Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота испарения— теплота адсорбции

    Теплота испарения—теплота адсорбции [c.161]

    При составлении энергетического (теплового) баланса надо учитывать возможность перехода в рассматриваемом процессе одного вида энергии в другой, а также иметь в виду возможное выделение или поглощение тепла в результате химических реакций и изменения агрегатного состояния (теплоты испарения, плавления, адсорбции, абсорбции и т. д.). [c.10]


    Газовая хроматография применялась не только для специальных аналитических целей, но и с успехом использовалась для определения физикохимических констант (коэффициентов распределения и активности, величин поверхности, теплот испарения и адсорбции, коэффициентов диффузии, энтальпии, энтропии и свободной энергии равновесных процессов растворения), а также для исследования равновесий и скоростей химических реакций, которые протекают непосредственно в хроматографических колонках. Физикохимическое приложение газовой хроматографии возникло непосредственно на основе теории газовой хроматографии, и развитие его еще пи в коем случае нельзя считать завершенным. [c.445]

    Локальное повышение температуры способствует увеличению коксообразования [12]. Использование свежего и более активного катализатора усугубляет это явление. Частично тепло может быть отведено за счет испарения более легкой части сырья. Асфальтены и наиболее высокомолекулярные смолы обладают высокой теплотой адсорбции и менее подвижны. В связи с этим съем тепла адсорбции затруднен и создаются условия большего увеличения коксообразования. [c.117]

    Образование комплекса — экзотермический процесс. По данным [3], теплота комплексообразования, отнесенная к числу атомов углерода в молекуле нормального парафина, составляет около 6,7 кДж (1,6 ккал), что вдвое больше теплоты плавления этих углеводородов и значительно меньше теплоты их адсорбции на твердой поверхности. Отсюда следует, что тепловой эффект комплексообразования есть результат экзотермического процесса адсорбции и эндотермического процесса перехода тетрагональной структуры карбамида в гексагональную в момент комплексообразования. Теплота образования комплекса складывается из теплот трех процессов преодоления сил межмолекулярного сцепления молекул парафинового углеводорода, численно равных теплоте испарения ориентации молекул карбамида в отношении молекул парафиновых углеводородов (экзотермический процесс) превращения кристаллической структуры карбамида из тетрагональной в гексагональную (эндотермический процесс). [c.201]

    Термодинамика включает следующие разделы общую или физическую термодинамику, изучающую наиболее общие законы превращения энергии техническую термодинамику, рассматривающую взаимопревращения теплоты и механической работы в тепловых машинах химическую термодинамику, предметом которой являются превращения различных видов энергии при химических реакциях, процессах растворения, испарения, кристаллизации, адсорбции. [c.47]


    Так как в результате адсорбции энергия Гиббса жидкости уменьшается, то изменяется и давление ее пара. Соответственно изменяется и температурная зависимость этой величины, т. е. теплота испарения (см. уравнение Клапейрона — Клаузиуса, гл. IV). Разница между теплотами. испарения чистой жидкости и той же жидкости, смачивающей твердое тело, и есть теплота смачивания. Таким образом, определяют изотермы адсорбции (см. гл. XV) и по зависимости логарифма давления пара от обратной абсолютной температуры вычисляют теплоту смачивания. Для определения теплоты смачивания дисперсных систем ее преимущественно относят к массе тела. [c.176]

    Второй причиной выделения тепла в углях является адсорбция ими паров и газов. Количество тепла, выделяемое в процессе адсорбции, при всех равных условиях зависит от природы поглощаемых паров и газов. При поглощении углекислого газа и паров воды тепла выделяется больше, чем при поглощении кислорода. Исходя из этого, были высказаны предположения, подтвержденные опытом, что главным источником выделения тепла в начальной стадии процесса самовозгорания углей является адсорбция паров воды. При поглощении из воздуха 0,01 г паров воды выделяется 5,4 кал тепла (теплота испарения). Выделение тепла за счет процесса адсорбции протекает вплоть до достижения 60— 75°, после чего дальнейшее выделение тепла идет за счет окисления органической массы углей. [c.114]

