Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тема 27. Комплексные соединения

    Устойчивость комплексов. У различных комплексных соединений степень распада при диссоциации комплексных ионов различна. Степень распада того или иного комплексного иона может быть выражена через константу равновесия, которую называют константой нестойкости (или распада) комплекса и обозначают Ки- Чем больше Кч, тем комплексное соединение менее устойчиво. [c.42]


    Координационная изомерия присуща тем комплексным соединениям, в которых как катион, так и анион являются комплексными, т. е. имеются два атома комплексообразователя. Например [Сг(КНз)б[Со(8204)3] и [Со(ЫНз)е][Сг(8204)3], происходит обмен заместителями. [c.376]

    Тема Комплексные соединения рассматривается в трех разделах Классификация неорганических соединений , Химическая связь и Растворы , что облегчит студентам усвоение объемного и сложного материала. С целью развития навыка у студентов в использовании теоретических знаний для решения практических вопросов введена глава Смешанные задачи . [c.3]

    Вместе с тем комплексные соединения— это самостоятельная, отдельная область химии со своим прошлым, настоящим и будущим. [c.14]

    Из математического выражения константы нестойкости видно, что чем больше равновесные концентрации свободных составных частей комплексного иона, тем большим является численное значение константы нестойкости. Другими словами, чем больше константа нестойкости, тем неустойчивее комплексное соединение, и наоборот — чем меньше константа нестойкости, тем комплексное соединение устойчивее. [c.22]

    Из всего сказанного о солевом эффекте следует, что он тем сильнее отражается на увеличении растворимости осадка, чем бол( ше взято осадителя. При очень большом избытке осадителя, особенно если в состав его входят многозарядные ионы, солевой эффект может превысить эффект, обусловленный введением одноименных ионов, и растворимость осадка не понизится, а повысится. Следовательно, даже в тех случаях, когда при осаждении нет оснований опасаться влияния процессов образования комплексных соединений, кислых солен и т. д. на растворимость соединения, прибавление более чем 50%-ного избытка осадителя нецелесообразно вследствие слишком сильного возрастания солевого эффекта. Но указанным избытком осадителя можно сделать осаждение определяемого иона практически полным только тогда, когда величина произведения растворимости осаждаемого (бинарного) соединения порядка 10" или меньше. Поэтому соединения с ПР > > 10 в гравиметрическом анализе в качестве осаждаемой формы, как правило, не применяются. [c.81]

    Однако между металлами главных и побочных подгрупп есть ц существенные различия. Они также связаны с особенностями электронного строения переходных элементов, а именно с тем, что во втором снаружи электронном слое их атомов имеется неполностью занятый электронами -подуровень. Для образования химических связей атомы переходных элементов могут использовать не только внешний электронный слой (как это имеет место у элементов главных подгрупп), но также -электроны и свободные -орбитали предшествующего слоя. Поэтому для переходных элементов значительно более характерна переменная валентность, чем для металлов главных подгрупп. Возможность создания химических связей с участием -электронов и свободных -орбиталей обусловливает и ярко выраженную способность переходных элементов к образованию устойчивых комплексных соединений, С этим же связана, как указывалось на стр. 598, характерная окраска многих соединений переходных элементов, тогда как соединения металлов главных подгрупп в большинстве случаев бесцветны. [c.646]


    При проведении изомеризации в промышленных условиях в качестве катализаторов применяют главным образом платину или безводный хлористый алюминий, промотированный хлористым водородом. Наибольшее распространение получил платиновый катализатор. Объясняется это тем, что при использовании хлористого алюминия последний образует с углеводородами комплексное соединение, которое сильно корродирует аппаратуру. Недостатком платинового катализатора является необходимость проведения процесса на индивидуальных углеводородах, что требует дополнительных расходов на их разделение. [c.141]

    В данной главе обсуждается важный класс соединений, включающих переходные металлы. Помимо описания свойств координационных комплексных соединений и их роли в биологических системах в учебнике содержится материал по номенклатуре, типам изомерии, теории химической связи и равновесиям комплексообразования. Усвоение правил систематической номенклатуры и возможных проявлений изомерии в этих, по существу, неорганических соединениях должно помочь студентам в их последующем изучении органической химии. Материал по химической связи в координационных соединениях и равновесиям комплексообразования может рассматриваться как повторение, иллюстрация и расширение предшествующего прохождения этих тем. [c.581]

