Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Общие методы, использующие константы равновесия

    ОБЩИЕ МЕТОДЫ, ИСПОЛЬЗУЮЩИЕ КОНСТАНТЫ РАВНОВЕСИЯ [c.31]

    В настоящей работе предлагается общий метод расчета па ЭВМ констант равновесия и параметров комплексов, который позволяет использовать единую программу для обработки результатов, полученных различными физическими методами, для которых выполняется правило аддитивности, и для реакций с произвольной стехиометрией, задаваемой специальной матрицей. [c.120]


    Предлагается общий метод расчета на ЭВМ констант равновесия и пара,-метров комплексных соединений. Метод позволяет использовать единую программу для обработки результатов, полученных разными экспериментальными методами, в которых измеряемая величина подчиняется правилу аддитивности. Метод пригоден для реакций с произвольной стехиометрией, задаваемой специальной матрицей. [c.192]

    С. Брунауэр, П. Эммет и Е. Теллер (1935—1940) создали наиболее общую теорию полимолекулярной адсорбции (сокращенно — теорию БЭТ), в которой описание процессов адсорбции увязывается с представлениями и методами статистической физики. Используя ряд положений теории Ленгмюра, они сделали дополнительное допущение об образовании на поверхности адсорбента последовательных комплексов между адсорбционным центром и одной, двумя, тремя и т. д. молекулами газа. Адсорбция рассматривается как ряд последовательных квазихимических реакций со своими константами равновесия. На активных центрах поверхности адсорбента могут образоваться конденсированные полимолекулярные слои. Авторы теории на основе уравнения изотермы адсорбции Ленгмюра получили приближенное уравнение полимолекулярной адсорбции, которое щироко применяется для определения удельной поверхности адсорбентов и теплоты адсорбции. [c.338]

    Приведенные в гл. V соотношения для идеальных растворов не могут быть непосредственно использованы для вычислений равновесий, в которых участвуют реальные растворы. В частности, один из основных законов химии — закон действующих масс — не выполняется в реальных растворах. При подстановке в выражение для константы равновесия концентраций реагирующих веществ оно оказывается зависящим от концентрации, т.е. не является постоянным. Построение общей теории реальных растворов невозможно ввиду их разнообразия и сложности. Мы видели, однако, что в случае идеальных растворов нз изменений одного из свойств (например, давление пара) предсказывают другие свойства. Важно найти способ сохранить такую возможность и для реальных растворов. В связи с этим в теории возникла задача разработать метод, который позволил бы связать различные свойства реальных растворов. [c.133]

    В литературе описано несколько более или менее специальных методов вычисления констант диссоциации многоосновных кислот (или много кислотных оснований) по данным титрования. Из этих методов для нас представляет особый интерес метод, примененный Симсом [1]. Симс исходит из того факта, что кривая титрования многоосновной кислоты похожа на кривую титрования смеси соответствующего числа одноосновных кислот, и вычисляет ряд констант равновесия реакций титрования особым методом приближения, предположив, что титруемый раствор является смесью одноосновных кислот. Истинные константы равновесия вычисляют из найденных констант равновесия реакций титрования, используя специально выведенные формулы. Метод Симса в общем более сложен и менее удобен, чем описываемый ниже метод, в котором ступенчатые константы определяют непосредственным приближением ряда промежуточных констант. [c.37]


    Если в методе используется выражение концентрационной константы устойчивости или константы равновесия, то в рассматриваемой зависимости необходимо учитывать равновесную концентрацию только реакционных форм компонентов. Следовательно, при определении концентрационных констант недопустимо отождествление равновесных концентраций компонентов с разностью между их общими концентрациями и концентрацией в комплексе. В этом случае необходимо вводите поправку на относительное содержание реакционной формы компонента в условиях проведения эксперимента. [c.226]

    Уравнения типа (5.30) и (5.31) обычно используют, принимая ряд допущений. В любом заданном интервале давлений некоторыми величинами можно пренебречь, что приводит к уменьшению числа уравнений и неизвестных и компенсирует тем самым отсутствие сведений о соответствующих константах равновесия. Для полного решения любой подобной системы уравнений разработан приближенный, но в то же время общий метод. [c.102]

