Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химический и электрохимический механизмы коррозии

    ХИМИЧЕСКИЙ, ГОМОГЕННО-ЭЛЕКТРОХИМИЧЕСКИЙ И ГЕТЕРОГЕННО-ЭЛЕКТРОХИМИЧЕСКИЙ МЕХАНИЗМ КОРРОЗИИ [c.148]

    Химическую коррозию принято обычно отличать от коррозии, протекающей по электрохимическому механизму. Считают, что коррозия металлов в газовой фазе при повышенных температурах протекает по чисто химическому механизму. Однако и при химической коррозии на границе металл-газ также существует скачок потенциала, существенно влияющий на протекание коррозионного процесса. Химическую коррозию в общем виде представляют уравнением  [c.20]


    При изучении коррозионных свойств нефтепродуктов необходимо рассматривать две разные системы нефтепродукт + металл и нефтепродукт + вода + металл. В первом случае скорость коррозии металлов будет определяться наличием в нефтепродуктах коррозионно-агрессивных веществ и их способностью непосредственно взаимодействовать с металлами (химическая коррозия). Во втором случае корозия металлов в нефтепродуктах должна развиваться преимущественно по электрохимическому механизму. [c.282]

    Возможность подразделения процесса растворения металлов в электролитах на два сопряженных процесса — анодный и катодный — облегчает в большинстве случаев его протекание по сравнению с химическим взаимодействием. При электрохимическом взаимодействии окислитель играет лишь роль деполяризатора, отнимающего валентные электроны металла и обеспечивающего переход металла в ионное состояние, но не вступает с ним при этом в химическое соединение [вторичные процессы и продукты коррозии при электрохимическом механизме коррозии металлов могут иметь место (см. с. 212), но они не обязательны]. [c.181]

    Какое принципиальное отличие между химическим и электрохимическим механизмами коррозии  [c.156]

    Химическая коррозия протекает, как правило, в непроводящих электрический ток средах. Процесс окисления металла и восстановление окислителя среды протекает в одном акте. Характерным примером химической коррозии является коррозия в газах при высоких температурах. Электрохимический механизм коррозии наблюдается в проводящих электрический ток средах. Процессы окисления металла и восстановления окислительного компонента среды могут быть пространственно разделены. Скорость коррозии в этом случае зависит от электродного потенциала корродирующего металла. Для неметаллических материалов закономерности коррозионных разрушений и их химическое сопротивление воздействию окружающей среды также определяется природой и структурой материала, а также свойствами коррозионной среды. [c.13]

    Механизмы коррозионного процесса. По механизму коррозионного процесса различают три основных типа коррозии химическую, электрохимическую и биохимическую. [c.208]

    Химический и электрохимический механизмы коррозии [c.20]

    В основе рассмотренных выше объяснений аномальных явлений при растворении металлов лежит представление об электрохимической природе этого процесса. Естественно, возникает вопрос правомерно ли привлечение этих представлений для толкования всех наблюдающихся аномалий Здесь уместно вспомнить, что в свое время электрохимическая теория растворения металлов возникла в противовес представлениям о коррозии, как о простом химическом взаимодействии металлов с агрессивными средами. Впоследствии, благодаря успешному развитию электрохимии металлов, в науке постепенно сложилось убеждение, что электрохимический механизм коррозии металлов в растворах электролитов является не только наиболее вероятным, но и единственно возможным. [c.42]


    Протекание реакции, обратной диспропорционированию, типа (56) при контакте, например, меди с раствором ионов двухвалентной меди, является по существу коррозионным процессом, в котором деполяризующей реакцией восстановления окислителя служит реакция (47). Такая коррозия будет протекать до тех пор, пока в объеме раствора не установится равновесная концентрация одновалентных ионов. При бесконечно большом объеме раствора (например, проток) и небольшой поверхности медного электрода может произойти полное растворение электрода. Такая же картина будет наблюдаться и в конечном объеме раствора в том случае, если одновалентные ионы в объеме раствора вступают в химическое взаимодействие с каким-либо окислителем [50а]. Вообще говоря, окислитель может не восстанавливаться на поверхности металла,, например в присутствии ингибиторов. Однако, если он способен окислять НВЧ, то процесс коррозии будет протекать. Поскольку между поверхностью металла и объемом раствора всегда будет существовать градиент концентрации по НВЧ, последние будут также диффундировать в объем раствора. Восполнение их на поверхности металла будет происходить за счет реакции, обратной диспропорционированию по электрохимическому механизму [22], причем, как нетрудно убедиться, формально суммарная реакция будет такой же как и для обычного электрохимического механизма коррозии, т. е. коррозии за счет восстановления окислителя на самом металле. Интересно отметить, что потенциал при этом может оставаться равновесным и, следовательно, подчиняться уравнению Нернста. Действительно, как мы видели, при достаточно слабом перемешивании, несмотря на диффузию НВЧ в объем раствора, их поверхностная концентрация может оставаться [c.108]