    Очевидно, что изучение реакции гидрирования в присутствии комплексных соединений переходных металлов ценно тем, что процесс не осложнен явлениями диффузии внутри пор, характером и параметрами поверхности и др., что имеет место в случае гетерогенного катализа. [c.137]

    Весь текст четвертого издания этой книги подвергся переработке, в результате чего больше половины книги было написано заново. Это было сделано с тем, чтобы внести в нее новые, утвержденные ШРАС, правила номенклатуры химических соединений. В раздел о неорганических соединениях добавлены основные положения из рекомендаций ШРАС, касаюш,иеся комплексных соединений вообще, я-комплексов. [c.9]

    Преимущества метода МО обусловлены в значительной степени ии енно тем, что он может рассматривать не отдельные связи, а молекулу в целом. Эти преимущества проявляются главным образом при рассмотрении более сложных молекул (в органических и комплексных соединениях), которые в данной книге не разбираются. [c.68]

    В книге кратко описаны методы расчета некоторых параметров фазовых переходов, наиболее существенных для термодинамики химических реакций, в частности процессов перехода из жидкого или кристаллического состояний в состояние идеального газа и обратно при равновесных или при стандартных условиях. Однако автор не затрагивал свойств растворов и методов их расчета, а также специфических особенностей расчетов для области высоких давлений, так как это потребовало бы значительного увеличения объема книги. По тем же причинам не рассмотрены реакции образования комплексных соединений и методы статистической термодинамики, но описаны некоторые методы практического расчета термодинамических функций, основанные на выводах статистической термодинамики. [c.7]

    Тем не менее в последние годы открыты и исследованы комплексные соединения с участием молекулярного азота. [c.80]

    Успех хроматографического разделения палладия (II) и родия (III) определяется в основном тем, в какой мере предварительная подготовка растворов обеспечивает получение стабильных форм комплексных соединений одного состава. Для этого необходимо выполнить ряд условий раствор смеси солей перед хроматографированием следует обработать в тигле концентрированной хлороводородной кислотой применять бумагу, предварительно обработанную 6%-ным раствором хлорида лития, который играет роль высаливателя и поставщика хлорид-ионов добавить в подвижный растворитель хлороводородную кислоту. [c.213]

    Тема 4 Комплексные соединения- (2 час). [c.180]

    Весьма перспективно применение системы электрофорез — ТСХ ири изучении свойств и строения неорганических комплексных соединений. Это обусловлено тем, что скорость движения ионов в тонком слое при электрофорезе зависит только от заряда и радиуса ионов, в то время как значение Rf при движении вещества в. тонком слое под действием движения растворителя связано с числом молекул воды в комплексных соединениях. Сопоставляя эти величины, можно сделать определенные выводы о составе комплекса и его структуре. [c.159]

    Раствор электролита в этом случае является идеальным. Однако в действительности коэффициент Вант-Гоффа всегда меньше V, так как ионы в растворе связаны силами электростатического взаимодействия и не могут проявлять себя как вполне свободные частицы. Чем больпш силы межионного взаимодействия, тем больше отклоняется данный реальный раствор от идеального раствора электролита и тем меньше г. В комплексных соединениях I зависит от константы нестойкости комплексного иона. [c.80]


    Органические и неорганические осадители при соответствующих условиях могут реагировать не с одним, а со многими ионами. Реактивов, которые осаждали бы только один ион из любой сложной смеси, нет. При анализе сложных смесей выбор возможно более специфического реактива имеет существенное значение, однако наиболее важен выбор наилучших условий для проведения реакции. Иногда разделение элементов, образующих осадки с одним и тем же реактивом, удается выполнить наиболее простым способом —созданием определенной кислотности. Однако этот способ не всегда достигает цели, а иногда неудобен. Очень часто поэтому применяют другой способ вводят вещество, связывающее в комплекс ионы других элементов, мешающих осаждению данного иона. Ион мешающего элемента хотя и остается в растворе, но связывается в комплексное соединение. При таком способе удаления мешающих ионов не требуется фильтрование и не возникает осложнений в связи с соосаждением. [c.106]

