Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние ионизирующих излучений на полимеры

    Действие ионизирующих излучений. Под влиянием ионизирующих излучений полимеры претерпевают глубокие химические и структурные изменения, приводящие к изменению физико-химических и физико-механических свойств. Регулируя интенсивность облучения, можно изменять свойства полимеров в заданном направлении, например переводить их в неплавкое, нерастворимое состояние. Такая обработка некоторых полимеров уже применяется в промышленном масштабе. Облученный полиэтилен обладает очень высокой термостойкостью, химической стойкостью и другими ценными свойствами (рис. 47). [c.292]


    Действие ионизирующих излучений. Под влиянием ионизирующих излучений полимеры претерпевают глубокие химические н структурные изменения изменяется их химический состав, строение и все физико-химические и физико-механические свойства. Регулируя интенсивность облучения, можно изменять свойства полимеров в заданном направлении, например переводить их в неплавкое, нерастворимое состояние и придавать [c.278]

    Характер процессов, протекающих под влиянием ионизирующих излучений, сильно зависит от типа полимера. [c.292]

    Облучение полимеров сопровождается образованием двойных связей. Деструкция и образование пространственных структур при облучении полимеров всегда протекают одновременно, но соотношение скоростей этих двух процессов настолько меняется в зависимости от химического строения полимеров, что одни полимеры полностью деструктируются под влиянием ионизирующих излучений, а в других преобладают процессы сшивания макромолекул. [c.294]

    Некоторые результаты действия излучения на диеновые полимеры приведены в обзорной статье Партриджа [31]. Голуб с сотрудниками [32] исследовал изомеризацию диеновых полимеров по двойным связям под влиянием ионизирующего излучения. Возбуждение двойных связей делает возможным вращение вокруг связи С—С и стабилизацию в новом положении. Повышенная способность к изомеризации определяется, согласно Голубу, длиной полимерной цепи. [c.228]

    Влияние ионизирующих излучений на диэлектрические свойства полимеров можно понизить, вводя активные добавки. Активные добавки можно разделить на два класса. К первому классу относятся вещества (например, ароматические соединения), сильно поглощающие и тем самым уменьшающие энергию излучения, поглощаемую полимером. Ко второму классу относятся вещества, вступающие в химическое взаимодействие с образующимися при облучении свободными радикалами, например, антиоксиданты. [c.96]

    Влияние ионизирующих излучений на полимеры [c.291]

    В литературе практически отсутствуют данные о влиянии ионизирующих излучений на адгезию полимеров. Исключение составляет работа [1], в которой было изучено влияние радиации на адгезию эластомеров к волокнообразующим полимерам. Целью нашего исследования является изучение действия радиации на адгезию сетчатых полимеров к органическим волокнам. [c.340]


    Сшивание полимеров под влиянием ионизирующих излучений называется радиационным сшиванием. Этот процесс наиболее полно изучен на примере полиэтилена, при облучении которого происходит выделение водорода с одновременным увеличением степени ненасыщенности молекулы . Механизм этого процесса сводится к следующему. При действии на молекулу полиэтилена у-лучей генерируются свободные радикалы, которые, реагируя с молекулой или с другим макрорадикалом, образуют разветвление или мостик. В результате отрыва атома водорода от метиленовой группы образуются двойные связи и поперечные мостиковые связи. [c.65]

    Деструкция полимеров может быть физической (термическая, фотохимическая, под влиянием ионизирующих излучений), химической (под действием воды, кислорода, пищевых сред) и механической (при измельчении, вальцевании и т. п.). Действие этих факторов сводится к разрыву основных цепей макромолекул или к изменению строения заместителей (без разрыва основной цепи) [157, с. 11 158, с. 56—57]. [c.160]

    Влияние ионизирующих излучений на диэлектрические свойства полимеров можно уменьшить, вводя активные добавки. Активные, добавки можно разделить на два класса. К первому классу относятся вещества (например, ароматические соединения), сильно поглощающие [c.143]

