Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование стабильных радикалов из ингибиторов

    Установлен и другой механизм взаимодействия ингибитора с перекисными радикалами — образование малоустойчивого комплекса ингибитора с радикалом при взаимодействии последнего с л-электро-нами ингибитора (механизм прилипания ) [24, 30, 38]. Такой радикал-комплекс реагирует затем еще с одним перекисным радикалом, давая стабильные продукты  [c.146]

    Реакция ингибитора с пероксидными радикалами может осуществляться через образование малостабильного комплекса ингибитора с радикалом при взаимодействии последнего с я-электронами противоокислителя (механизм прилипания ). Образовавшийся радикал-комплекс реагирует еще с одним пер-оксидным радикалом, давая стабильные продукты, т. е. цепь обрывается [105]  [c.80]


    Ингибиторы полимеризации замедляют или останавливают полимеризацию, взаимодействуя с радикалами инициатора или растущей цепи. Свойствами ингибиторов обладают различные соединения — хиноны, гидрохиноны, ароматические нитропроизводные, ароматические амины и др. В тех случаях, когда ингибитор является донором водорода (здесь сокращенно обозначено 1пН), для осуществления ингибирования необходимо, чтобы стабильность радикала (1п ), образующегося при передаче водорода, была достаточно велика высокая стабильность делает невозможным его присоединение к мономеру. Если присоединение происходит и при этом начинается рост новой цепи, то вместо ингибирования будет происходить передача цепи. В идеальном случае ингибирование должно заканчиваться рекомбинацией радикалов 1п- друг с другом или с радикалами инициатора, приводящей к образованию инертных продуктов. [c.518]

    Можно привести простой иллюстративный пример, указывающий путь, которым клеточный эффект можно охарактеризовать количественно. Предположим, что исследуется фотолиз в присутствие ингибитора 8, который может реагировать с атомами I с образованием относительно инертного радикала 81, последний в свою очередь не реагирует с 1г, но может реагировать с атомом I с образованием стабильного 812- Кинетическая схема может быть представлена в виде [c.466]

    Обрыв цепей происходит вследствие образования по реакции (7) стабильного свободного радикала ингибитора In, сравнительно мало активного и не способного к продолжению цепи окисления, но в то же время легко взаимодействующего по реакции (8) с активными радикалами R или ROO и обрывающего цепи окисления. Причем константа скорости реакции (8) на несколько порядков выше, чем для реакции (7) [ 7=10 - -- 105 л/(моль-с), Й8 107+10 л/(моль-с)]. Очевидно, что радикалы In являются более активными ингибиторами окисления по сравнению с исходной молекулой ингибитора. Высокая эффективность ингибирующего действия свободных радикалов при окислении топлив и масел обусловлена также участием радикалов In в реакциях переноса электрона и в реакциях тушения возбужденных состояний углеводородов. [c.40]

    Первичная элементарная реакция с образованием первичного радикала из молекул сырья называется реакцией инициирования цепи. Реакции превращения одних радикалов в другие, при которых расходуется сырье, называются реакциями продолжения пени. Реакции, при которых радикалы гибнут, превращаясь в стабильные молекулы в результате рекомбинации, диспропорционирования или образования малоактивного радикала, называются реакциями обрыва цепи. Обрыв цепи может произойти также при добавлении или присутствии в сырье веществ - ингибиторов, которые приводят к замене активных радикалов на малоактивные, не способные к продолжению цепи. [c.353]


    Взаимодействие нитроксилов со свободными радикалами. Способность нитроксилов взаимодействовать с активными свободными радикалами с образованием эфиров гидроксиламинов приводит к обрыву радикальных цепных процессов, что позволяет использовать нитроксилы в качестве надежных ингибиторов полимеризации и термоокислительной деструкции органических полимеров. Эфиры гидроксиламинов при взаимодействии с перок-сильными радикалами, образующимися при окислении полимеров, вероятно, регенерируют исходный нитроксил, поэтому один стабильный радикал способен оборвать несколько кинетических цепей окисления. [c.529]

    Реакция антиокислителя (ингибитора) с пероксидным радикалом осуществляется через отрыв подвижного атома водорода окси- или аминогруппы ингибитора с образованием гидропероксида и стабильного свободного радикала ингибитора  [c.65]

    Г. Химические методы. Обсуждавшийся выше метод зеркал является частным случаем более общего метода определения свободных радикалов, основанного на большой химической реакционноспособности радикалов. Так, если К представляет собой радикал, а — некое стабильное химическое соединение, способное реагировать с К, то введение в кинетическую систему приведет к изменению первоначальных концентраций и образованию новых продуктов. С этой точки зрения вещество выступает как ингибитор первоначальной реакции. Идеальный ингибитор реагировал бы с радикалами полностью и тотчас же, как только они образуются, и давал бы полную л несомненную информацию о первых стадиях ценной реакции на основе изучения новых образующихся продуктов. [c.97]

