Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория электрохимического растворения

    ТЕОРИЯ ЭЛЕКТРОХИМИЧЕСКОГО РАСТВОРЕНИЯ [c.138]

    ТЕОРИЯ ЭЛЕКТРОХИМИЧЕСКОГО РАСТВОРЕНИЯ МЕТАЛЛОВ [c.25]

    Поведение металлов в процессе анодного растворения исследовано не так полно, как при их катодном осаждении. Все же по-.лученные опытные данные подтверждают применимость основных положений теории электрохимического перенапряжения к металлам группы железа. Так, кинетика анодного растворения железа и никеля описывается формулой Тафеля [c.477]


    Во всяком случае, очевидно, что механизм электрохимического растворения не может объяснить специфичность коррозионных сред, представленных в табл. 7.1. В принципе, множество электролитов с одинаковой электропроводимостью могли бы вызвать КРН, но этого не происходит. К тому же электрохимическая теория не в состоянии удовлетворительно объяснить заметное ингибирование КРН добавлением небольших количеств неокисляющих ионов, таких как СНзСОО", в среды, используемые для ускоренных испытаний. Имеются и другие трудности к примеру, описанное ранее растрескивание сенсибилизированной нержавеющей стали 18-8—транскристаллитное, —несмотря на четко выраженные возможности электрохимического растворения меж- [c.139]

    Основной задачей теории электрохимического фазового анализа является установление условий, при которых разница между потенциалами растворения разделяемых фаз становится наибольшей. Для разделения близких по термодинамическим свойствам фаз необходима максимально возможная степень поляризации. Это достигается применением повышенной плотности тока и правильным подбором анионного состава электролита. При выборе последнего необходимо иметь в виду, что степень анодной поляризации понижается в ряду Ап-> Ап -> Ап - (где Ап — анион). Внутри подгруппы анионов одной зарядности большую поляризацию вызывают анионы, деформирующиеся легче (например, 1 >С1-). [c.826]

    Корродирующая поверхность металла является короткозамкнутым многоэлектродным гальваническим элементом. Материальный эффект электрохимического разрушения (растворения) сосредоточен на анодных участках корродирующего металла. Анодное растворение металла возможно при одновременном протекании катодного процесса - ассимиляции освободившихся электронов на катодных участках металла. Согласно классической теории электрохимической коррозии, участки анодной и катодной реакции пространственно разделены, и для протекания процесса коррозии необходим переток электронов в металле и ионов в электролите. Однако пространственное разделение анодной и катодной реакции оказывается энергетически более выгодным, так как анодные и катодные реакции могут локализоваться на тех участках, где их протекание более облегчено. Поэтому в большинстве практических случаев протекание электрохимической коррозии обычно характеризуется локализацией анодного и катодного процессов на различных участках корродирующей поверхности металла. [c.7]

    Важно акать, будет ли в вершине коррозионной трещины присутствовать жидкая вода. Если ее нет, то все теории КР, основанные на электрохимическом растворении металла, окажутся несостоятельными, включая те, которые объясняют неодинаковую чувствительность сплавов различием электрохимических потенциалов выделений и фаз, расположенных по границе или вблизи границы зерен. Протекание процесса КР только лишь в газовой атмосфере и сильная зависимость скорости роста трещины от давления водяных паров вызывают сомнения в гипотезе, что КР происходит благодаря диффузии реагентов через металл за фронт трещины (галоидных ионов, которые ослабляют связь между зернами в вершине трещины). [c.289]


    Согласно современным представлениям [214, 128, 578, 494], металлы в растворах электролитов растворяются преимущественно по электрохимическому механизму. Подход к анодному растворению металлов и коррозии с единых позиций теории электрохимической кинетики, применение для изучения коррозии электрохимических методов исследования углубили и расширили теоретические представления об этих процессах, и на их основе стали возможны предварительные оценки коррозионной стойкости металлов и сплавов в различных условиях, разработки принципов коррозионной защиты материалов. Однако коррозионная наука в последние три десятилетия развивалась в основном применительно к водным растворам. Особенности процессов анодного растворения и коррозии металлов в органических электролитах изучены недостаточно, хотя необходимость таких сведений в связи со всевозрастающей ролью органических растворителей в качестве технологических средств очевидна. [c.106]

    Теория электрохимической диссоциации была опубликована С. Аррениусом в первом томе только что основанного (В. Оствальдом, Я. Вант-Гоффом и С. Аррениусом) журнала Физическая химия . В своем первоначальном виде эта теория имела механистическую окраску. Химические отношения между растворителем и растворенным веществом игнорировали. [c.167]

