Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергетические процессы у микроорганизмов

    Биореактор. Аппараты для проведения процессов культивирования микроорганизмов — биореакторы — можно рассматривать как технические системы, предназначенные для преобразования необходимых материальных и энергетических потоков в процессе роста и размножения клеток. Биохимические реакторы представляют собой основное технологическое оборудование, элементы схемы производства в целом, а эффективность их функционирования определяет в основном технико-экономические показатели биотехнологической системы. Многообразие форм конструктивного оформления биореакторов определяется технологическими и микробиологическими требованиями осуществляемого процесса ферментации. Так, схема на рис. 1.4 иллюстрирует различные процессы микробиологического синтеза, осуществляемые в промышленных биореакторах, а также основные условия их проведения. В биореакторе необходимо поддержание заданной температуры культивирования 1, давления Р, pH среды, окислительно-восстановительного потенциала еН, уровня растворенного кислорода Со времени ферментации т и концентрации лимитирующего субстрата 5. Для обеспечения заданных физико-химических параметров протекания процесса в биореакторе должны быть выдержаны необходимые условия тепло- и массообмена, аэрации среды и режима гидродинамического перемешивания. Рассмотренные на схеме процессы осуществляются в результате глубинного культивирования микроорганизмов в условиях аэрации и перемешивания среды. Известны также биореакторы для осуществления процесса путем поверхностного культивирования клеток с использованием микробиологических пленок и флокул, а также биореакторы для процессов с иммобилизованными на носителях ферментами [22]. [c.12]


    Повышение цен на традиционные источники энергии (природный газ, нефть, уголь) и угроза их исчерпания побудили ученых обратиться к альтернативным путям получения энергии. Роль биотехнологии в создании экономичных возобновляемых энергетических источников (спиртов, биогенных углеводородов, водорода) чрезвычайно велика. Эти экологически чистые виды топлива можно получать путем биоконверсии отходов промышленного и сельскохозяйственного производства. Перспективно продолжение исследований по усовершенствованию и внедрению процессов производства метана, этанола, созданию на основе микроорганизмов (и ферментов) элементов, эффективно производящих электричество, а также по организации искусственного фотосинтеза, в частности биофотолиза воды, при котором можно получать богатые энергией водород и кислород. [c.204]

    Энергетические процессы у микроорганизмов [c.60]

    С каждым годом все большее число разнообразных процессов микробиологического синтеза реализуется в промышленных условиях, Промышленная биотехнология становится новым перспективным направлением, открывающим необозримые горизонты использования продуктов биосинтеза микроорганизмов в народном хозяйстве. Увеличивается число биохимических заводов и комбинатов по производству уже освоенной продукции микробиологического синтеза — ферментных препаратов, витаминов, кормовых антибиотиков, аминокислот, микробиологических препаратов для борьбы с вредителями растений, кормовых дрожжей и др. Широким фронтом ведутся исследования по получению и технологии производства новых биологически активных препаратов, разрабатываемых с использованием современных достижений молекулярной генетики и генной инженерии. К перспективным задачам промышленной биотехнологии относится также реализация микробиологических процессов, направленных на решение энергетической проблемы, в том числе производство биогаза, топливного этанола, метана, топливного водорода с помощью фотосинтезирующих микроорганизмов и др. [c.3]

    В природе существуют микроорганизмы, вызывающие процесс денитрификации, т. е. восстановление азотнокислых солей до газообразного азота. Эти бактерии относятся к группе факультативных анаэробов. Процесс денитрификации протекает при наличии в среде безазотистых веществ углеводов, клетчатки, солей летучих жирных кислот и др. Такие вещества окисляются освободившимся из нитратов кислородом. Очевидно, в этом заключается энергетический смысл процесса. Схематически процесс денитрификации можно записать уравнением [c.265]


    В лабораторных условиях микроорганизмы культивируют на питательных средах, поэтому питательная среда должна содержать все вещества, необходимые для их роста. Предложены сотни различных сред для культивирования микроорганизмов, состав которых определяется потребностями микроорганизмов в соединениях, необходимых для биосинтеза и получения энергии. Конструктивные и энергетические процессы у микроорганизмов крайне разнообразны, поэтому столь же разнообразны их потребности в питательных веществах. Из этого следует, что универсальных сред, одинаково пригодных для роста всех без исключения микроорганизмов, не существует. [c.43]