    Такие интересные вопросы, как изменение полимеров под влиянием ионизирующих излучений, деструкция под влиянием механических воздействий, разложение при действии ультразвука, несмотря на их большое практическое значение в данной книге не рассматриваются. [c.8]

    Характер процессов, протекающих под действием ионизирующих излучений, сильно зависит от типа эластомера. Соотношение скоростей протекания деструкции и образования пространственных структур настолько меняется в зависимости от химического строения полимера, что одни полностью деструктурируются под влиянием ионизирующих излучений, а в других преобладают процессы сшивания макромолекул. Если в главной цепи каждый атом углерода связан хотя бы с одним водородом, то эластомер является сшивающимся. К ним относятся изопреновый, бутадиеновый, бутадиен-стирольный, бутадиен-нитрильный, силоксановый, уретановый каучуки. Эластомеры, которые содержат четвертичные атомы углерода, подвергаются преимущественно деструкции. Этот эффект объясняется поляризирующим действием заместителей, в результате которого ослабляется связь между атомами углерода главной цепи. К деструктирующимся эластомерам принадлежит полинзобутилен и бутилкаучук. Этиленпропиленовый каучук занимает промежуточное положение. Его склонность к деструкции воз- [c.154]

    В полимерах, которые под влиянием ионизирующего излучения преимущественно структурируются, обнаруживаются такие же эффекты, как описанные выше для полимеров, структурированных другим способом. Облучение полиэтилена дозой 10 р и последующее структурирование не влияют на растворимость бромистого метила в полимере, но проницаемость уменьшается в 2 раза по сравнению с необлученным полимером .  [c.247]

    За последние годы проведено много исследований, посвященных изучению влияния ионизирующих излучений на полимеры и их растворы. Показано, что энергия излучения, поглощенная одними звеньями, может быть передана другим звеньям полимерной молекулы, происходит перестройка химических связей и разрываются наиболее слабые из них. Деструкция и сшивание протекают, каК правило, одновременно, но один из этих процессов преобладает в зависимости от структуры полимера. Например, вязкостные присадки, содержащие звенья типа [c.76]

    Наряду с указанными превращениями могут происходить процессы циклизации, уменьшения ненасыщенности полимеров и газообразования. Циклизация, по-видимому, связана с изомеризацией под влиянием излучения. Уменьшение непредельности является следствием либо циклизации, либо сшивания или разветвления полимерных цепей, либо присоединения водорода и других групп атомов, отщепленных под влиянием ионизирующего излучения от других участков макромолекулы. [c.112]

    В результате образования химических межмолекулярных связей возрастает теплостойкость полиэтиленового и полистирольного волокон. Можно предположить, что этот метод изменения свойств полиэтиленовых и полистирольных волокон найдет применение для повышения их теплостойкости. В результате структурирования полимеров под влиянием ионизирующих излучений наблюдается не только повышение теплостойкости волокон,. [c.584]

    Деструкция полимеров может протекать под действием химических агентов (воды, кислот, спиртов, кислорода и т. д.) или под влиянием физических воздействий (тепла, света, ионизирующего излучения, механической энергии и т. д.). [c.264]

    Деструкция полимеров под влиянием тепловой и световой энергии, ионизирующего излучения и механохимических воздействий протекает по цепному механизму с промежуточным образованием свободных радикалов. [c.282]

    Полученные спектрально-структурные корреляции можно рекомендовать для внедрения в НИИ и ЦЗЛ при синтезе эпоксисоединений, аналитическом контроле технологических процессов, исследовании реакций эпоксидов, в том числе процессов отверждения и получения эпоксидных полимеров, при идентификации неизвестных технических эпоксидных смол, анализе сложных эпоксидных систем, при аналитическом контроле качества и стабильности различных эпоксидов, влиянии на их молекулярную структуру различных физико-химических факторов—агрессивных сред, окислительной атмосферы, механических воздействий, температуры, ультрафиолетового и ионизирующего излучений, электромагнитных полей. [c.69]