    Критическая температура (Т р), названная по предложению Д.И. Менделеева абсолютной температурой кипения - температура, при которой исчезает различие между жидко- и газообразным состоянием вещества. При температурах свыше Т р вещество переходит в сверхкритическое состояние без кипения и парообразования (фазовый переход 2-го рода), при котором теплота испарения, поверхностное натяжение и энергии межмолеку-лярного взаимодействия равны нулю. При сверхкритическом состоянии возникают характерные флуктуации плотности (расслоение по высоте сосуда), что приводит к рассеянию света, затуханию звука и другим аномальным явлениям, таким как сверхпроводимость и сверхтекучесть гелия. Вещество в сверхкритическом состоянии можно представить как совокупность изолированных друг от друга молекул (как молекулярный песок ). Для веществ, находящихся в сверхкритическом состоянии, не применимы закономерности абсорбции, адсорбции, экстракции и ректификации. Их в смесях с докритическими жидкостями можно разделить лишь гравитационным отстоем (см. 6.3.3). Критическое давление (Р р) - давление насыщенных паров химических веществ при критической температуре. Критический объем (У р) - удельный объем, занимаемый веществом при критических температуре и давлении. [c.96]

    Нехимические силы ответственны за существование конденсированного жидкого или твердого состояния, ими определяются свойства поверхностей раздела фаз (поверхностное натяжение), явление адсорбции и т. д. Грубой мерой этих слабых взаимодействий является теплота испарения жидкости, во много раз превосходящая теплоту плавления кристалла. [c.190]

    Теплоты адсорбции газов и паров. Рассмотренные в разд. 6 этой главы схемы I, Пб и I, Пв процесса адсорбции (см. рис. П1,13) предполагают постоянство объема системы. При этом условии тепловой эффект процесса равен изменению внутренне энергии этой системы АС/. Интегральное изменение внутренней энергии системы при адсорбции пара по схеме I, Пв выражается уравнением (П1,96) или приближенно уравнениями (П1,96а). При их выводе мы предполагали, что пар поступает в подсистему I с адсорбентом из подсистемы Пв без изменения давления пара над мениском жидкости в микробюретке. На испарение перешедшего в подсистему I количества га = га -f я га молей адсорбата была затрачена скрытая теплота испарения L [или VL в расчете на единицу площади поверхности адсорбента в подсистеме I, см. выражения (П1,96а) и (111,97)]. Однако в рассматриваемом случае, т. е. при переходе этих га молей адсорбата в подсистему I, не производится какой-либо работы внешними силами, так как при соединении подсистем I и Пе нар расширяется в подсистему I самопроизвольно. В одном из опытов, описанных Кальве [29], сосуд с адсорбентом, соответствующий нашей подсистеме /, и сосуд с жидким адсорбатом, соответствующий нашей подсистеме Пв, помещались в один и тот же калориметр, в котором измерялась так называемая чистая теплота адсорбции, т. е. разность между теплотой адсорбции пара и теплотой испарения жидкости в соответствующих условиях. Если положительной счи- [c.141]

    В большинстве случаев электрическое поле вблизи ионной решетки несильно и быстро убывает с увеличением расстояния от поверхности. Его величину трудно оценить, так как наружные ионы ионного кристалла, видимо, несколько смещены относительно узлов решетки, причем положительные ионы смещаются внутрь, в то время как отрицательные ионы стремятся разместиться снаружи. Следует ожидать, что i/( x) будет иметь заметную величину лишь в том случае, когда дипольные молекулы адсорбата способны близко подходить к поверхности [20]. Это положение имеет место, например, для воды, спиртов, аммиака и аминов, которые сильно адсорбируются неорганическими солями и окислами. Атом водорода каждого диполя стремится войти в контакт с отрицательным ионом поверхности (таким, как 1 или ОН ), чтобы образовать относительно сильную водородную связь. Де Бур оценил значение f/( a) в случае адсорбции диполей ОН на ионах h у поверхности КС1 в —5,5 ккал моль- , что намного больше половины величины скрытой теплоты испарения воды. Когда диполи не находятся на периферии молекул, как в кетонах, эфирах и др., электростатический вклад относительно мал и преобладают дисперсионные силы. Поэтому такие молекулы будут адсорбироваться плоско на поверхности и приобретут вертикальную ориентацию только тогда, когда адсорбированный слой переполнится. [c.26]