    Значение Рх можно также определить для растворов с изменяющимися общими концентрациями обоих комплексообразующих агентов и использовать уравнения (5) и (7) для расчета концентрации комплекса в растворе. Этот метод применяли при определении констант равновесия [уравнение (8)] для взаимодействия хлористого водорода с ароматическими углеводородами в н-гептане и толуоле [4]  [c.99]

    Если в методе используют выражение концентрационной константы устойчивости или константы равновесия, то в рассматриваемой зависимости необходимо учитывать равновесную концентрацию только стехиометрических форм компонентов. Следовательно, при определении концентрационных констант недопустимо отождествление равновесных концентраций компонентов с разностью между их общими концентрациями и концентрацией [c.256]

    Вышеописанные методы были использованы для определения теплоемкостей, энтропии и свободной энергии значительного числа простых молекул таким образом было рассчитано много констант равновесия. Наиболее важные резуль таты относительно орто- и пара-водорода, а также дейтерия, будут рассмотрены ниже в гл. III и IV здесь коснемся лишь нескольких представляющих общий интерес примеров, чтобы показать на них применимость статистических методов. [c.71]

    Эта глава в основном посвящена рассмотрению взаимосвязи между константами равновесия и константами скоростей прямой и обратной реакций кислотно-основного взаимодействия. Сопоставление между константами равновесия и строением соответствующих молекул уже обсуждалось в гл. 6. Таким образом, нижеследующее подразумевает также исследование корреляций между константами скоростей и строением. Более того, скорости многих реакций изучать легче (но труднее интерпретировать), чем равновесие, их можно непосредственно сопоставить со строением. Вначале мы рассмотрим общие закономерности и экспериментальные данные, лежащие в основе таких корреляций. Затем мы дадим их интерпретацию на основе молекулярных представлений, в особенности останавливаясь на необычных случаях. Как мы уже видели из двух предшествующих глав, скорости реакций переноса протона можно измерить либо непосредственно, либо косвенными методами, изучая кинетику кислотно-основного катализа. В последующем обсуждении оба источника информации будут использованы независимо. [c.233]

    При выводе уравнения изотермы Вант-Гоффа используется уравнение состояния идеальных газов, а все изложенные выше методы расчета термодинамических потенциалов и констант равновесия пригодны лишь для газов, близких к идеальным, т. е. находящихся при низких давлениях и достаточно удаленных от состояния насыщенного пара. Между тем многие реакции органического синтеза проводятся при высоких давлениях, когда поведение реального газа существенно отклоняется от идеального. Для термодинамического расчета таких систем, чтобы сохранить общий вид термодинамических зависимостей, используют вместо парциальных давлений так называемые летучести, или фугитивности [c.236]

    Для изучения очень быстрых"химических реакций, а также для установления короткоживущих промежуточных продуктов применяется метод парамагнитного электронного резонанса. К наиболее быстрым химическим реакциям, для которых константа скорости практически идентична числу столкновений (йл Ю 2 С ), относятся реакции переноса протона, а также различные реакции с электронными переходами. Совсем недавно для определения констант скорости с большим успехом применяют релаксационные методы. В самом общем виде сущность этих методов состоит в том, что на систему, находящуюся в состоянии термодинамического равновесия, оказывают кратковременное воздействие, выводящее ее из равновесия (например, воздействуют ультразвуком). Скорость установления нового равновесного состояния регистрируется, например, на осциллографе. Время, необходимое для перехода к новому состоянию, называют временем релаксации оно количественно связано с константой скорости реакции. Для нарушения равновесия используют также кратковременное повышение температуры. [c.168]


    В то же время в литературе содержатся сведения о константах химического равновесия веществ в паре, в частности о константах ассоциации [44], которые с успехом могут быть использованы для расчета равновесных параметров — общего давления, а также состава пара и парциальных давлений компонентов [45, 46]. Описаны также способы определения констант химического равновесия в паре по данным о равновесии жидкость — пар [47—50] и другими методами. [c.183]

