием биофильтров сточная вода поступает в расположенные последовательно три стабилизационных пруда с общим временем пребывания около 18 сут. Рост водорослей в этих прудах снижает концентрации неорганического азота и фосфатов. В стабилизационных прудах уменьшается также содержание других загрязнений. Вода, выходящая из стабилизационных прудов, подвергается рекарбонизации, в результате чего pH снижается с 9,0 до 7,5, и в нее вводится сульфат алюминия в концентрации 150 мг/л для флотационного отделения водорослей. Плавающие на новерхности водоросли собираются скребками, а затем вода подвергается фракционированию путем нено-образования. Сжатый воздух, вводимый в нижнюю часть резервуара, перемешивает воду и приводит к образованию пены. Последняя собирается с поверхности и разбивается струями воды для облегчения ее удаления. Затем вода подвергается хлорированию до точки перегиба с целью окисления и выведения большой части оставшегося неорганического азота и получения необходимой концентрации свободного остаточного хлора. Небольшая доза извести (около 30 мг/л) добавляется вместе с хлором для улучшения осаждаемости взвешенных частиц. Осветленная вода фильтруется через скорые песчаные фильтры, а затем обрабатывается в колоннах с загрузкой из гранулированного активного угля. у дсорбция с помощью активного угля способствует извлечению остаточных растворенных веществ, что приводит к улучшению органолептических характеристик воды, таких, как вкус, цветность и запах. Периодически проводится обратная промывка колонн, а уголь по мере необходимости заменяется. Отработанный уголь складируется и хранится для последующей регенерации. [c.381]

    Многие группы почвенных и водных бактерий могут использовать в качестве доноров водорода или электронов неорганические соединения или ионы (ионы аммония, нитрита, сульфида, тиосульфата, сульфита и двухвалентного железа), а также элементарную серу, молекулярный водород и СО, т.е. способны получать в результате их окисления восстановительные эквиваленты и энергию для синтетических процессов. Получение энергии происходит, как правило, в результате дыхания с О2 как конечным акцептором водорода. Лишь немногие из относящихся к этой группе бактерий способны расти за счет анаэробного дыхания , используя в качестве акцепторов водорода нитрат, нитрит, закись азота и т.п. Такой образ жизни с использованием неорганического донора водорода называют хемолитотрофным. [c.348]

    Метод основан на титровании аммиака, образующегося при восстановлении нитрита (и нитрата) сплавом Деварда. Современный вариант метода [12] использован для определения NO3 и NO2 в почве и экстрактах растений и применим для проб, содержащих до 2 мг неорганического азота. В одной аликвотной части раствора оба аниона восстанавливают до аммония. Аммиак отгоняют с паром, поглощают раствором борной кислоты и титруют сильной кислотой. В другой аликвотной части раствора разрушают ннтрит сульфаминовой кислотой и определяют нитрат. [c.143]

    В течение всего опыта через аэротенк протекало 128 л свежей сточной воды, с содержанием органических веществ (в оценке по БПКб) 86000 мг Ог и, кроме того, примерно 30400 мг N(NHI) и 405 мг Р(Р04 ). Из этого количества питательных веществ образовалось около 8182 мг активного ила (по сухому веществу), т. е. приблизительно 9,6% величины БПКз неочищенной жидкости, и 11,2% снижения БПКб-Из неорганических питательных веществ, которые прошли через очистную станцию, было использовано 30% как азота, так.и фосфора, так что отнощение фактически использованных неорганических питательных веществ к органическим веществам, которые прошли через аэротенк, составляло [c.380]

    В литературе имеется мало сведений об использовании трифторида азота в качестве фторирующего агента в неорганической препаративной химии. Однако о нем следует сказать здесь, так как он исключительно реакционноспособен при окислительном фто- [c.334]

    Второй способ производства эпоксидных пенопластов состоит в использовании микроскопических полых сфер, получаемых из органических или неорганических материалов. Органические полые сферы обычно изготавливают из фенольных, мочевино-формальдегидных или полиэфирных смол. Эти смолы наполнены ннерт-иы.м газом, таким как азот (в случае фенольных сфер), а также фреон или пентан (в случае полиэфирных сфер). Неорганические материалы обычно основываются на основе силиката алю.миния или стекла. Типичные из таких промышленных материалов представлены в табл. 17-3. Применение органических сфер (или. микрошариков) ограничено рабочей температурой, т. е. нагревостойкостью органических смол, используемых в их производстве. Использование неорганических же не ограничено, по крайней мере в тех пределах, где используются эноксиды. Неорганические. материалы создают более жесткие системы с лучшими прочностными характеристиками, в то время как органические материалы дают меньшую плотность [Л. 7-14]. Технологические характеристики органических и неорганических материалов схожи, и поэтому будет удобно обсуждать их вместе. Для полиэфирных микрошариков, однако, требуется отдельная обработка, так как эти. материалы в отличие от остальных могут расширяться далее в течение реакции отвержд,ения. [c.261]