    По-видимому, они вполне подходят для нашей цели. Если принять с=1, то теплота адсорбции должна быть близка к скрытой теплоте испарения. Точка, соответствующая адсорбции х , должна находиться при относительном давлении (р/ро)т = 0,Ь. [c.124]

    Определенная калориметрически теплота адсорбции после незначительного спада в области небольших покрытий остается почти постоянной во всей исследованной области, принимая значение, близкое к значению скрытой теплоты испарения при температуре эксперимента (6,1 ккал моль- ). [c.127]

    Чаще используется понятие дифференциальной теплоты испарения <7диф. Если поверхность, покрытая N молекулами газа, адсорбирует дополнительно с1М молекул при постоянной температуре без какой-либо виешией работы и при этом й 0— Количество тепла, выделяющегося с 1 см , то дифференциальная теплота адсорбции определяется как и выражается в виде с1дцнт1йМ)т. [c.26]

    С увеличением количества адсорбированного газа теплота адсорбции снижается, а с приближением к максимальной величине адсорбции ао становится равной теплоте испарения АЯи соответвующего газа (см. штриховой участок кривой 5 на рис. 17 и рис, 18). Противоположный характер зависимости теплоты адсорбции водорода на угле БАУ от адсорбции (см, рис. 17, кривая 8) можно объяснить лишь экспериментальными-погрешностями при определении равновесных изотерм адсорбции в температурном интервале 20—80° К. Некоторую погрешность при измерении теплоты адсорбции может внести неполное охлаждение адсорбента. Замет- [c.89]

    Впервые массивный калориметр был предложен Нернстом [31] для определения средней теплоемкости металлов от низкой температуры до комнатной. Затем подобный калориметр был сконструирован и тщательно изучен Нарбутом [32]. В дальнейшем массивный калориметр был с успехо.у использован рядом авторов также для определения средней теплоемкости металлов (от высокой температуры до комнатной). В последнее время массивные калориметры все более широко вводятся в калориметрическую практику. Помимо средних теплоемкостей в них определяются и теплоты горения, теплоты адсорбции, теплоты разложения, теплоты испарения и т. д. [29, 33, 34, 35]. [c.200]

    Важной стороной экспериментальных исследований в области катализа в последние два десятилетия является измерение теплоты адсорбции, которое производится с целью помочь выяснению смысла результатов адсорбщюнных измерений. Количество теплоты, выделяющейся при адсорбции, обычно показывает, является ли связь с поверхностью физической или химической. В первом случае теплота адсорбции такая же, как теплота испарения адсорбированного вещества, или превышает ее в 2—3 раза, тогда как во втором случае (при хемосорбции) выделяемая энергия значительно больше, что указывает на избирательность действия адсорбента. Исследование изменения теплоты адсорбции по мере покрытия поверхности позволяет узнать характер неоднородности поверхности и взаимодействия между адсорбированными молекулами. Обзор этой области можно найти в книгах Адама [1] и Брунауэра [2]. Наши знания об энтропии адсорбции продвинулись в гораздо меньшей степени число проведенных определений и теоретических исследований еще сравнительно невелико. Главная задача подобных исследований заключается б том, чтобы установить, подвижно ли адсорбированное вещество на новерхности или нет. Работа Баррера [3] показывает, что вещества, адсорбированные на цеолитах, неопособны к поступательному движению, а Форстер [4], применив способ расчета Баррера, нашел, что то же самое справедливо для многих веществ, адсорбированных на окиси железа и на силикагелях. С другой стороны, Дамкелер и Эдзе [5] находят, что окись углерода, адсорбированная на окнсп меди, подвижна при 650° К. Эти заключения противоречат ожиданиям, так как можно было бы думать, что свобода молекул будет больше при физической адсорбции, как в опытах Баррера и Фостера, чем при хемосорбции. Хилл [6] при помощи статистических расчетов показал, что следует ожидать свободы поступательного движения в большинстве случаев вандерваальсовой адсорбции в более поздней работе [7] он нашел, каким образом константы в уравнении БЭТ для многослойной адсорбции зависят от способности двухатомной молекулы вра- [c.256]