    Известные экспериментальные данные хорошо объясняются электрохимической теорией процесса растворения ионного кристалла. Эти рассуждения следовало бы также распространить на построение и распад решетки из ад-катионов и ад-анионов, которые, как и в случае свободной поверхности металла, могут привести к перенапряжению кристаллизации. [c.747]

    Из теории микроэлементов вытекает, что при отсутствии на поверхности металла разнородных участков процесс коррозии не будет иметь места. Опыты с чистыми металлами (дистиллированным цинком) показывают, что их скорость коррозии значительно меньше, чем технического металла. Однако имеются гомогенные сплавы (амальгамы), которые в то же время разрушаются очень быстро. Гипотеза невозможности растворения гомогенных металлов оказывается в противоречии с опытом и термодинамикой. Для объяснения электрохимического механизма растворения амальгам А. И. Фрумкиным была выдвинута теория гомогенно-электрохимического растворения металлов, не исключающая, а дополняющая теорию микроэлементов — теорию гетерогенно-электрохимического процесса растворения металлов. [c.40]

    Окислы и гидраты окислов многих металлов термодинамически более устойчивы, чем системы, построенные из металла, кислорода и воды. Поэтому большинство металлов стремится к образованию устойчивых продуктов, т. е. их соединений с кислородом и водой. Скорость таких процессов обычно невелика она заметно увеличивается, если на металле имеются условия для поглощения и отдачи электронов, т. е. совокупность анодных и катодных процессов. Эти условия выражены тем больше, чем более неоднородна поверхность металла. Обычно - теорию электрохимической-коррозии связывают с представлениями о работе короткозамкнутых местных элементов на поверхности металла (см. 36, 38, 62). Чем больше металл загрязнен примесями других металлов и чем более при прохождении тока, т. е. при поляризации, потенциал этих примесей отличен от потенциала основного металла, тем больше действует короткозамкнутых элементов и с большей э. д. с. По мере растворения основного металла количество примесей на его поверхности и скорость коррозии увеличиваются (см. рис. 171). [c.330]

    Скорость процесса анодного растворения теллура притоке 100 а составляла 120—130 г металла в час, выход потоку 98%, выход продукта (ТеОг) по веществу, считая от теории, составил 93%. Двуокись теллура, полученная на основе электрохимического растворения теллура в соляной кислоте, подвергалась химическому анализу в ОТК завода. [c.325]

    Согласно представлениям адсорбционной теории пассивно-ст [85], скачок тока в момент повышения потенциала отвечает возросшей скорости перехода катионов металла в раствор [реакция (с)], определяемой законами электрохимической кинетики. Скорость этого процесса по мере посадки кислорода понижается до стационарного значения. В последнее время считают возможным протекание прямого электрохимического растворения металла также и через фазовые оксидные пленки [86—88]. Согласно пленочной теории пассивности [89], мгновенный скачок тока и его спад при резком смещении потенциала в положительном направлении объясняются возросшей скоростью образования пленки (а), а ионы металла попадают в раствор только в результате последующего химического растворения оксида (Ь). [c.39]

    С научной точки зрения разбор и классификацию всех существующих разнообразных методов защиты металлов от электрохимической коррозии можно осуществить не на основе условий их применения или технологии осуществления, как это сделано выше, а на базе приложения теории электрохимической коррозии. Для этой цели необходимо правильно выявить механизм защитного действия каждого метода защиты, т. е установить на какую ступень в цепи последовательных процессов электрохимического растворения металла данный метод оказывает основное торможение. [c.194]


    Очень важно развивать теорию самих процессов окисления-восстановления с помощью ЭИ. Рассмотренное в главе И применение современной теории электрохимической коррозии к восстановлению растворенного в воде кислорода, по нашему мнению, вполне справедливо, однако требует дальнейшего развития в конкретных условиях взаимодействия восстановителя ЭИ с кислородом. [c.123]

    Современный взгляд на теорию электрохимической полировки металлов в обычном электролите заключается в следующем электрохимическая полировка — процесс анодного растворения металла, протекающий при наличии образовавшейся вязкой пленки и значительной анодной поляризации. При оптимальном режиме и составе [c.55]

    Согласно представлениям адсорбционной теории пассивности [56], скачок тока в момент повышения потенциала отвечает возросшей скорости перехода катионов металла в раствор [реакция (3)], определяемой законами электрохимической кинетики. Скорость этого процесса по мере посадки кислорода понижается до стационарного значения. В последнее время считается возможным протекание прямого электрохимического растворения металла также и через [c.25]