    Процессы биохимического синтеза происходят со значительным выделением тепла. Так, в процессах выращивания биомассы микроорганизмов величина удельного тепловыделения а на 1 кг биомассы дрожжей, кДж/кг (величина а изменяется в зависимости от соотношения энергетического и конструктивного обмена в клетках) [18] для различных углеродсодержащих субстратов составляет меласса — а = 9,8-10 этанол — а = 22,0-10 н-парафин 9 = 26,0-10 метанол — а9 = 34,0 10 метан — 9 = 67,0-10 . [c.31]

    Соединения серы участвуют в энергетических процессах микроорганизмов, входят в состав многих физиологически активных соединений. [c.75]

    Хранение свеклы. Биологические и энергетические процессы, протекающие в свекле при хранении, снижают ее технологические качества. Некоторые из них (дыхание, прорастание, раневые реакции) усиливают при этом сопротивляемость вредным микроорганизмам. [c.6]

    Математическая модель процесса биологической очистки в аэротенках, предложенная И. В. Скирдовым, включает систему кинетических уравнений, которыми описаны следующие явления сорбции субстрата активным илом (по уравнению Ленгмюра), скорости роста биомассы с учетом влияния концентрации кислорода и микроорганизмов, скорости образования продуктов окисления, скорости потребления субстрата на поддержание жизнедеятельности (энергетический обмен), скорости отмирания бактерий, скоростей образования автолизата и инертной части биомассы ила. [c.180]

    Биогенные элементы. Кроме углерода, микроорганизмам для нормального функционирования необходимы азот и фосфор. Оба этих элемента являются составными частями при построении клеточного материала и играют существенную роль в энергетических процессах, протекающих в клетках. Недостаток азота или фосфора резко снижает эффективность процесса очистки и так же, как и дефицит кислорода, приводит к накоплению нитчатых форм бактерий. Количество азота и фосфора, необходимое микроорганизмам для нормального функционирования, определяется видом органических соединений, присутствующих в сточных водах, его можно рассчитать теоретически. [c.106]

    Все необходимые вещества микроорганизмы получают вместе с питательными веществами из окружающей среды. Кроме перечисленных элементов для жизнедеятельности микроорганизмов совершенно необходимы различные витамины (ниацин, В1 и др.), так как они способствуют энергетическим процессам и синтезу соде ржи-мого клетки. Некоторые бактерии не способны сами синтезировать эти соединения. [c.267]

    При повышении гидростатического давления происходит ряд изменений в протекании биологических процессов. Замедляются реакции, приводящие к увеличению объема (например, брожения с образованием газообразных продуктов). Наоборот, усиливаются реакции поглощения газов. Химическое равновесие сдвигается в сторону субстратов реакции. При повышенном давлении происходят денатурация биологических полимеров и диссоциация сложных агрегатов клеток. Клетки после деления не расходятся (образуются филаменты). При давлении выше 1 атм спадаются газовые вакуоли, определяющие плавучесть водных микроорганизмов. В целом у прокариот энергетические процессы преобладают над биосинтетическими. [c.95]

    Микроорганизмы сильнее высших организмов разнятся между собой не только в том, что касается их энергетических процессов, но также по видам потребляемой пищи. Поскольку вначале жизнь была микробной, мы должны остановиться на типах питания микроорганизмов, чтобы получить представление о пищевых нуждах примитивных организмов. [c.150]

    Выше уже отмечалось, что только некоторые бактерии способны ассимилировать молекулярный азот с образованием из него аммиака, который используется для синтеза аминокислот и других азотсодержащих веществ клеток. Лишь некоторые микроорганизмы могут расти, используя углеводороды, лигнин и ряд других соединений углерода, а также получая энергию в результате окисления ряда неорганических веществ. Это определяется наличием у них особых ферментов, катализирующих реакции, к которым микроорганизмы не способны. Только среди микроорганизмов есть виды, способные расти в отсутствие молекулярного кислорода в результате таких энергетических процессов, как различные брожения и анаэробное дыхание. [c.26]


    Энергетические процессы, осуществляемые микроорганизмами, включают фотосинтез, брожения, аэробное и анаэробные дыхания. Все они приводят в конечном итоге к запасанию энергии главным образом в АТФ, которая расходуется на различные энергопотребляющие процессы. [c.20]

    Ерошин В. К. Основы материально-энергетического баланса роста микроорганизмов.— В кн. Лимитирование и ингибирование микробиологических процессов. Пущино, 1980, с. 34—54. [c.274]