    Радиационно-инициированная эмульсионная полимеризация (РЭП) имеет свои особенности [42], которые в большинстве случаев являются ее преимуществами 1) в полимере отсутствуют остатки инициаторов, которые впоследствии могут ухудшать его Свойства при переработке и эксплуатации 2) отсутствует передача цепи на инициатор 3) скорость реакции инициирования постоянна во времени 4) можно легко и быстро менять скорость инициирования и тем самым регулировать скорость полимеризации и молекулярную массу 5) скорость радиационного инициирования не зависит от температуры, что позволяет проводить процесс при достаточно низких температурах, избегая нежелательных побочных реакций 6) ионизирующее излучение оказывает специфическое влияние на коллоидные системы, повышая их устойчивость, что дает возможность осуществлять РЭП с приемлемыми скоростями в присутствии малых количеств эмульгатора (ниже ККМ). [c.36]

    При действии ионизирующего излучения на чистые вещества все результирующие эффекты обусловлены первичной ионизацией и возбуждением в самом веществе совместно с сопутствующими вторичными реакциями. Когда облучается вещество в растворе, возникает вопрос, обусловлены ли конечные эффекты прямым действием на молекулы растворенного вещества или радикалами, созданными в растворителе и прореагировавшими затем с растворенным веществом. Первое называется прямым действием, второе — косвенным действием. Доля молекул растворенного вещества, прореагировавших под действием заданной дозы, при прямом действии не должна зависеть от их концентрации, а их число должно быть пропорционально концентрации. Если имеет место косвенное действие, то число прореагировавших молекул растворенного вещества не зависит от концентрации и, следовательно, относительное их количество должно убывать с ростом концентрации. Прямое действие важно для биологических систем мы рассмотрим этот вопрос подробнее при обсуждении действия излучения на ферменты и вирусы в гл. X (стр. 204). Большая часть работ по полимерам выполнена на пленках и в блоке, а не на растворах и, следовательно, вопрос о прямом или косвенном действии здесь не возникал по крайней мере до тех пор, пока дело не коснулось возможного влияния растворителя. Подобный вопрос возникает даже для твердых тел, когда рассматривается действие агентов, ускоряющих или тормозящих действие ионизирующих излучений (гл. III, стр. 70). [c.60]

    Как известно, кислород обычно ускоряет деструкцию полимеров. Характерным примером является влияние воздуха на ускорение деструкции натурального каучука при пластикации на вальцах. В настоящее время полагают, что кислород очень быстро реагирует с полимерными радикалами, образующимися при разрывах цепей в результате возникновения механических напряжений при вальцевании. При этом образуются относительно неактивные перекисные радикалы, что препятствует рекомбинации первичных радикалов. На основании имеющихся в настоящее время данных процесс деструкции полиметилметакрилата при действии ионизирующего излучения можно представить следующим рядом реакций  [c.148]

    Сшивание полимеров под влиянием ионизирующих излучений называется радиационным сшиванием. Этот процесс наиболее полно изучен иа Примере полиэтилена, прн облучетти которого про-исходит выделение водорода с одновременным увеличением степени ненас[,1щенности молекулы. Механизм процесса сводится н следующему, При действии на молекулу полиэтилена -лучей генерируются свободные радикалы, которые, реагируя с молйку.юй или [c.67]

    Какие процессы, протекают под влиянием ионизирующих излучений Кяк изменяется структура полимера при действии радиации Какие полимеры п наименьшей степени подвержеггы действию радиации н почему  [c.228]

    Разными исследователями [21] было найдено, что результаты кинетических экспериментов зависят от размеров и формы реакционного сосуда, а также от материала и способа обработки его стенок. Эти факты, как известно, являются общепринятым признаком цепного характера реакции. Относительно электронного механизма газофазной полимеризации нет единого мнения. С одной стороны, ускорение реакции под влиянием ионизирующего излучения позволяет предположить свободнорадикальный механизм. Однако инертность обычных радикальных инициаторов и высокая каталитическая активность кислот, щелочей и воды позволяют говорить об ионном механизме. Реакция является равновесной, причем мономер и полимер сосуществуют в довольно широком диапазоне температур. Прямые измерения давления паров мономера над полимером (полиоксиметиленгидрат (СНаО) - Н2О с п поряда 100) показали, что зависимость этой величины От обратной температуры носит линейный характер (рис. 3). Это позволило вычислить теплоту сублимации твердого полимера Ь, которая оказалась равной 56,6+6,3 кДж. С увеличением молекулярной массы полиоксиметилена эта величина несколько возрастает р(са О)п уменьшается). Так, для а-полиоксиметилена Ь = = 68,1 кДж. [c.14]