    Первое, и основное отличие электрохимического механизма коррозии от чисто химического состоит в следующем единый процесс химического взаимодействия реагента с металлом при электрохимической коррозии разделяется на два в значительной мере самостоятельно протекающих процесса  [c.96]

    Все эти факты, необъяснимые с точки зрения чисто химического взаимодействия, получают свое полное истолкование при анализе их на основании электрохимического механизма коррозии [c.123]

    Грунт, содержащий растворенные в воде химические реагенты, обладает ионной электропроводностью. Это делает его коррозионноактивным электролитом по отношению к металлическим конструкциям. В большинстве случаев, за исключением сухих грунтов, подземная коррозия металлов протекает по электрохимическому механизму. [c.45]

    Все вышеизложенное позволяет с достаточным основанием рассматривать процесс влажной атмосферной коррозии, протекающей при влажности ниже 100%, как процесс, происходящий под пленкой влаги — электролита. В частности, наблюдаемое резкое повышение скорости коррозии при некоторых характерных, критических значениях относительной влажности (табл. 47), очевидно, в первую очередь надо объяснять появлением пленки влаги на корродирующей поверхности в результате конденсации воды и, следовательно, переходом от чисто химического механизма протекания коррозии ко второму, гораздо более интенсивно развивающемуся электрохимическому механизму коррозии. [c.332]

    В частности, большой интерес представляет изучение возникновения и развития первичных коррозионно-механических трещин на поверхности напряженного металла с привлечением одновременно и микроэлектрохимических исследований. Должно быть уточнено влияние физико-химических процессов сорбции и образования окисных пленок на процессы механического разрушения и износа металлического материала. Большой интерес представляет также исследование, посвященное установлению связи между широко развиваемыми сейчас представлениями о дислокациях в металлических решетках и электрохимическим механизмом коррозии напряженного металла. [c.583]

    Как показали исследования в НИФХИ им. Л. Я- Карпова и на кафедре коррозии металлов МИСиС, коррозия ряда металлов в кислых и нейтральных электролитах протекает иногда по смешанному химико-электрохимическому или по чисто химическому механизму. Одним из важных признаков химического механизма коррозии металла является независимость скорости процесса от потенциала. [c.279]

    Коррозия металлов под защитными пленками, как и без них, протекает в соответствии с электрохимическим механизмом. Электрохимические реакции при наличии покрытий могут протекать в местах сквозных пор, отслоившегося покрытия или при ионной проницаемости защитного слоя. Несмотря на общность механизма коррозии на неизолированном и изолированном металле, в последнем случав скорость электрохимических процессов становится функцией физико-химических свойств покрытий. [c.22]

    В результате взаимодействия металла с кислородом, как и при химической коррозии, образуется оксид металла. Однако коррозия протекает через анодные и катодные процессы с движением электронов и ионов (электрический ток), т. е. аналогично процессам в гальваническом элементе, поэтому коррозия по такому механизму получила название электрохимической коррозии. Основное отличие электрохимической коррозии от химической заключается в стадийном протекании процесса через анодные и катодные реакции, возможном при контакте металла с раствором электролита. Это ускоряет коррозию металла. Поэтому при контакте металла с окислителями и электролитом основной вклад в потерю металла вносит коррозия по электрохимическому механизму. Электролитами могут быть морская вода, почвенная вода, вода из атмосферы, содержащая СО2, О2 и другие примеси, и т. п. Окислителями при коррозии кроме кислорода атмосферы могут быть ионы Н в водных растворах электролитов, а также ионы Ре +, N02, N03 и др. [c.212]


    При рассмотрении кинетики коррозионных процессов в растворах электролитов до сих пор принималось, что процесс в основном протекает по электрохимическому механизу, так как скорость коррозии по химическому механизму (т. е. прямому взаимодействию окислителя с металлом) мала. Однако советским ученым Я. М. Колотыркиным с сотр. было установлено, что некоторые металлы (железо и хром) в растворах некоторых кислот (например, НС1) могут корродировать по химическому механизму с более высокими скоростями, чем по электрохимическому механизму. [c.234]