    Методы, основанные на образовании комплексов. Реакции комплексообразования, подобно реакциям осаждения, сравнительно редко применяются в объемном анализе для прямого определения. Однако основные трудности здесь связаны со ступенчатым характером образования комплексных соединений, причем отдельные комплексы нередко мало отличаются друг от друга по свойствам. В известной степени трудности обусловлены недостаточной изученностью реакций образования комплексов. Тем не менее известен ряд важных методов объемного анализа, основанных на реакциях комплексообразования. Так, например, хлориды можно удобно определять титрованием раствором азотнокислой ртути (И) (см. 119). Такой метод позволяет заменить при определении хлоридов соли серебра азотнокислой ртутью (И) и поэтому применяется довольно [c.272]

    Вследствие слабо выраженного хромофорного действия ниобия и тантала для их фотометрировання используют окрашенные органические соединения. В связи с этим особый интерес представляют пиридиновые азосоединения с оксигруппой в орто-положении к азогруппе и, в первую очередь, 1-(2-пиридилазо)-резор-цин (ПАР), который нашел широкое применение для фотометрического определения ниобия в сплавах [1—3], в сталях [4], в присутствии тантала [5—8]. Вместе с тем комплексные соединения ниобия и некоторых других элементов с реагентом ПАР изучены явно недостаточно [2, 5, 9—12]. [c.175]

    Из формулы О — 5)/5 следует, что чем выше будет растворимость образующегося осадка и чем ниже концентрация осаждаемого веш ества, тем меньше будет относительное пересыщение, тем ченьшее число первичных кристаллов будет возникать и тем круптее они будут. Таким образом, для получения крупнокристаллических осадков необходимо в процессе осаждения повышать растворимость осадка и понижать концентрации осаждаемого и осаждающего ионов. Существует ряд способов понижения концентрации реагирующих ионов при формировании осадков. Самым простым из них является разбавление растворов перед осаждением и медленное (по каплям) при постоянном перемешивании прибавление раствора осадителя к исследуемому раствору (перемешивание нужно для того, чтобы в отдельных местах раствора не повышалась концентрация осадителя, т. е. не возникало так называемое местное пересыщение). Очень эффективным способом понижения концентрации осаждаемого иона является связывание его в комплексное соединение средней прочности. В этом случае достаточно низкая концентрация осаждаемого иона в растворе создается за счет частичной ионизации комплексного соединения. При добавлении иона-осадителя из-за образования малорастворимого соединения равновесие ионизации комплекса будет сдвигаться, но концентрация осаждаемого иона все время будет оставаться низкой. Например, если связать Со2+ в комплексное [c.101]

    У элементов подгруппы цинка две первые энергии ионизации-выше, чем у -элементов соответствующих периодов. Это объясняется проникновением внешних -электронов под экран (п—1) 1 -электронов. Уменьшение энергии ионизации при переходе от Zn к Сс1 обусловлено большим значением главного квантового числа п, дальнейшее же увеличение энергии ионизации у Hg обусловлено проникновением бх -электронов не только под экран 5й -электро-нов, но и под экран 4/ -электронов. Значения третьих энергий ионизации довольно высокие, что свидетельствует об устойчивости электронной конфигурации (п—В соответствии с этим у элементов подгруппы цинка высшая степень окисления равна +2. Вместе с тем (п—1) 1 -электроны цинка и его аналогов, как и у других -элементов, способны к участию в донорно-акцепторном взаимодействии. При этом в ряду Zn — d —Hg " по мере увеличения размеров (п—l) -opбитaлeй электроно-донорная способность ионов возрастает. Ионы Э ( ) проявляют ярко выраженную тенденцию к образованию комплексных соединений. [c.631]

    Метод молекулярных орбиталей. Молекулярные орбитали в комплексных соединениях образуются по тому же нриицину и обладают теми же свойствами, что и молекулярные орбитали в двухатомных молекулах (см. 45). Отличие заключается в том. что в комплексных соединениях МО являются мно-гоцентровыми, делокализованными, подобно тому, что имеет место, иапример, в молекуле бензола (см. 167). [c.600]

    Непредельные углеводороды реагируют с солями ртути, или образуя комплексные соединения или окисляясь. Скорость этой реакции тем выше, чем ншже молекулярный вес этиленового углеводорода. [c.103]