    Теплоту адсорбции определяют по уравнению (XVII, 65), зная температурную зависимость равновесного давления р, так же как при определении теплоты испарения (конденсации) из температурной зависимости давления насыщенного пара (стр. 141 и 146). Для этого необходимо определить адсорбционные равновесня по крайней мере при двух температурах Т и Т") для одного и того же количества адсорбата Га  [c.484]

    Используя термодинамические соотношения теории объемного заполнения, развитые Берингом и Серпинским [12,15], были определены дифференциальные теплоты адсорбции н-парафинов. На рис.З представлены сравнительные данные по теплотаы адсорбции н-додекана цеолитом МдА, вычисленным в виде изостерических теплот адсорбции по известному уравнению [16] и дифференциальным теплотам адсорбции, рассчитанным по уравнению, полученному сочетанием уравнения пейрона-Клаузиуса для теплоты испарения и уравнения (1) [17]  [c.15]

    Значения теплот комплексообразования, опубликованные различными авторами, приведены в табл. 3. Наблюдаемая величина теплового эффекта образования комплекса (порядка 1,6 ккал на 1 атом углерода) значительно больше теплоты кристаллических превращений углеводородов, в 2 раза больше теплоты плавления, на /з больше теплоты испарения и в то же время значительно меньше теплоты адсорбции н-парафинов на угле. Это позволило Циммершиду и Диннерштейну [20, 52] считать, что теплота образования комплекса есть разность теплот двух процессов, имеющих место при комплексообразованпи, — изотермического процесса адсорбции и эндотермического процесса смешения молекул карбамида в момент образования продуктов присоединения. [c.31]

    Измерена адсорбция азота на низкодисперсном непористом порошке. Иайдено, что при 77 и 90 К степень заполнения поверхности 0, равная 0,5, достигается при p/ps соответственно 0,02 и 0,2. Пользуясь уравнением БЭТ, рассчитайте изостерическую теплоту адсорбции, а также дифференциальные изменения энтропии и энергии Гиббса адсорбции при 77 К. Теплота испарения жидкого азота нри 77 К составляет 5,66 кДж/моль. [c.72]

    Влияние свойств адсорбтива. Как уже было указано, Соссюр установил, что газ адсорбируется тем лучше, чем легче он сжижается, чем выше его критическая температура. Позднее было установлено, что адсорбция газа тем больше, чем выше температура кипения вещества. Установлена также связь между адсорбцией и теплотой испарения газа. Наконец, Аррениус нашел, что количество адсорбированного газа увеличивается с возрастанием константы а в известном уравнении Ван-дер-Ваальса. [c.111]

    Первый член правой части уравнения (XIII. 146) определяет диф-4)еренциальную теплоту адсорбции, а второй—теплоту испарения. Обозначая первую Qa, а вторую U, можем уравнение (XIII. 146) представить в виде [c.352]

    Физическая адсорбция, или адсорбция Ван-дёр-Ваальса, характеризуется сравнительно малым тепловым эффектом (около 5 ккал1моль), т. е. величиной того же порядка, что и теплота испарения, а также высокой скоростью установления равновесия. Это указывает на то, что энергия активации процесса очень мала (около I ккал1моль). Адсорбция такого рода обусловлена межмолекулярными силами Ван-дер-Ваальса, действующими между молекулами газа и поверхностью адсорбента. [c.49]