    Испарительный метод для определения парциальных давлений также применялся для изучения равновесия в растворе. Саттон и его сотрудники [12] пропускали известный объем сухого азота над раствором триметиламина в циклогексане. Конденсат и жидкий остаток анализировали и строили калибровочную кривую, связывая концентрацию амина в конденсате с концентрацией его в растворе. Затем тот же самый объем газа пропускали над раствором триметиламина и фенола (нелетучий) в циклогексане. Концентрацию свободного амина в растворе, соответствующую найденной концентрации в конденсате, находили по калибровочной кривой. Так как общие концентрации амина и фенола были известны, то можно было рассчитать константы устойчивости амино-фенольного комплекса. Раньше подобными, но менее точными методами исследователи измеряли концентрации свободных недиссоциированных кислот (хлорноватистой [41] и цианистоводородной [5]) в водных растворах. Результаты использовались для оценки значений ЗГ хлорноватистой и цианистоводородной кислот и для расчета концентрации свободных цианид-ионов в растворах, содержащих цианидные комплексы металлов. Испарительный метод также использовался Я. Бьеррумом для определения концентрации свободного аммиака при исследовании аммиакатов меди(II) [3]. [c.321]

    Кроме методов, описанных в гл. 7—14, для измерения констант устойчивости моноядерных комплексов были использованы и другие физические методы. В принципе, любое свойство, которое меняется со степенью комплексообразования, может быть использовано для определения положения равновесия. Некоторые измеряемые свойства X определяются общим соот-нощением [c.369]

    Методы распределения, в том числе и метод катионного обмена, уше на первых этапах своего развития [3, 4] позволили получить точные значения констант устойчивости и оказались в состоянии успешно соперничать с другими методами изучения комплексообразования. В методах распределения обычно используются микроконцентрации металла (целесообразно применение радиоактивных изотопов) в условиях постоянства ионной силы среды, обеспечивающей неизменность брутто концентрации катионов и, следовательно, их коэффициентов активности как в фазе раствора, так и в фазе ионита. Кроме того, проведение эксперимента при постоянной ионной силе дает возможность пренебречь долей лиганда, участвующей в комплексообразовании, что облегчает вычисление концентраций свободного лиганда. Если лиганд не взаимодействует с ионами водорода, его равновесная концентрация совпадает с общей. Обычная методика состоит в установлении равновесия между известными количествами иопита, насыщенного катионом С, и растворами, содержащими лиганд А в различной концентрации, Коэффициент распределения металла М В обычно определяют из соотношения [c.377]

    Образование в растворах нескольких комплексных соединений значительно усложняет применение спектрофотометрического метода. Описанные выше приемы в рассматриваемом случае могут быть использованы только тогда, когда возможно создать условия, обеспечивающие доминирование одного из комплексов ряда. Это достигается, например, если ступенчатые константы нестойкости различаются не менее чем на 3 порядка. В общем случае метод Остромысленского — Жоба не может применяться для установления состава последовательно образующихся комплексов [65]. Следует, однако, отметить, что при обнаружении в растворах ступенчатого комплексообразования вопрос об определении состава таких комплексов не имеет решающего значения, так как в настоящее время большинство исследователей постулирует принципиальную возможность образования всех комплексов в пределах координационного числа данного иона металла. Важнейшей задачей в этом случае является определение максимального значения координационного числа, а также коэффициентов молярного поглощения комплексов и их констант нестойкости. В литературе описаны многие частные приемы, основанные на последовательном изучении равновесий в растворах, содержащих ограниченное число образующихся комплексов. [c.176]

    Более общий путь использования констант равновесия — изучение обменных равновесий, в которых соотношения активность/ /состав уже известны для одной из фаз, что позволяет определить эти соотношения для второй фазы. Этот подход использует уравнение Гиббса — Дюгема, которое показывает, что коэффициенты активности компонентов бинарных систем не являются взаимно независимыми. Один из методов использования уравнение Гиббса—Дюгема может быть преобразовано в уравнение (7.30) для двухкомпонентной системы, в которой Ха и Хъ — мольные доли компонентов  [c.167]