    По механизму коррозию делят на химическую и электрохимическую. [c.278]

    Электрохимическая коррозия — процесс, подчиняющийся законам электрохимической кинетики. В электролитах (кислоты, щелочи, морская вода, растворы солей и т. д.) разрушение металлов протекает по электрохимическому механизму он отличается от химического тем, что в этом случае имеет место перенос электрических зарядов (см. рис. 89, б) и всегда протекают две группы реакций катодная и анодная. [c.210]

    В процессе эксплуатации оборудование контактирует с разнообразными средами, обладающими коррозионно-агрессивными свойствами, однако в большинстве случаев инициатор коррозионных процессов — вода, и коррозия протекает по электрохимическому механизму. Агрессивность водной фазы зависит главным образом от ее химического состава и физического состояния. Основные факторы, определяющие физико-химическое состояние воды, - это состав и содержание растворенных солей, наличие кислорода и кислых газов (углекислого газа, сероводорода), их парциальное давление, температура, скорость движения и характер потока. [c.4]

    Основными средами, воздействующими на внутреннюю поверхность средств хранения, транспортирования и перекачки нефтепродуктов, являются нефтепродукты, смесь воздуха с парами нефтепродуктов, кислород, вода. В опубликованных работах [7, с. 26] высказывается предположение о том, что при контакте металлов с нефтепродуктами возможна как химическая, так и электрохимическая коррозия. Однако в этих работах подтверждения высказанных предположений и описание механизма коррозии не приводится. В результате исследований внутренних поверхностей средств хранения, транспортирования и перекачки нефтепродуктов была обнаружена в основном электрохимическая, а также химическая коррозия. [c.14]

    В основе механизма этого вида разрушения металла лежат два процесса электрохимический и химический. Начальная стадия коррозии развивается с преобладанием электрохимического процесса, обусловленного появлением анодных участков под шламом, образовавшимся на огневой поверхности. Функцию деполяризатора этой коррозионной пары выполняют оксиды трех-валентного железа и меди, расположенные на остальной поверхности труб, играющей роль катода. Скорость проникновения подобной коррозии в глубь металла находится в прямой зависимости от количества поступающих в трубы оксидов железа и меди. [c.30]

    В зависимости от механизма коррозионного процесса коррозия бывает химическая, электрохимическая и биохимическая. [c.10]

    При химическом типе коррозии окисление металла и восстановление окислителя протекают в одном акте. Скорость химической коррозии определяется основными закономерностями кинетики химических гетерогенных реакций. В ряде случаев установлена возможность протекания коррозии ио электрохимическому механизму с участием химических реакций. [c.11]

    Разделение общей реакции коррозии на анодные и катодные процессы является следствием с одной стороны возможности существования ионов металла в растворе и свободных электронов в металле, а с другой стороны результатом большой легкости протекания реакции захвата из металлической решетки раздельно иона металла гидратирующими, сольватирующими или комплексообразующими частицами раствора, а валентных электронов, остающихся в металле, окислителем-деполяризатором. Кроме того наличке ионной проводимости раствора позволяет анодным и катодным процессам в большей или меньшей степени (в зависимости от условий) локализоваться на территориально раздельных участках поверхности металла, где их протекание еще более облегчено и, следовательно, будет происходить с меньшей энергией активации. Это приводит к дальнейшему облегчению протекания коррозионного процесса. Логически невозможно представить одновременное протекание двух первичных актов электрохимической коррозии (т. е. анодного и катодного процессов) в одной точке поверхности (на одном атоме) в один и тот же момент времени. Это соответствовало бы химическому механизму растворения металла. Таким образом, электрохимический механизм, предполагая существование двух самостоятельных элементарных процессов (анодного и катодного), с необходимостью должен допускать и их дифференциацию либо в пространстве (по поверхности), либо во времени (если они протекают в одной точке поверхности). [c.22]