    На рис. 4 и 5 приведены также анодные поляризационные кривые IA. Точки, отвечающие скоростям саморастворения хрома, определенным по количеству выделенного водорода, лежат близко от точек пересечения экстраполированных линейных участков кривых I ш IA. Это соответствует современной электрохимической теории скоростей растворения металлов в кислотах и высказанному в наших предыдущих работах предположению о том, что скорость саморастворения хрома в кислотах определяется скоростями протекающих на его поверхности электродных процессов [19, 20]. Аналогичные данные были получены в случае никеля, железа и кобальта [21—23]. Следует отметить, что метод съемки анодных кривых был близок к описанному в случае катодных кривых I. [c.105]

    Эффективная энергия активации растворения металлов (железа, никеля, алюминия) в электролитах по химическому механизму, согласно данным Г. Г. Пенова, Т. К. Атанасян, С. П. Кузнецовой и др., в 1,5—2,0 раза больше, чем при растворении их с преобладанием электрохимического механизма, что находится в хорошем соответствии с теорией электрохимической коррозии металлов и подтверждает наличие химического механизма коррозии металлов в электролитах. [c.357]

    Современная теория электрохимической коррозии металлов сложилась на основе работ Ю. Эванса, Пальмаэра, Хоара, Г. В. Акимова, А. Н. Фрумкина, Я. М. Колотыркина и др. На поверхности металла в присутствии электролита могут протекать одновременно по крайней мере две независимые сопряженные реакции — одна в анодном, а другая в катодном направлении. При коррозии металла анодная реакция заключается в его растворении  [c.518]

    Теории электрохимической коррозии н пасснвиостн металлов лежат в основе методов их защиты от коррозии. К числу их относятся методы, направленные на снижение тока коррозии за счет повышения поляризации коррозионных процессов. Например, повышение водородного перенапряжения введением в коррозионную среду специальных веществ — ингибиторов — резко снижает растворение металла при коррозии с водородной деполяризацией. Предварительное удаление кислорода из агрессивной среды способствует снижению коррозионного тока. Широкое распространение получило нанесение защитных покрытий па поверхность металла металлических, лакокрасочных, полимерных, пленок из труднорастворимых соединений металлов (оксиды, фосфаты) и т. п. Высокой коррозионной устойчивостью обладают металлические сплавы (например, нержавеющие стали), поверхность которых находится в пассивном состоянии. Существуют электрические методы защиты металлов от коррозии, связанные с применением поляризующего тока. Металлу задается потенциал, при котором процесс его растворения исключается или ослабляется. Например, защищаемый металл поляризуется катодно, а анодом служит дополнительный кусок металла. Электрические методы применяются при защите крупных стационарных сооружений. [c.520]

    Позднее эта точка зрения была распространена и на металлы, которые не образуют интерметаллидных соединений, но для которых характерно изменение фаз йли образование сегрегаций легирующих элементов или примесей в вершине трещины в ходе пластической деформации вследствие градиента состава здесь образуются гальванические элементы. Варианты этой теории содержат предположение, что трещины образуются механически и что электрохимическое растворение необходимо только для периодического сдвига барьеров при росте трещины [25]. Но хрупкое разрушение пластичного металла вряд ли возможно в вершине трещины. Кроме того, было показано, что удаление раствора Fe la из трещины, образованной в напряженном монокристалле uaAu, сопровождается релаксацией напряжений в кристалле и —. .в результате —немедленным прекращением растрескивания, сменяющимся пластической деформацией [26]. Аналогичным образом, трещина, распространяющаяся в напряженной нержавеющей стали 18-8, погруженной в кипящий раствор Mg lj, останавли- [c.138]

    Современная теория электрохимической коррозии металлов основывается на том, что не только чистый металл, но и металл с заведомо гетерогенной поверхностью корродирует в электро-ште как единый электрод согласно закономерностям электрохимической кинетики. На его поверхности одновременно и независимо друг от друга протекают анодная и катодная реакции, в совокупности составляющие процесс коррозии. В то же время роль электрохимической гетерогенности процесса электрохимической коррозии велика, хотя в ряде сл> чаев повышение гетерогенности приводит не к увеличению скорости коррозии, а, наоборот, к ее снижению. Качественно и количественно роль гетерогенности проявляется в кинетгмеских Характеристиках анодной и катодаой реакций. При коррозии технических сплавов, для которых характерен высокий уровень электрохимической гетерогенности поверхности, возможно неравномерное распределение скорости анодного процесса на поверхности сплава, обусловливающее преимущественное растворение отдельных фаз, что приводит к локализации коррозии [25, 27]. [c.29]