    При этом используют методы и прямой потенциометрии, и потенциометрического титрования. Следует так же отметить, что основное отличие проведения потенциометрических измерений с целью определения констант равновесия от обьиного титрования, применяемого для аналитических целей, заключается в необходимости строгой стандартизации условий эксперимента. Титрование выполняют в термостатированных условиях и при постоянной ионной силе раствора (обычно 0,1 - 1 М). Необходимо выбрать также оптимальные концентрации изучаемых компонентов, реагента и величину общего объема раствора. [c.104]

    Анализ, выполненный Секором и Бойтлером [34], показал, что во многих случаях величина коэффициента ускорения массопередачи 7 относительно мало чувствительна к величинам константы равновесия К, стехиометрического параметра М, отношения коэффициентов диффузии реагентов и порядка реакции, если процессы сравниваются при одинаковых асимптотических значениях коэффициента ускорения т- На этом основании П. Данквертс [6] предложил метод расчета кинетики массопередачи с обратимой реакцией, процедура которого относительно проста и заключается в следующем необходимо определить предельное значение коэффициента ускорения и далее использовать аналитическую или графическую зависимость 7—(ЯМ) для массопередачи с необратимой реакцией. Данквертс не получил надежного обоснования возможности использования метода для практически важного случая, когда концентрации реагентов существенно отличны от нуля и уровень обратимости хемосорбционного процесса весьма высок. Такое обоснование получено в работе [59] для более общего случая (Лж О, ж= 0, Рх=9 0) на основе сопоставления результатов расчета коэффициентов ускорения массопередачи по уравнению (2.40) и методу Данквертса. [c.41]

    Это уравнение дает общую термодинамическую зависимость для константы равновесия, которая, кроме те.миературы п давления, запислг от гостйнл равновесных фаз. Был создан ряд методов определения констант фазового равновесия, основанных на экспериментальных данных с эмпирическими поправками на состав смеси. Для расчета констант равновесия при пониженных температурах использована работа Хэддена . При определении констант равновесия в области умеренных температур авторы применяли диаграм.мы, приведенные в книге М. П. Малкова и К- Ф. Павлова . Таким образом, фактически используется уравнение  [c.20]

    Применение конкурирующих ионов металлов. Довольно широко применяемый метод исследования равновесий, в котором используются данные по измерению pH, является одной из разновидностей более общего метода, основанного на введении в исследуемую систему второго иона металла. Как уже отмечалось в начале этой главы, возможность применения потенциометрического метода для исследования равновесий комплексообразования в системах металл — лиганд в основном определяется доступностью электрода, обратимого к одному из ионов. Если исследователи не располагают таким электродом, то иногда можно ввести в систему второй ион металла М", для которого имеется подходящий обратимый электрод, и затем потен-циометрически определить концентрацию М", не связанного в комплекс. Если константы устойчивости комплексов М" — лиганд известны или могут быть измерены, то, определив концентрацию свободного М" как функцию общей концентрации исследуемого иона металла М и общей концентрации лиганда, можно оценить константы устойчивости системы М — лиганд. Очевидно, что метод, основанный на измерении pH, представляет частный случай данного метода и поэтому ограничения первого распространяются и на метод, в котором используется конкуренция ионов металлов. [c.130]

    В литературе описано большое число различных спектрофотометрических методов анализа комплексных соединений. Наиболее распространенным методом определения состава комплексных соединений является метод Остромысленского [307]. Метод Комаря [308, 309], пожалуй, является основным методом определения точных значений молярных коэффициентов светопоглощения и констант равновесия колориметрических реакций. При ступенчатом комплексообразовании для анализа образующихся соединений обычно используют функцию образо ан я Бьеррума [310, 311], или метод Яци-мирского [312, 313]. Янсен [310, 314] Ромен и Коллете [310, 315] описывают методы анализа комплексных соединений, образованных слабыми кислотами, не требующие специального выбора длины волны поглощаемого света. Наиболее надежным и общим спектрофотометрическим методом определения состава и констант образова- [c.210]