    Кислород входит в состав вс/ды и многих соединений, поэтому поступает в клетки всегда в больших количествах. Однако значительная часть микроорганизмов нуждается в постоянном притоке молекулярного кислорода. Такие микроорганизмы принято объединять в группу облигатных аэробов. Энергетическим процессом, у них является аэробное дыхание, а молекулярный кислород играет роль терминального окислителя. Среди облигатных аэробов выделяют группу микроаэрофильных микроорганизмов, которые нуждаются в кислороде, но лучше растут при парциальном давлении Ог меньшем, чем в воздухе. Развитие других микроорганизмов, напротив, возможно только в отсутствие кислорода. Получение энергии у этих микроорганизмов не связано с использованием молекулярного кислорода. Для многих из них кислород токсичен — он угнетает рост или вызывает гибель клеток. Такие микроорганизмы называют облигатными анаэробами. Среди микроорганизмов выделяют также группу факультативных анаэробов, представители которой способны расти как в присутствии, так и в отсутствие молекулярного кислорода. Например, некоторые дрожжи или энтеробактерии в зависимости от наличия кислорода осуществляют аэробное дыхание или брожение. [c.57]

    ЭНЕРГЕТИЧЕСКИ ПРОЦЕССЫ У МИКРООРГАНИЗМОВ [c.60]

    Следовательно, в основе жизнедеятельности организма лежит конструктивный и энергетический обмен. В процессе своей жизнедеятельности микроорганизмы могут в известных пределах регулировать условия среды обитания. Ими расходуются материалы и энергия на изменение активной реакции среды (выделение кислоты или щелочи), на обезвреживание токсических веществ и т. д. Эти биохимические процессы называют приспособительным обменом организма. [c.256]

    Для жизнедеятельности организма человека н животных необходимы белки, жиры и углеводы, являющиеся пластическими и энергетическими материалами, а также минеральные соли н витамины. Среди жиров и продуктов гидролиза белков имеются незаменимые органические вещества, поступление которых должно обеспечиваться с пищей, так как они не синтезируются организмом. По-видимому, по мере эволюционного развития животного мира отдельные виды постепенно теряли способность к биосинтезу некоторых простых органических соединений, участвующих в метаболических процессах, так как более эффективным для организма путем они могли получить их из окружающей органической природы — растений и микроорганизмов или с животной пищей. К таким органическим соединениям относятся незаменимые -аминокислоты, незаменимые ненасыщенные жирные кислоты, а также витамины (термин витамины предложен Функом [2]). На необходимость для питания таких факторов ( витаминов ), не синтезируемых животными, указывал Лунин [3]. Для человека незаменимыми оказались восемь -аминокислот (из 20) валин, лейцин, изолейцин, лизин, треонин, метионин, фенилаланин триптофан [4]. Для животных незаменимых аминокислот значительно больше, например для крысы —11. [c.5]

    Интересна взаимосвязь энергетических и массообменных эффектов в процессе ферментации. В зависимости от уровня аэрации меняются энергетические затраты в процессе образования биомассы микроорганизмов. [c.101]

    Антибиотики—вещества, образуемые микроорганизмами или получаемые из других природных источников, обладающие антибактериальным, антивирусным и противоопухолевым действием. Они вмешиваются в обмен белков, нуклеиновых кислот и в энергетические процессы пораженных организмов и клеток, избирательно воздействуя на определенные молекулярные механизмы. Так, в биосинтезе белка (о поименованных ниже этапах биосинтеза белка см. гл. VII) пуромицин высвобождает недостроенные полипептиды, тетрацик-лины подавляют присоединение аминоацил-тРНК к рибосоме, хлорамфеникол (левомицетин)—пептидилтрансферазную реакцию в ней, эритромицин блокирует перемещение рибосомы по информационной РНК, стрептомицин искажает считывание кода белкового синтеза. В биосинтезе нуклеиновых кислот (терминологию см. в гл. VI) противораковые и антибактериальные антибиотики (актиномицины, митомицин, новобицин, рифамицин и др.) подавляют процессы репликации и транскрипции. На энергетические процессы в клетке воздействуют антимицин (подавляет перенос электронов в цитохромной системе), ОЛИГОМИ1ЩН (подавляет сопряжение окисления с фосфорилированием) и другие антибиотики. Биосинтез гликопротеинов клеточных стенок бактерий приостанавливается под действием пенициллинов и D-циклосерина проницаемость клеточных мембран нарушается грамицидинами, нистатином и многими другими антибиотиками. [c.175]

    Поглощение молекулой азота одного электрона требует энергии, равной 27 кДж, т. е. осуществление приведенной выше полуреакции (2.1) должно сопровождаться поглощением значительной энергии (ДС = +162 кДж/моль). Этот энергетически невыгодный процесс идет только потому, что в клетках азот-фиксирующих микроорганизмов он сопряжен с экзотермической реакцией окисления углеводов [c.62]