    Теория основана на открытом в начале двадцатого века эффекте понижения поверхностной энергии в результате адсорбции (эффекте Ребиндера). Согласно этой теории адсорбция типичных новерхностно-аюгив-ных веществ из окружающей среды вызывает облегчение деформации и разрзш1ения твердых тел, часто в значительно большей степени, чем при химическом воздействии. Эффект адсорбционного понижения прочности, согласно этой теории, обусловлен тем, что поверхностно-активные вещества, понижая поверхностную энергию металлов, способствуют зарождению пластических сдвигов. При этом процесс коррозионного растрескивания протекает не путем химического или электрохимического растворения металла в вершине трещины, а вследствие ослабления межатомных связей в напряженном сплаве при адсорбции специфических компонентов раствора. Благодаря адсорбции снижается поверхностная энергия, что облегчает разрыв межатомных связей металла, находящегося под растягивающим напряжением. Уменьшение сродства между атомами на поверхности металла происходит при наличии одного адсорбционного монослоя, при этом наиболее эффективно действуют частицы, проявляющие специфическую адсорбцию. Инициирование трещины стресс-коррозии вьвывается адсорбционным снижением сил взаимодействия между смежными атомами в вершине надреза материала, подвергающегося действию высоких растягивающих напряжений. [c.65]

    При изучении прочности стали в коррозионных средах прежде всего необходимо ознакомиться с некоторыми положениями теории электрохимической коррозии. Эта теория, развитая трудами советских ученых — Г. В. Акимовым [1, 21, H.A. Изгарышевым [371, Н. Д. То-машовым [151] и др., рассматривает электрохимическую коррозию как результат работы гальванических элементов. Работа гальванических элементов обусловливается течением двух взаимно связанных процессов — анодного и катодного. При анодном процессе наблюдается переход ионов металла в раствор, т. е. электрохимическое растворение анодных участков металла при катодных—ассимиляция электронов на катодных участках металла каким-либо содержащимся [c.6]

    Научно-теоретической базой для развития науки о коррозии и защите металлов и, в частности, для разработки научных принципов создания коррозионностойких сплавов несомненно явились более ранние исследования выдающихся советских ученых, являющихся основоположниками науки о защите металлов. Здесь в первую очередь надо отметить академика Кис-тяковского, разработавшего фильмовую теорию коррозии [1], члена-корреспондента Изгарышева [2], изучившего ряд важных вопросов электрохимической коррозии металлов академика Фрумкина, теоретически обосновавшего установление коррозионных (стационарных) потенциалов и механизм гомо-генно-электрохимического растворения металлов [3, 4] и особенно члена-корреспондента АН СССР Акимова [5, 6], заложившего основы структурной коррозии металлов, исследовавшего ряд важнейших теоретических и практических вопросов коррозии и создавшего советскую школу коррозионн-стов. [c.10]

    Исследование процессов коррозии во многом обязано трудам В. А. Кис-тяковского, Г. В. Акимова, Н. А. Изгарышева и многих других. В работах Я. М. Колотыркина заложены основы электрохимической теории процессов растворения твердых металлов в кислотах и внесен су1цествеп-ный вклад в решение многих практически важных проблем (питииговая, межкристаллитная коррозия и др.). [c.62]

    Гипотеза невозможности растворения гомогенных металлов оказывается в противоречии с опытом и термодинамикой. Для объяснения электрохимического механизма растворения амальгам А. Н. Фрумкиным была выдвинута теория гомогенноэлектрохимического растворения. металлов, не исключающая, а дополняющая теорию микроэлементов — теорию гетерогенно-электрохимического раство-ренияметаллов. [c.32]

    Понятно, что и замедление анодного процесса вызовет такое же замедление в катодном. Аноды гальванопар подвергаются коррозии в первую очередь. В этом, собственно, и состоит основное представление теории электрохимической коррозии, которая рассматривает коррозию как процесс анодного растворения металлов. Что касается катодов гальванопар, то их собственная коррозия или замедлится в результате действия гальванопары, или прекратится полностью, поскольку электроны, поступающие на катод, мешают его положительным ионам переходить в раствор. Исключение составляют те случаи, когда на катодах выделяются вещества, способные химически с ними взаимодействовать и тем самым разрушать их. [c.182]

    Электрохимическую коррозию вызывают главным образом примеси других металлов и неметаллических веществ или неоднородность поверхности. Согласно теории электрохимической коррозии при соприкосновении металла с электролитом (электролитом может быть влага, адсорбируемая из воздуха) на его поверхности возникают гальванические микроэлементы. При этом металл с более отрицательным потенциалом раз-рущается — ионы его переходят в раствор, а электроны переходят к менее активному металлу, на котором происходит восстановление ионов водорода (водородная деполяризация) или восстановление растворенного в воде кислорода (кислородная деполяризация). [c.202]