    Таким образом, действие ингибиторов состоит в обрыве реакционной цепи окисления по реакциям (1) и (2). Образующийся радикал ингибитора малоактивен н не способен оторвать водород от молекулы полимера. Оп дезактивируется сам или дезактивирует полимерные радикалы по реакциям (3) — (5) Антиоксиданты второй группы (сульфиды тиофосфаты, ди-тиокарбаматы) разлагают гилропсроксиды с образованием стабильных молекулярных соединений. [c.225]

    Расчет таких величин, как скорость реакции, средний молекулярный вес образовавшегося полимера и распределение по молекулярным весам, основывается на четырех типах указанных выше реакций, а именно инициирование, рост, обрыв и передача. Такие, на первый взгляд различные, явления, как разветвление цепи (в структурном смысле), обрыв на мономере и ингибирование, в действительности не являются дополнительными типами реакций, а представляют собой следствия реакции передачи цепи. Разветвление цепи, например, может происходить при передаче цепи от радикала к полимерной молекуле с последующими реакциями роста и обрыва (уравнение 1.VIII) обрыв на мономере является результатом передачи цепи через мономер с образованием очень стабильного радикала, который не способен участвовать в реакции роста с такой же скоростью, как исходный полимерный радикал (см. стр. 66) ингибирование происходит при передаче цепи к молекуле ингибитора с образованием радикала, имеющего крайне низкую реакционную способность (см. гл, 6). [c.21]

    Для практич. осуществления стабилизации полимеров важен эффект синергизма, возникающий при использовании различного рода химич. композиций. Это явление заключается во взаимном усилении действия антиоксидантов в смеси суммарный эффект стабилизации часто намного превосходит действие наиболее активного компонента. Известны также случаи, когда действие антиоксидантов усиливается в результате образования в процессе стабилизации новых ингибиторов. Так, при ингибированной термоокислительной деструкции полипропилена с 2,2, 4,4 -тетраметоксидифенил-азотокисью при 200°С стабильный радикал уже через несколько минут превращается в амин, к-рый сам является хорошим антиоксидантом. [c.242]

    Ингибирование в массе и в азеотропной смеси с водой осуществлялось гидрохиноном. Известно [7], что гидрохинон в водном растворе радиационно окисляется в бензохинон через семихиион. Радиолиз аллилового спирта частично идет с разрывом связи С — О и образованием радикала НО [8, 9]. Таким образом , и при полимеризации в массе будет иметь место окисление гидрохинона. Образующийся в качестве промежуточного продукта стабильный семихиноидиый радикал должен был бы действовать как эф-фективный ингибитор полимеризации, протекающей с очень короткой кинетической 2 цепью. Выведенная формула ингибирования соответствует экспериментальной зависимости при значении a 35 до величины да ж 0,9 ири полимеризации в массе и при значении ku i 25 до величины т a 0,44 в азеотропной смеси с во- дой. Условия облучения те же, что и в растворе. Скорость конверсии в исследованном интервале начальных концентраций ингибитора оставалась постоянной по крайней мере до лг 50 вес.% выхода полимера, а индукционный период отсутствовал. Последнее объясняется тем, что при выбранной мощности дозы количество [c.85]


    Одной из возможностей метода ЭПР, находящей применение при изучении процессов жидкофазного окисления, является определение скорости инициирования цепей в условиях окисления, в том числе и в присутствии катализаторов. Скорость инициирования при окислении олефинов достаточно надежно определяется методом ингибиторов с использованием акцептора свободных радикалов—димера 1,2-бис (4 -диметиламинофенил)-1,2-ди--фталоилэтана (Ф—Ф) [435]. В окислительной системе уже при температурах 50—60 °С это соединение обратимо распадается на свободные радикалы , ф—ф—>-2Ф . Истинным ингибитором окисления является радикал Ф, кото- рый с большой скоростью присоединяет как алкильные, так и пероксидные фадикалы с образованием стабильных продуктов. Стехиометрический коэффициент ингибирования, определенный при окислении циклогексена, равен двум. Непосредственного взаимодействия ингибитора с окисляемым непредельным соединением не происходит. Расходование ингибитора измеряется [c.202]

    Рассмотренные представления о механизме- торможения окисления противоокислителями приводят к выводу о том, что наиболее характерным свойством ингибиторов жидкофазного окисления углеводородов является их способность образовывать стабильные свободные радикалы. Следует ожидать, что именно этим свойством должны характеризоваться соединения, играющие роль естественных ингибиторов. К числу соединений, образующих свободные радикалы, прежде всего следует отнести по-лиарилэтаны. Гомбергом в 1900 г. в ходе синтеза гексафенилэта-на в бензольном растворе впервые было установлено существование стабильного свободного радикала — трифенилметила. Оказалось, что гексафенилэтан в растворе частично диссоциирует. Происходят разрыв центральной С—С-связи и образование двух свободных радикалов трифенилметила  [c.41]