    В настоящей главе рассматривается влияние ионизирующего излучения на полимеры винилового ряда, содержащие значительную долю хлор- или фтор-атомов (или тех и других вместе), за исключением полифторбутилакрилата, который рассмотрен в предыдущей главе. Присутствие атомов галоида в полимере существенно сказывается на характере изменений при облучении не только вследствие изменения соотнощения между процессами сщивания и деструкции, но и вследствие того, что возможно выделение хлористого и фтористого водорода, фтора и фторсодержащих фрагментов цепи, которые сами могут участвовать в реакциях. Уже было показано, что при облучении полифторбутилакрилата в результате отщепления боковых групп образуются реакционноспособные фрагменты, которые взаимодействуют с основной цепочкой и вызывают в свою очередь ее деструкцию. [c.163]

    В литературе описано влияние ионизирующего излучения на физические и химические свойства полимеров. В ряде статей Харрингтона [1—6] и других авторов приведены данные по действию излучения главным образом на некоторые ненапряженные резины. Подавляющее большинство резиновых материалов подвергается действию ионизирующих излучений в напряженном состоянии. В работе Кузьминского с сотр. [7] было пока зано поведение некоторых напряженных резин под действием у-излучения. Однако в литературе отсугствуют четкие указания относительно разработки рецептур радиационностойких резин. Резино-технические изделия при эксплуатации подвергаются одновременному воздействию радиации, механических напряжений, различных сред и температур. [c.384]

    Отмечается, что в противоположность политетрафторэтилену, который под влиянием ионизирующих излучений деструктируется, фторэластомеры, содержащие в мономерных звеньях атомы водорода при облучении образуют пространственно сшитую сетку. Наряду с этим имеет место и деструкция цепей полимеров. Скорость радиационного структурирования сополимеров винилиденфторида с гексафторпропиленом (СКФ-26) ила с перфторалкилвиниловым эфиром выше, чем сополимера винилиденфторида с трифторхлорэтиленом (СКФ-32). Кислород воздуха ингибирует структурирование при облучении и поэтому в присутствии кислорода воздуха золь фракции образуется в 8—10 раз больше, чем в изоляции от воздуха [29]. [c.237]

    Под влиянием ионизирующего излучения выделяется 20—30% водорода и происходит структурирование.полимера. В облученном полиэтилене было найдено значительное число двойных связей. Кроме того, наблюдалось выделение углеводородов с С. Одновременно снижалось содержагше кристаллической фазы полимера. Облученный полимер обладает большей прочностью, большим модулем упругости и меньшей газопроницаемостью, чем иеоблученный. Развитие пространственной структуры приводит к образованию нерастворимого полимера с повышенной термической и химической стойкостью. [c.92]

    Под влиянием ионизирующего излучения (Р и - -1учей) происходит выделение электронов, обладающих высокой энергией. Облученный полимер обладает большей прочностью, меньшей газопроницаемостью. При облучении полиизобути-лен превращается в жидкость с высокой вязкостью, а фторопласт-4 в порошок с выделением фтора. [c.212]

    Поливинил- и поливинилиденгалогениды также относятся к числу полимеров, сравнительно легко разрушающихся под влиянием ионизирующих излучений. Деструкция поливинилхлорида наблюдается при дозе облучения 80—100 Мрад. Процесс протекает одновременно в двух направлениях отщепление хлористого водорода с превращением поливинилхлорида в полней с сопряженными двойными связями и поперечным соединением его макромолекул и разрушение макромолекул на небольшие осколки. [c.332]