    При исследовании катодного поведения в кислых растворах некоторых твердых металлов были обнаружены аномалии, не укладывающиеся в рамки обычных электрохимических представлений. Суть их сводится к тому, что вопреки требованиям электрохимической теории скорость растворения этих металлов, закономерно снижаясь при смещении потенциала в отрицательном направлении в условиях анодной поляризации, при катодной поляризации перестает зависеть от потенциала. Это следует, например, из приведенных выше данных Княжевой [67] для хрома (рис. 8) и данных Колотыркина и Флорианович 1[40, 235] для железа, хрома и хромистых сталей. При катодной поляризации этих металлов в серной кислоте наблюдаемая скорость растворения, определенная аналитическими методами, не зависит от потенциала. [c.48]

    Описывая возможный механизм реакций электроноионообменников ЭИ по восстановлению растворенного в воде кислорода с привлечением теории электрохимической коррозии металлов мы использовали исследования Н. С. Мусалева, выполненные под руководством автора (1964 г.), где впервые были применены принципы современной электрохимической теории коррозии металлов к созданию научных представлений об окислительно-восстановительных процессах, происходящих с использованием ЭИ. [c.5]

    Применяя рассмотренную выше теорию электрохимической коррозии к процессам взаимодействия ЭИ с растворенным водородом, логично считать, что в этих процессах микрокатодами являются участки углеродистого каркаса ЭИ+, несущие на себе частицы гидроокиси металла. В качестве же анодных участков может служить сам водород, сорбированный на поверхности каркасной основы. Каркасной основой могут быть ионит КУ-11 и активный уголь СКТ, обладающие конденсированно-аромэтической структурой с множеством сопряженных ароматических свя зей, или полимерные иониты, содержащие стирольные ароматические ядра и обладающие электронной проводимостью. При этом по внещней цепи электроны водорода передаются к катодным участкам гидроокиси металла. Внутреннюю цепь электрохимической системы в этом случае должны создать непрерывно образующиеся положительные ионы водорода и переходящие в водный раствор отрицательные ионы гидроксила, возникающие в составе ЭИ+ перед превращением их в ЭИ . Элементарные реакции суммарного процесса окисления-восстановления с по- [c.123]

    Согласно новым взглядам некоторых советских ученых, вносящим принципиальные изменения в классическую теорию электрохимической коррозии, даже если металлическая поверхность абсолютно электрохимически гомогенна, все же должно происхвт дить растворение металла. [c.27]

    В этой книге сделана попытка охарактеризовать современное состояние электрохимии металлов — вопросов электрохимического растворения, пассивации и выделения металлов. Мы не будем касаться более элементарных электрохимических процессов, в которых материал электрода остается практически неизменным. Теория этих процессов, получившая в последнее время большое развитие на примере выделения водорода, описана на самом высоком теоретическом уровне в многочисленных работах А. Н. Фрумкина. Успехи электрохимической теории в этой области отразились на состоянии теории и того раздела кинетики электродных процессов, которому носвяп1 ена эта книжка,— кинетики электроосаждения, анодного растворения и пассивации металлов. Наибольшие успехи здесь были достигнуты при попытках выяснить механизм влияния состояния поверхности на скорость растворения и выделения металлов. Поэтому особенно подробно мы обсудим влияние адсорбционного состояния поверхности на эти процессы. Придется коснуться и теории образования новой фазы, в последнее время подробно не излагавшейся. [c.3]

    Обычно гидроэлектрохимическое рафинирование не позволяет получать очень чистые и сверхчистые металлы. Эта задача может быть решена при помощи амальгамной гидроэлектрометаллургии. По этому вопросу имеется весьма обширная литература, которая приведена в книге [71 Теория амальгамной металлургии основана на электрохимических свойствах амальгам. Последние рассматриваются как взаимные растворы типа металл — металл. Для характеристики электрохимического растворения и осаждения металлов на амальгамах введено понятие о коэффициенте разделения. Если на границе амальгама — раствор протекает реакция [c.73]


Смотреть страницы где упоминается термин Теория электрохимического растворения: [c.251]    [c.58]    [c.82]    [c.44]    [c.225]   
Смотреть главы в:

Коррозия и борьба с ней -> Теория электрохимического растворения




ПОИСК





Смотрите так же термины и статьи:

Теория растворения

Теория электрохимическая



© 2025 chem21.info Реклама на сайте