    Вторая реакция подчиняется обычным закономерностям в том смысле, что атом водорода у третичного атома углерода реагирует быстрее, чем у вторичного то же самое, несомненпо, относится и к первой реакции, поскольку кислород в этом случае реагирует как свободный радикал. На это указывает тот факт, что изопентан является значительно более эффективным ингибитором окисления ацетальдегида, чем я-пентан. Механизм ингибирования здесь сводится к отрыву атома водорода от углеводорода с образованием радикала, не способного продолжать цепь в условиях опыта. Согласно Райсу [137], относительные вероятности отрыва алкильными радикалами ато ла водорода от третичного, вторичного и первичного атомов углерода относятся приблизительно как 33 3 1, поэтому вполне вероятно, что перекиси будут образовываться в заметных количествах в различных местах молекулы, причем их образование у третичных атомов углерода будет происходить значительно легче, чем у вторичных, а у вторичных легче, чем у первичных. Поэтому полная скорость окисления, по-видимому, зависит от скорости третьей реакции, т. е. от стабильности образовавшейся перекиси. Хиншельвуд [131, 132] отметил, что все заместители, повышающие скорость реакции, являются электроноакцепторными группами, в то время как метильная группа, увеличивающая стабильность перекиси, является электронодонорпой. Из этого следует, что повышение электронной плотности увеличивает прочность связи кислород—кислород в перекиси. Эти факты согласуются с представлениями Уолша о том, что связь между сильно электроотрицательными элементами должна упрочняться электронодонорными группами [138]. [c.181]

    На рис. 149 показаны кинетические кривые расходования N-фенил--нафтиламина, накопления стабильных радикалов и поглощения кислорода при окислении октадекана при 171° С в присутствии 0,108 молъ1л ингибитора [47]. При окислении кумола в присутствии дифениламина методом ЭПР установлено образование радикала (СеН5)аШ [48, 49]. Аналогичный результат получен в другой работе [50], в которой была определена константа скорости реакции ROg + дифениламин — А ,= 6 10 ехр (— 3500/i r) л/молъ-сек. При изучении реакции свободного радикала дифенилпикрилгидразила с аминами оказалось, что с анилином и его производными гидразил реагирует со скоростью W = =А [гидразил] [анилин], что согласуется со следующим механизмом  [c.251]

    При распаде молекулы образуются два свободных радикала, которые некоторое время сек) находятся рядом, окруженные молекулами растворителя (клеточный эффект). Часть радикалов реагирует друг с другом с образованием молекулярных продуктов, а другая часть (обозначим ев через в) в результате диффузии выходит в объем. Бели в растворе присутствует акцептор свободных радикалов, то скорость их образования может быть измерена по скорости расходования акцептора радикалов. В качестве акцепторов свободных радикалов используются иод, который быстро реагирует с радикалами, имеющими свободную валентность на атоме С, ингибиторы окисления - фенолы, нафтолы и ароматические амины, которые быстро реагируют с радикалами типа КО и RO2 Щ я стабильные свободные радикалы. Если акцептор -свободный радикал, то ои реагирует с однлм свободным радикалом ркорость изменения концентрации акцептора w = Wj, где Wj - скорость образования радикалов. Если акцептор - например, молекула иода, то исчезновение одно молекулы акцептора сопровождается гибелью двух свободных радикалов  [c.6]

    Типичным примером является ингибированная полимеризация стирола в присутствии випплацетата, когда неактивный радикал стирола обменивается на активный радикал поливипнлацетата, который взаимодействует с молекулой ингибитора с повышенной скоростью. Количественный расчет синергического эффекта в таких процессах может быть легко сделан на основе общей теории сополимеризации [28, 153]. С аналогичным механизмом может быть связан синергизм илп антагонизм при цепной деполимеризации виниловых мономеров в присутствии различных непредельных соединений и кислорода. Явление синергизма может привести казалось бы к парадоксальному случаю, когда кислород благоприятно влияет на стабильность свойств полимера, стабилизированного антиоксидантом. Такое явление легко наблюдать при деполимеризации сополимера, имеющего низкую предельную температуру, если присутствующий в системе кислород реагирует только с менее активным из двух алкильных радикалов, участвующих в реакциях роста цепи, с образованием активного перекисного радикала. Таким путем, например алкильный радикал, реагирующий с молекулой ингибитора с константой скорости порядка 10 л/(моль-с) обменивается на радикал РОг, взаимодействующий с радикалом ингибитора с константой скорости 10 л/(моль-с). [c.217]

    Доказательством образования аллильного пероксидного радикала может служить торможение процесса при использо-/вании в качестве ингибиторов стабильных нитроксильных радикалов [20]. Ацилпероксидные радикалы являются высоко реакционноспособными промежуточными частицами при взаимодействии с олефином, эпоксидирующими С=С-связи. Под- робно эти реакции рассмотрены в главе 2. [c.12]


Смотреть страницы где упоминается термин Образование стабильных радикалов из ингибиторов: [c.200]    [c.1150]    [c.414]    [c.420]    [c.171]   
Смотреть главы в:

Цепные реакции окисления углеводородов в жидкой фазе -> Образование стабильных радикалов из ингибиторов

Цепные реакции окисления углеводородов в жидкой фазе -> Образование стабильных радикалов из ингибиторов




ПОИСК





Смотрите так же термины и статьи:

Радикал стабильный



© 2024 chem21.info Реклама на сайте