    Ассимиляция азота растениями. По использованию неорганических форм азота растения можно разделить на три группы предпочитают или используют почти ис1С1Ючительно аммоний утилизируют только нитраты используют и аммоний и нитраты. [c.425]

    Использование уравнений турбулентной диффузии для описания переноса рассматриваемых в модели субстанций достаточно обосновано только для растворенных в воде неорганического фосфора и неорганического азота, а также для растворенного в воде кислорода. Применение этих уравнений для фитопланктона, а тем более для зоопланктона, требует специальных оговорок. Поскольку фитопланктон считается гидродинамически неЙ1ральным, то вполне обоснованно допускать его перенос течениями. Включение же в уравнение для фитопланктона диффузионного члена может привести к завышенным значениям концентрации фитопланктона в гиполимнионе. Поэтому в уравнении для фитопланктона (6.2.1) коэффициенты V v , и задаются существенно меньшими, чем в уравнениях (6.2.5)—(6.2.7). Зоопланктон нельзя считать гидродинамически нейтральным, так как он имеет собственную динамику в воде — суточные вертикальные миграции. Поэтому применение уравнения (6.2.2) для него в достаточной мере условно. Тем не менее использование этого уравнения в работах В. В. Астраханцева и коллег (Астраханцев и др., 1992 Astrakhantsev et al., 1996) позволило достаточно адекватно воспроизвести как общую биомассу зоопланктона, так и характер его распределения по акватории. Здесь уместно отметить, что вычислительные алгоритмы, реализации модели, позволяют приравнивать коэффициенты v , v , и в (6.2.2) к нулю. [c.199]

    У.2.23) Среднеквадратичное отклонение экспериментальных данных от (1У.2.23) дпя 110 точек составляет 4,7%, что характериауеЧ- не столько неточность самой формулы, сколько погрешность использованных данных. Формула проверена для нормальных углеводородов и их изомеров, дпя алканов, циклических и ароматических углеводородов, для галовдопроизводных ряда метана, простых и сложных эфиров, неорганических веществ, таких кгж азот, углекислый газ, сжиженные инертные газы. [c.70]

    Экстракция аминами. Амииы, особенно с азотом в цикле, хорошо извлекают ионные ассоциаты рения (VII) с рядом неорганических катионов по механизму, аналогичному при экстракции кетонами [120, 178]. Первичные амины также извлекают ассоциаты рения (VII) и технеция (VII) из нейтральных и слабощелочных сред, однако со значительно более низкими значениями коэффициентов распределения. Вторичные и третичные амины из солевых и щелочных сред практически не экстрагируют Re(VII) [120]. Поэтому для аналитических целей наиболее целесообразно использование пиридина, хинолина, акридина и их производных. [c.194]

    Растворимость чистого кислорода в воде составляет 48 частей 02 на 1 млн. частей Н2О при 14°С При такой же температуре и насьицении воды воздухом (содержание О2 в воздухе 20,9%) растворимость кислорода составляет окр ло 10 частей на 1 млн. В естественных водоемах растворимость оказывается еще меньше. Например, в морской воде с соленостью 3,4% растворяется 80% О2 от растворенного в чистой воде, то есть 38,4 части на 1 млн. Экстраполируя эти данные в пересчетах на моли других веществ, можно прогнозировать потери растворенного кислорода в естественных водоемах, куда сбрасываются стоки от биопроизводств, содержащие органические и неорганические примеси. Все это отрицательно сказывается на водных экосистемах. К тому же из-за многокомпонентности стоков, трудностей определения каждого компонента прибегают к анализу плотных остатков, общего азота, органического углерода и биохимической потребности кислорода (ВПК). Опираясь на фактические данные, полученные в результате проведенных анализов, выдают рекомендации по обработке жидких стоков. ВПК означает количество потребляемого растворенного кислорода при инкубации стоков в течение 5 дней и температуре 20°С. Растворенный кислород определяют различными методами — химическим, биологическим или физико-химическим. ВПК можно выразить в мг О2 на 100 мл или на 1 л пробы, в частях на 1 млн в мл О2 на 1 л пробы при 0°С и 1,01 10 Па. Если, например, ВПК воды больше 10 частей на 1 млн., то она непригодна для использования человеком. ВПК для неочищенных стоков в производстве пенициллина 32000 частей на 1 млн. [c.360]