    Почти во всех исследованных растворителях на анодных поляризационных кривых наблюдаются области активного растворения и пассивации железа. Продолжительность и соотношение этих областей в шкале потенциалов определяются природой электролита, в первую очередь его анионным составом [349, 977, 604, 605]. На формирование его пассивной области большое влияние оказывает присутствие воды. Природа пассивирующ,их пленок разнообразна от адсорбционных молекул растворителя до фазовых оксидных и солевых пленок [П99, 1227, 783]. Наряду с электрохимическим механизмом при коррозии железа наблюдается и чисто химический [632—635]. Уделено внимание теории подбора и практического использования ингибиторов коррозии в неводных средах [632— 635, 125, 126, 230]. [c.121]

    Одним из главнейших способов классификации коррозии, который позволяет наиболее полно охарактеризовать процессы, протекающие при взаимодействии материалов и коррозионных сред, является классификация по механизму коррозионного процесса. По этому методу классификации коррозию принято делить на следующие виды коррозия химическая, электрохимическая и биохимическая. [c.49]

    При обычных условиях эти реакции протекают со значительным перенапряжением. Однако в условиях длительной эксплуатации не только аноды при высоких положительных потенциалах, но и катоды из углеродных материалов подвергаются коррозионному разрушению. Коррозия углеродных материалов протекает как по электрохимическому механизму непосредственно в процессе их поляризации, так и химическим путем при окислении стабильными продуктами электрохимической реакции или ее компонентами. [c.86]

    Коррозия при трении — химическая, электрохимическая и смешанная коррозия узлов трения машин и механизмов во время их эксплуатации [c.35]

    Для ряда образцов было зафиксировано образование питтингов на поверхностях трения. Характер процессов, протекающих в контакте в динамических условиях, и механизм образования питтингов может быть различным. Как известно, реальная поверхность металла характеризуется повышенной концентрацией дефектов строения - вакансий, дислокаций и т.п. При интенсивном деформировании поверхностных слоев металла при трении дефекты служат концентраторами напряжений и являются очагами зарождения микротрещин. В результате многократного циклического деформирования происходит развитие микротрещин, их смыкание, отслаивание частиц износа и образование пит-тйнгов вследствие контактной или фрикционной усталости металла. Большую роль при этом играет, как указывалось выше, адсорбционное понижение прочности поверхностных слоев металла вследствие эффекта Ребиндера, химическая коррозия, вь1зываемая серосодержащими лрисадками, а также электрохимическая питтинговая коррозия, возникающая в местах скопления поверхностных дефектов в результате пробоя пассивирующей поверхности пленки окисла. О механизме образования питтингов можно было в какой-то степени судить по их виду. Питтинги усталостного происхождения имели неправильную форму, неровные края, от которых могли отходить поверхностные трещины. Такие питтинги наблюдались для эфира 2-этилгексанола и фосфорной кислоты. Серосодержащие присадки ОТП и Б-1 вызывали появление большого количества мелких питтингов, В присутствии хлорсодержащих присадок хлорэф-40 и совол возни- [c.43]

    Таким образом, в общем случае, термодинамически возможный коррозионный процесс способен осуществляться одновременно тремя параллельными путями (механизмами) 1) химическим 2) гомогенно-электрохимическим 3) гетерогенно-электрохимическим. Однако, в некоторых случаях для упрощения расчетов вполне допустимо условно относить общий эффект коррозии к какому-нибудь одному преобладающему механизму. В случае электропроводной коррозионной среды (электролита) как правило, значительно чаще наблюдается электрохимический механизм и, за исключением особых случаев, его можно считать доминирующим. Какой при этом вариант будет преобладать — гетерогенный или гомогенный электрохимический — зависит от условий. Повидимому, преимущественное протекание процесса коррозии по гомогенно-электрохимическому механизму следует относить только к случаю коррозии особо чистых металлов, не имеющих структурных неоднородностей на поверхности, например, к жидким. В обычных случаях коррозии конструкционных металлов и сплавов надо предполагать преимущественное развитие процесса по гетерогенно-электрохимическому механизму. На это указывает обычно наблюдаемый макро- или микронеравномерный характер коррозионных разрушений или избирательное растворение компонентов сплава. [c.25]

    Доля электрохимического механизма коррозии металла /Зэ=х при допущении, что скорость химической коррозии постоянна, т. е. ij. M = onst и не зависит от потенциала V, может быть рассчитана по уравнению [c.281]