    В результате обмена веществ из клеток микроорганизмов выделяются многие вещества, получение которых может представить интерес для микробиологической промышленности. Эти вещества делят на продукты энергетического обмена веществ и продукты биосинтеза. К первым относятся уксусная и молочная кислоты, этиловый спирт и др. Микробиологические процессы, ведущие к образованию этих веществ, называют брожением. В результате биосинтеза образуются ферменты, токсины, антибиотики, аминокислоты, витамины, пуриновые и пиримидиновые основания и другие продукты конструктивного обмена веществ, диссимиляции или автолиза. [c.40]

    К основным питательным веществам, используемым микроорганизмами в качестве исходного сырья для биосинтеза, следует отнести углерод, азот и фосфор. При аэробном культивировании микроорганизмов в энергетическом метаболизме клетки непосредственное участие принимает кислород, выполняя роль акцептора электронов. С участием молекулярного кислорода происходит окисление углеводородного субстрата с последовательным образованием надвинного спирта, а затем жирной кислоты. При анаэробном процессе микроорганизмы получают энергию в результате окисления, когда акцепторами электронов выступают неорганические соединения. У фототрофов (фотосинтезирующих бактерий, водорослей) в качестве источника энергии служит энергия солнечной радиации. [c.10]

    Этот путь отражает, по-видимому, энергетическое обеспечение простейших форм жизни, функционировавших в бескислородных условиях. Современные анаэробные микроорганизмы (осуществляющие молочнокислое, спиртовое и уксуснокислое брожение) получают для жизнедеятельности энергию, производимую в процессе гликолиза или его модификаций. [c.307]

    Органические кислоты имеют важное значение в метаболизме углерода, энергетическом обмене микроорганизмов, синтетических и диссимиляционных процессах. Использование кислот жирного ряда в качестве источника углерода зависит от вида и расы дрожжей, концентрации кислоты, длины ее углеродной цепи и степени электролитической диссоциации. Хорошими субстратами служат кислоты с длиной углеродной цепи от Сг до С4 (уксусная, пировиноград-ная, молочная, масляная и др.) при сравнительно низкой концентрации. Калийные соли кислот, содержащих в молекуле от 2 до 5 атомов углерода, стимулируют рост дрожжей в 1,4—3,3 раза по сравнению с соответствующими кислотами. [c.200]

    При наличии в клетке плазмиды часть энергетических ресурсов расходуется на ее репликацию, транскрипцию и синтез белков, которые она кодирует. При этом, как правило, многокопийные плазмиды требуют больше энергии, чем мал око-пийные, и в результате часть клеток в процессе роста популяции утрачивает плазмиды. Клетки, лишившиеся своих плазмид, обычно растут быстрее тех, в которых они сохранились, и в конечном счете оказываются в культуре преобладающими. По прошествии нескольких генераций это отражается на количестве синтезируемого продукта клонированного гена. Разработано по крайней мере два подхода к решению этой проблемы. В лабораторных условиях для сохранения плазмид клетки выращивают в присутствии антибиотиков или метаболитов, обеспечивающих рост только тех клеток, в которых есть плазмида. Однако добавление антибиотиков и каких-то других веществ в культуры, выращиваемые в больших объемах, или в промышленные ферментеры приводит к значительному удорожанию конечного продукта. Особенно важно, чтобы клонированные гены сохранялись, не утрачиваясь и не передаваясь другим микроорганизмам, в том случае, когда сконструированный микроорганизм предназначен для использования вне стен лаборатории. Он должен не только оставаться эффективным, но и быть экологически безопасным. Включение клонированной ДНК в хромосомную ДНК хозяйского организма позволяет обойтись без плазмид и избежать утраты плазмидных генов. [c.123]

    Все необходимые вещества микроорганизмы получают (вместе с ннтательиымн веществами) из окружающей среды. Кроме перечисленных элементов для жизнедеятельности микроорганизмов совершенно необходимы различные витамины, так как они способствуют энергетическим процессам и синтезу содержимого клетки. Известно около 15 витаминов, в которых нуждаются микроорганизмы, так как эти вещества играют роль коферментов или входят в их состав, Наиболее необходимыми из них являются следующие витамины и их аналоги 1) тиамин (витамин Bi) 2) биотин (витамин Ву) 3) никотиновая кислота (витамин РР) 4) рибофлавин (витамин Вг)  [c.260]