    Тесная связь между промежуточными сеединениями в катализе и лабильными неорганическими комплексами была очевидной уже давно, и тем не менее только в самое последнее время бурное развитие химии комплексных соединений в связи с применением теории поля лигандов, а также возобновлением интереса к гомогенному катализу, позволило осуществить новый, более химический подход к проблеме катализа [3]. [c.15]

    Объяснение химической связи в комплексах с помощью электростатических представлений. Начало разработки теории, объясняю1цей образование комплексных соединений, связано с исследованиями Косселя и Магнуса (Германия), проводимыми ими в 1916—1922 гг. В ее основу были положены электростатические представления. Ион-комплексообразователь притягивает к себе как ионы противоположного знака, так н полярные молекулы. С другой стороны, окружающие комплексообразователь частицы отталкиваются друг от друга, прп этом энергия отталкивания тем значительней, чем больше частиц группируется вокруг центрального иона. [c.119]

    В присутствии окислителей (например, кислорода) этот пропесс происходит быстро. Комплексные соединения кобальта (III) устойчивы и многочисленны, между тем как ироегые соедипепня кобальта (III) редки и неустойчивы. [c.314]

    Номенклатура. В таблице охарактеризовано около 3700 неорганическнх соединений. Для названий соединении приняты, как правило, русские термины (азотистый, водородистый, кремннстый и т. д.), и только для нескольких групп соединений оставлены установившиеся иностранные названия. Это относится, в частности, к некоторым анионам в комплексных соединениях и к тем случаям, когда применение малоупотребительного русского названия могло бы вызвать смешение понятий (так, например, для солен азотистоводородной кислоты сохранено название азиды ). [c.9]

    Соли находятся в перечне соединений того элемента, который является катионом данной соли. Например, железистокислый натрнй помещен среди соединений натрия. Вместе с тем, натриевая соль железистосинеродистой кислоты (гексацианоферроат натрия) помещена в перечне комплексных соединений железа. [c.10]

    При титровании с использованием буферных растворов оптимальное значение pH среды определяется устойчивостью комплексного соединения и это значение, как правило, тем ниже, чем более устойчив комплексонат (чем больше степень окисления металла, образующ,его его). Для прогнозирования возможности кондуктометрического титрования катионов металлов (например, для М) раствором ЭДТА рекомендуется использовать следующие данные (р — константа устойчивости комплекса состава [c.110]

    Однако пока что во всем мире наиболее широко в качестве катализаторов применяют комплексные соединения хлорида алюминия с ароматическими углеводородами, несмотря на такие их существенные недостатки, как необходимость осушки сырья, образование хлористого водорода и хлорида натрия при промывке и нейтрализации алкилатов, коррозия аппаратуры и необходимость очистки сточных вод. Использование в большей мере хлорида алюминия вызвано и тем, что он является катализатором не только алкилирования, но и диспропорционирования, что снижает выход неизбежно образующихся лри алкилировании ди- и по-лиалкилнроизводных. На практике используют жидкий катализа-торный комплекс — хлорид алюминия в диэтилбензоле или в по-лиалкилбензольных фракциях, получаемых при алкилировании. Действие хлорида алюминия усиливается сокатализаторами, в качестве которых обычно используют хлористый водород или небольшие количества воды. Однако,. чтобы избежать разложения катализатора, бензол тщательно сушат перед лодачей на, алки- [c.53]

    К. В. Гопалан [37], сравнивая результаты депарафинизации масел карбамидом и метилэтилкетопом, пришел к выводу, что одним из существенных преимуществ последнего является высокая гибкость процесса в эксплуатации. Единственным преимуществом карбамида можно считать возможность депарафинизации без применения искусственного охлаждения. Однако депарафинизация карбамидом не устраняет необходимость использования растворителей и оборудования, которое для этого процесса потребуется в ббльгаих количествах, чем при депарафинизации метилэтил-кетоном. При этом процессе комплексные соединения промываются с большим трудом, возможно образование стойких эмульсий и т. д. Тем не менее мы полагаем, что дальнейшее изучение про-цесса подбор растворителей, условий промывки комплекса и др. позволят успешно применять карбамид для депарафинизации масел. Во всяком случае в настоящее время при депарафинизации маловязких масел в том случае, когда необходимо получать эти масла с низкой температурой застывания (трансформаторные, арктические и др.), применение карбамида получило распространение. [c.228]