    Первое направление — создание путем подходящего легирования более совершенного экранирующего слоя продуктов коррозии, дающего юбщее повышение коррозионной устойчивости сплава,— имеет сравнительно ограниченные возможности для повышения устойчивости против электрохимической коррозии. Причина этого, по-видимому, заключается в том, что достаточно полного экранирования при электрохимической коррозии в электролитах продукты коррозии, как правило, дать не могут, так как образование этих продуктов (при гетерогенно-электрохимическом механизме коррозии) будет происходить не непосредственно на анодных поверхностях, а в растворе между анодными и катодными участками. Можно ожидать заметно большей зашиты в результате уплотнения вторичных продуктов коррозии и образования защитных слоев в условиях протекания коррозионного процесса в атмосферных условиях. В качестве конкретного примера можно указать на повышение коррозионной устойчивости меди при ее легировании цинком или алюминием, т. е. на повышенную коррозионную устойчивость латуней и алюминиевых бронз по сравнению с чистой медью. Повышенная устойчивость медистых сталей по сравнению с обычными конструкционными сталями должна в некоторой мере объясняться также уплотнением продуктов коррозии, хотя в данном случае, помимо этого фактора, как будет разобрано ниже, значительную роль играет анодное торможение. Однако для повышения устойчивости сплава по отношению к химической коррозии и, в частности, к имеющей такое большое значение в технике газовой высокотемпературной коррозии этот путь будет являться основным. [c.438]

    Этот метод может быть использован для определения тока саморастворения (коррозии) металла и установления механизма процесса коррозии металла совпадение величины рассчитанного таким методом коррозионного тока /э = х со значением /опытн. полученным непосредственным определением коррозионных потерь металла (I из Ат), подтверждает электрохимический механизм процесса расхождение этих значений, когда /э = х < /опыта указывает на наличие растворения металла по неэлектрохимическому, т. е. химическому механизму. [c.286]

    Эффективная энергия активации растворения металлов (железа, никеля, алюминия) в электролитах по химическому механизму, согласно данным Г. Г. Пенова, Т. К. Атанасян, С. П. Кузнецовой и др., в 1,5—2,0 раза больше, чем при растворении их с преобладанием электрохимического механизма, что находится в хорошем соответствии с теорией электрохимической коррозии металлов и подтверждает наличие химического механизма коррозии металлов в электролитах. [c.357]

    Одно из принциниальных различий между этими двумя механизмами коррозии металлов заключается в том, что при электрохимической коррозии одновременно происходят два процесса окислительный (растворение металла на одном участке) и восстановительный (выделение катиона из раствора, восстановление кислорода и других окислителей на другом участке металла). Например, в результате растнорения цинка в серной кислоте образуются ионы цинка и выделяется газообразный водород при действии воды железо переходит в окисное или гидроокис-ное состояние и восстанавливается кислород с образованием гидроксильных ПОПОВ. При химической коррозии разрушение металлической пoвeJЗXнo ти осуществляется без разделения на отдельные стадии и, кроме того, продукты коррозии образуются непосредственно на тех участках поверхности металла, где происходит его разрушение. [c.6]

    Механизм коррозии металла в почве определяется термодинамической вероятностью процесса. В почве, которую можно рассматривать как гетерогенный электролит, скорость коррозионного процесса по катодным и анодным реакциям, т, е. электрохимической коррозии, во много раз больше, чем химической. Поэтому принято считать, что почвенная коррозия протекает по механизму электрохимической коррозии, химическая коррозия в почвах практически отсутствует. Исходя из этого положения, явления, лежащие в основе почвенной коррозии, можно объяснить с позиций теории коррозии металлов в электролитах [2]. Известно, что разные металлы в различной степени подвержены коррозии. Чем легче совершается переход дтомов металла в ионы тем больше выделяется свободной энергии и тем менее коррозионностоек данный металл. Мерой этой энергии является значение нормального потенциала. [c.11]

    Механизм коррозии носит смешанный характер, т.е. химический и электрохимический. Причина химической коррозии -химическая реакция между железом и кислотами. Электрохимическая коррозия возникает ири ирохождении тока между отдельными участками иоверхности металла. [c.53]


Смотреть страницы где упоминается термин Химический и электрохимический механизмы коррозии: [c.10]    [c.280]    [c.280]   
Смотреть главы в:

Теория коррозии и коррозионно-стойкие конструкционные сплавы -> Химический и электрохимический механизмы коррозии




ПОИСК





Смотрите так же термины и статьи:

Коррозия химическая

Коррозия химическое и электрохимическое

Коррозия электрохимическая

Химическая механизм

Электрохимический механизм



© 2024 chem21.info Реклама на сайте