    Большое разнообразие процессов микробиологического синтеза реализуется в многочисленных, различных по своему принципу действия и конструктивным особенностям биореакторах. Наибольшее внимание при этом уделяется бноинженерному оформлению аэробных процессов глубинного культивирования микроорганизмов, что связано, с одной стороны, с высокими энергетическими затратами на проведение процесса биосинтеза в условиях интенсивного газо-жидкостного взаимодействия, а с другой стороны, с задачами создания промышленных биореакторов большой единичной мощности. С биотехнологической точкп зрения аппаратурное оформление процесса биосинтеза должно обеспечивать наилучшие условия для роста и размножения микроорганизмов. С учетом этого биореактор, предназначенный для аэробного культивирования микроорганизмов, включает в качестве основных функциональных элементов следующие  [c.195]

    Следует также иметь в виду, что в больщинстве случаев одни и те же микроорганизмы принимают участие в выполнении весьма разнообразных функций. Примеры узкой физиологической специализации отмечаются не слищком часто. Так, например, нитрифицирующие бактерии, имеющие весьма сложный обмен, за исключением окисления аммиака, не вызывают никаких других внешне резко выраженных энергетических процессов. Между тем существуют микробы, особенно сапрофиты, которые, являясь аммонификаторами, могут также восстанавливать нитраты, разлагать углеводы, жиры и т. д. Это приводит к тому, что, рассматривая весьма разнообразные превращения веществ, в качестве возбудителей можно встретить одни и те же виды микробов. [c.153]

    Учебник охватывает современные проблемы микробиологии особенности конструктивного и энергетического метаболизма основных групп микроорганизмов, эволюцию энергетических процессов, строение и химический состав прокариотной клетки, пути химической и биологической эволюции, проблемы возникновеиия и дальнейшего развития жизни. Второе издание в целом сохраняет структуру первого издания, однако отдельные главы существенно переработаны, что продиктовано успехами, достигнутыми в изучении некоторых групп прокариот за последний период. [c.2]

    Для хемоорганотрофов энерегетическим субстратом служат органические вещества, которые обычно играют двоякую роль, являясь одновременно и источником углерода и источником энергии. Однако есть микроорганизмы, которые для конструктивных и энергетических процессов нуждаются в разных соединениях. Например, гомоферментативные молочнокислые бактерии получают энергию при сбраживании сахаров, но почти не используют их в процессах биосинтеза. Для конструктивных целей им необходимы готовые аминокислоты, пуриновые и пиримидиновые основания, витамины. [c.48]

    Все большее распространение для биологической очистки получают колонные биореакторы, позволяющие за счет гидравлического давления столба жидкости значительно улучшить условия снабжения кислородом микроорганизмов активного ила. Это в свою очередь приводит к заметной интенсификации процесса, снижению энергетических и эксплуатационных затрат. Так, по данным [23] при практически равных удельных капитальных затратах на 1 т БПКб для колонного (башенного) биореактора и традиционного бассейнового аэротенка удельные энергозатраты в первом случае почти в 2 раза ниже, что иллюстрируют приведенные в табл. 4.8 показатели. [c.236]

    Дыхание микроорганизмов — совокупность биохимических окислительно-восстановительных процессов, необходимых для обеспечения энергетических потребностей в условиях их жизнедеятельности. Л. Пастер впервые установил способность некоторых микроорганизмов существовать без использования кислорода воздуха. По этому признаку все микроорганизмы делят на две группы аэробы и анаэробы. Аэробы нуждаются в кислороде для биохимических процесов внутри клеток (многие бактерии и микрогрибы). Анаэробы способны к дыханию без использования свободного кислорода. [c.16]

    Для питания микроорганизмов необходимы соединения.углерода, лучшим источником которого являются углеводы. Они используются для синтеза белков и жиров, для образования клеточных оболочек и как энергетический материал в дыхательных и других процессах, происходящих в микробных клетках. Из углеводов для питания, например, дрожжей используются главным об1разом сахара. В качестве углеродистого питания применяются органические кислоты и их соли (молочная, уксусная, яблочная, янтарная), а также некоторые спирты (этиловый, маи-нит). В последнее время при помощи меченых атомов установлено, что дрожжи и бактерии для синтеза жиров могут использовать уксусную кислоту, которая превращается в жирные кислоты. [c.514]


Смотреть страницы где упоминается термин Энергетические процессы у микроорганизмов: [c.194]    [c.452]    [c.90]    [c.452]    [c.21]    [c.360]    [c.427]    [c.59]   
Смотреть главы в:

Химия воды и микробиология -> Энергетические процессы у микроорганизмов

Микробиология -> Энергетические процессы у микроорганизмов




ПОИСК





Смотрите так же термины и статьи:

Энергетические процессы



© 2025 chem21.info Реклама на сайте