    Полимеры производных стирола отличаются от полистирола и поведением в процессе деструкции. Так, поли-а-метилстирол деструктируется под влиянием ионизирующих излучений, полностью изменяя свои свойства уже при дозе в 800 Мфэр. При нагревании выще 250° С поли-а-метилстирол деполимеризуется полностью до мономера. Процесс проходит с большей скоростью и с меньшей энергией активации (44,8 ккал1моль вместо 55 ккал1моль для полистирола). [c.457]

    Сжиженный винилхлорид полимеризуется также под влиянием ионизирующего излучения. Скорость инициирования этой реакции определяется интенсивностью излучения и не зависит от температуры. При интенсивности выше 10 000 рентген полимеризация проходит с высокой скоростью, но одновремен но наблюдается отщепление хлористого водорода, сопровож дающееся структурированием полимера и его потемнением. При интенсивности ниже 10 000 рентген1ч в присутствии стабилизаторов скорость побочных процессов резко понижается, а степень превращения мономера в полимер за 5 ч составляет 57,5%. [c.304]

    Если полимеры подвергаются действию разных видов ионизирующей радиации (например, рентгеновского излучения), то их электрическая проводимость существенно увеличивается. Это обусловлено тем, что под влиянием ионизирующей радиации происходят ионизация и возбуждение макромолекул. Увеличение интенснв- [c.203]

    При хранении и эксплуатации полимеров, полимерных материалов и изделий постепенно ухудшаются их физико-мехаии-ческие свойства. Такое необратимое изменение свойств во времени называется старением. Основной причиной старения полпмеров является действие кислорода воздуха. Кислород наряду с различными активирующими факторами (свет, тепло, ионизирующие излучения и др.) вызывает в полимерах сложные процессы, в том числе реакции окисления, деструкции, струк-Т фирог ания и т. п. Особенно велика роль процессов окисления при старении эластомеров, так как в состав их макромолекул обычно входят реакциоиносиособные двойные связи и сс-метиленовые группы. С целью предотвращения вредного влияния кислорода в каучуки, как и вообще в полимеры, вводят различные добавки стабилизаторов — ингибиторов окисления. [c.28]

    Полимеры под действием тепла, света, кислорода воздуха и ионизирующих излучений претерпевают изменения, вызывающие ухудшение их физико-механических свойств. Для защиты от этих нежелательных воздействий применяют стабилизаторы (антиоксиданты, термо- и светостабилизаторы, антиозонанты и др.), концентрации которых, необходимые для стабилизации полимеров разных типов, различны и строго регламентированы. Поэтому анализ полимеров на стойкость к процессам старения, на содержание антиоксидантов и све-тостабилизаторов, установление их типа имеют большое значение и входят в план аналитического контроля производства полимерных материалов. Наибольшее влияние на изменение структуры и ухудшение свойств каучуков оказывают протекающие в них процессы старения, обусловленные, как правило, деструкцией полимерных цепей [I]. [c.389]

    Влияние морфологии кристаллизующихся полимеров на их ст руктурирование и деструкцию под действием ионизирующего излучения исследовали в работе (30]. Во всех случаях наблюдали разницу в скорости структурирования и деструкции макромолекул кристаллической и аморфной фаз. [c.228]

    Эта глава посвящена действию ионизирующих излучений на важный класс полимеров — акрилаты и матакрилаты, — что представляет практический и теоретический интерес. Для удобства в этой главе (стр. 160) приведены краткне сведения о влиянии излучения на некоторые другие кислородсодержащие полимеры об их исследованиях в настоящее время подробными сведениями мы не располагаем. [c.142]


Смотреть страницы где упоминается термин Влияние ионизирующих излучений на полимеры: [c.67]    [c.23]   
Смотреть главы в:

Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 -> Влияние ионизирующих излучений на полимеры




ПОИСК





Смотрите так же термины и статьи:

Влияние излучения

Влияние ионизирующего излучения

Излучение полимеров

Излучения ионизирующи

Ионизирующие излучения



© 2025 chem21.info Реклама на сайте