    Свойства физически адсорбированных слоев водьп. Атомно-молекулярная форма существования на поверхности твердого тела воды в адсорбированном состоянии до настоящего времени является предметом острых дискуссий [51, 52]. Остается неопределенной область температур фазовых переходов адсорбированной воды в различные модификации льда Полученные изотермы адсорбции воды на металлах (рис. 24) показывают, что в диапазоне температур от 253 до 293 К при полимолекулярной адсорбции (п>5) равновесие адсорбированной воды с ее паром в воздухе описывается уравнением (29), причем теплота испарения (конденсации) оказывается равной 49 кДж/моль. Отчетливо выраженных изломов на изостерах в области температур фазовых переходов не имеется, что отчасти свидетельствует об отсутствии замерзания воды в адсорбированной фазе при низких температурах. [c.50]

    Выше мы касались вопроса о физической или химической природе сил, определяющих адсорбцию (ср. теории Лангмюра и Поляни). Следует отметить, что это различие далеко не всегда может быть четко проведено. В крайних случаях физическая адсорбция, определяемая лишь Ван-дер-Ваальсовыми силами, характеризуется хорошей обратимостью, отсутствием стехиометрических соотношений, уменьшением адсорбции при повышении температуры, близостью тепловых эффектов адсорбции к теплотам сжижения или испарения такова адсорбция инертных газов или гексана на угле. В других крайних случаях химическая адсорбция осуществляется только путем химического взаимодействия, например, между кислородом и вольфрамом или кислородом и серебром при повышенных температурах здесь адсорбция почти необратима, тепловой эффект близок к энергии образования химических соединений (около 100 ккалЫоль и выше) и др. Обычно осуществляются промежуточные варианты, когда основная масса адсорбированного вещества связывается сравнительно слабо, а следы его связаны прочно и могут быть удалены лишь путем длительного прогревания и откачивания. Кислород на металлах или водород на никеле адсорбируется при низких температурах физически, ввиду малой скорости химической реакции при этих температурах, но при повышении температуры начинает протекать адсорбция с заметной энергией активации (активированная адсорбция) по типу химических реакций. В определенном интервале повышения температур прирост химической адсорбции (или хемосорбции) перекрывает падение физической адсорбции и на кривой температурной зависимости адсорбции возникает промежуточный максимум (рис. 41), характерный для наличия активированной адсорбции. [c.97]

    Это, например, справедливо для методов проверки теории, основанных на определении константы а в уравнении Ван-дер-Ваальса, теплоты сублимации и испарения, энергии адсорбции и смачивания. Точное сопоставление с теорией вл всех этих случаях затруднено тем, что на столь близких расстояниях ни одна теория молекулярных сил, строго говоря, неприменима и, кроме того, результат зависит от наложения сил разного характера (например, квад-рупольных), к тому же зависящих от часто неизвестной ориентации молекул и асимметрии их силовых полей. [c.61]

    ТО При с— получим Е1 = Ь, т. е. теплота адсорбции в первом слое действительно численно равна скрытой теплоте конденсации. При с = 2 величина Е1 немного превосходит L в широком интервале температур. Так, при Г=300°К 1 — = 0,41 ккалХ Хмоль -. Соответственно для положительных с, меньших единицы, Е1 меньше скрытой теплоты испарения. [c.61]


Смотреть страницы где упоминается термин Теплота испарения— теплота адсорбции: [c.220]    [c.484]    [c.233]    [c.233]    [c.11]    [c.121]    [c.113]    [c.124]    [c.138]    [c.73]    [c.135]    [c.49]    [c.102]    [c.112]   
Смотреть главы в:

Катализ в неорганической и органической химии -> Теплота испарения— теплота адсорбции




ПОИСК





Смотрите так же термины и статьи:

Адсорбции теплота

Адсорбция теплота теплота адсорбции

Теплота испарения



© 2024 chem21.info Реклама на сайте