    Некоторые ингредиенты в растворенном виде стерилизуют фильтрованием (через фильтры с порами 0,22 мкм в диаметре) и в виде стерильных растворрв вносят в приготовленные среды перед их использованием. Питательные среды по своему составу достаточно разнообразны, однако в какой-то мере они и однообразны. В частности, их компоненты можно подразделить на 3 группы источники органического углерода (чаще — сахароза), неорганические соли (включая источники азота) и стимуляторы роста. К числу последних относятся некоторые витамины комплекса В и растительные гормоны — цитокинины и ауксины. Почти универсальной средой для клеток различных видов является среда MS Т. Мурасиге и Ф. Скуга (см. главу 4). Тем не менее, при работе с разными растительными объектами необходим специальный подбор ингредиентов сред для достижения поставленных целей. Питательные среды могут быть плотными за счет внесения 0,7—1% агар-агара и жидкими. Показано, например, что микро культуры аншасов предпочтительнее жидкие среды. [c.503]

    Окислы азота, как известно,— одни из первых промышленных катализаторов, использованных в процессе окисления сернистой кислоты в серную свое значение для этого процесса они сохранили до настоящего времени. Окислы азота широко применяются и для ускорения процессов неполного окисления парафинов в альдегиды и спирты. Окисление метана идет при 470—750° С (со степенью превращения до 4%), этана — при 480° С, пропана — при 319—333° С все эти процессы ведутся обычно при пониженном давлении [26, 27, 30—40]. Имеются данные об активности NO (и паров азотной кислоты) в реакциях окисления бензола в фенол при 600—750° С с 5—6% -ным превращением и выходом до 52% [38]. Окисление неорганических веществ (НВг, NO I, НгЗОа) окислы азота катализируют уже при температурах, близких к комнатной [43—45, 406]. [c.462]

    Водород позволяет отказаться от использования солнечной энергии в процессах синтеза биологических систем с участием диоксида углерода биосферы. Микроорганизмы типа lostridium a eti um способны бурно развиваться в неорганическом субстрате, используя водород как источник энергии и восстановитель. Эффективность использования энергии водорода, т, е. отношение энергии органических продуктов и энергии водорода, в этом случае довольно велика и составляет примерно 50 % [567] и, что не менее важно, велика скорость процесса превращения — биомасса удваивается в течение нескольких часов. Водородоокисляющие бактерии для синтеза всех компонентов живой клетки нуждаются в водороде, диоксиде углерода и кислороде, а также в источниках минерального питания солях азота, фосфора, магния и железа. Для производства 1 т сухих клеток водородных бактерий требуется 5 тыс. м водорода, около 2 тыс. кислорода и около [c.552]

    Микроанализ служит главным образом для количественных определений в техническом анализе. В органическом анализе он почти совершенно вйтеспил более старые мЙ1крометоды, особенно в рядовых анализах, где для определения микрЪметодами таких компонентов, как углерод, водород и азот, требуется почти вдвое меньше времейи, чем при использовании макрометодов. Использование и возможное применение микрометодов в анализе неорганических продуктов весьма многообразно, но в настоящее время в этой области микроанализ чаще служит в качестве специального, а не обычно применяемого способа. В этом случае, так же как и в органическом анализе, микрометоды удобны вследствие [c.185]

    Газометрический метод определения СО2, применяемый в газовом анализе редко может быть использован в анализе негазообразных неорганических веществ, так как получаемый объем двуокиси углерода очень мал по сравнению с объемом кислорода, воздуха или азота, примененным для ее улавливания. [c.857]


Смотреть страницы где упоминается термин Использование неорганического азота: [c.157]    [c.128]    [c.156]    [c.204]    [c.246]    [c.64]    [c.182]    [c.70]    [c.393]    [c.312]    [c.625]    [c.291]    [c.144]    [c.235]    [c.268]   
Смотреть главы в:

Теоретические основы биотехнологии -> Использование неорганического азота




ПОИСК







© 2025 chem21.info Реклама на сайте