    Образование комплексного соединения ароматических углево- -дородов с ионами, находящимися на поверхности адсорбента, так же как и при их растворении в избирательном растворителе, связано с возникновением в электронейтральной молекуле-под влиянием электростатического поля адсорбента дипольного момента. Адсорбируемость так же зависит от строения ароматических углеводородов, как и растворимость. Поэтому, чем меньше экраниро-. ваны ароматические ядра нафтеновыми кольцами или боковыми парафиновыми цепями, тем легче в них возникает индуцированный дипольный момент и тем эффективней адсорбция таких углеводородов полярными адсорбентами. Чем больше колец в молекуле ароматических углеводородов, тем прочней они адсорбиру- -ются. Парафиновые и нафтеновые углеводороды слабо адсорбируются полярными адсорбентами. [c.237]

    В ионообменной хроматографии чаще всего используют элю-ентный вариант разделения, иногда — вытеснительный. Улучшить разделение катионов можно путем введения в элюирующий раствор комплексантов, образующих комплексные соединения с катионами — компонентами разделяемой смеси и тем самым повышающих селективность. Добавление в элюент невод- [c.321]

    Между тем, перманганат быстро реагирует с двухвалентным марганцем, образуя промежуточные окислы (двуокись марганца или комплексные соединения трехвал1 ит-ного марганца с ионами фтора, ионами щавелевой кислоты и др.). Такие промежуточные окислы в ряде случаев выделены в виде индивидуальных соединений при том оказалось, что они быстро реагируют со щавелевой кислотой, особенно при нагревании. [c.379]

    Окислительный потенциал трехвалентного железа при переходе в двухвалентное ( =0,77 й) довольно близок к потенциалу перехода дифениламина Еинд =0,76). Поэтому дифениламин частично окисляется ионами трехвалентного железа. Эта реакция протекает медленно, но тем не менее окраска дифениламина возникает еще до точки эквивалентности, так как при титровании концентрация ионов трехвалентного железа все больше увеличивается. Чтобы избежать этого, к раствору перед титрованием приливают НдРО,. Фосфорная кислота образует с ионами трехвалентного железа комплексное соединение  [c.395]

    Реакция осаждения по существу противоположна растворению осадка. Она протекает тем полнее, чем меньше растворимость осадка. Для характеристики растворимости осадка используют константу, называемую произведением растворимости ПР = [А"][К+1. Чем меньше произведение растворимости, тем менее растворим данный осадок. О полноте протекания реакции осаждения тоже можно судить по величине ПР чем меньше ПР, тем полнее смещено равновесие реакции осаждения вправо. На равновесие реакции осаждения влияют факторы, изменяющие концентрации реагирующих ионов. Так, если А — анионы слабой кислоты, то при понижении pH раствора они все более связываются в молекулы НА. Концентрация анионов уменьшается, и равновесие осаждения смещается влево, т. е. уменьшается полнота протекания реакции. Если К — катионы слабого основания, то при повышении pH раствора может образоваться осадок этого основания вместо труднорастворимой соли, в результате чего невозможно получить правильные результаты анализа. Катионы могут образовывать комплексные соединения, в результате чего происходит уменьшение их концентраций в растворе и осаждение становится неполным. Ион серебра, например, образует с аммиаком комплексное соединение [Ag(NHg)2]+. Из аммиачного раствора соли серебра уже не может выпасть осадок хлорида серебра. Таким образом, для проведения титриметрнческих реакций осаждения необходимо создание в растворе оптимального значения pH. Должны отсутствовать вещества, образующие комплексные соединения с взаимодействующими нонами. [c.122]


Смотреть страницы где упоминается термин Тема 27. Комплексные соединения: [c.66]    [c.405]    [c.439]    [c.184]    [c.156]    [c.252]    [c.212]    [c.418]    [c.28]    [c.66]    [c.113]    [c.491]   
Смотреть главы в:

Практикум по неорганической химии -> Тема 27. Комплексные соединения




ПОИСК





Смотрите так же термины и статьи:

Хай-Темя



© 2025 chem21.info Реклама на сайте