    Для комплекса ВгГ известно лишь значение общей константы устойчивости, которое в 4 Л/ НСЮ4 составляет 28 4. Экстраполированное значение константы устойчивости комплекса Вт1 при 25° С и ц = О составляет 25,3 0,18. Величина [х, природа катиона соли и температура влияют на устойчивость комплексов, о чем в цитированных работах имеются обширные данные. По значениям констант устойчивости при различных температурах, экстраполированным на нулевую концентрацию, вычислены энтальпия, изобарный потенциал и энтропия реакций образования полигалогенид-ионов, которые приведены для ВгС1а и ВгдСГ в [135], а для Вгз в [55, 134, 717]. Для расчетов констант широко используют результаты спектрофотометрического метода анализа. Числовые значения молярных коэффициентов погашения полигалогенид-анионов и межгалогенных соединений в широкой спектральной области, важных для расчетов рассматриваемых равновесий в водных растворах, приведены в [352, 752, 823]. [c.27]

    Общая система уравнений обычно решается методами Тилле н Геддеса или Льюиса —МаттесоНа. В первом случае в качестве независимых переменных используют температуры и потоки на всех тарелках (Г , п), во втором случае — полный состав одного из продуктов Xiw). Известны также алгоритмы расчета неидеальных смесей, в которых в качестве независимых переменных принимают распределение по высоте колонны температур и потоков по каждому компоненту [Vin, Тп), температур, общих потоков и концентраций компонентов (Xin, Тп, Vn) или потоков и констант фазового равновесия по каждому компоненту кы, Vn). [c.272]

    Отношение v Vo можно определить взвешиванием полоски, сначала сухой, затем пропитанной водной фазой и высушенной до требуемой влажности и, наконец, полностью обработанной органическим растворителем. После этого можно рассчитать значение Яв из экспериментальных значений Нр, используя уравнение (10-68). Если концентрация свободного лиганда в водной фазе известна, то находят функцию Яв(о) и, следовательно, константы устойчивости. Таким методом были определены значения р для ряда кислотно-основных равновесий при использовании водных буферных растворов с известной концентрацией ионов водорода в качестве стационарной фазы [14, 79]. В принципе, распределительную хроматографию можно было бы применить и к другим типам систем при условии, что во время эксперимента можно поддерживать концентрацию свободного лиганда постоянной, т. е. Мв-СЛ1а, и что ни одна из форм Н А(/>0) лиганда не распределяется. Однако часто бывает трудно получить надежные значения Яр. Поэтому метод менее точен и в общем меньше применяется, чем метод экстракции растворителями, но он может быть полезным, если располагают лишь очень малыми количествами В. [c.286]

    В начале каждой итерации требуется определить концентрации частиц в системе. (Эта процедура необходима также при вычислении приближений разностей дифференциалов для констант устойчивости.) DALSFEK достигает этого при помощи метода итерации Гаусса — Ньютона на некоторых предполагаемых концентрациях, используя текущие значения констант устойчивости и данные по материальному балансу (общие концентрации). Подобные процедуры включены в ранее опубликованные программы для расчета равновесий в растворах [5,6]. [c.323]

    Для предсказания индуктивного эффекта винильной группы используется, по общему признанию, достаточно умозрительный метод, основанный на использовании констант полярных заместителей а [140]. Эти константы, полученные на основании изучения скоростей омыления эфиров, рассматриваются как характеристика электроноотталкивающей способности различных заместителей. Было найдено, что влияние достаточно широкого ряда групп на скорость и равновесие некоторых различных типов реакций могут быть с известной степенью точности представлены величинами а. В частности, Браун и сотрудники при изучении газофазной диссоциации продуктов взаимодействия три-метилбора и некоторых первичных алифатических аминов [140] получили данные, позволившие проверить уравнение АН = = —7,262а + 24,54, где ЛЯ представляет собой энтальпию диссоциации, а 2о — сумму величин а заместителей, в данном случае двух атомов водорода и алкильной группы у атома азота. Если предполагать, что полярные эффекты сказываются на диссоциации типа [c.141]

    Для облегчения расчетов рекомендуется на первой стадии сделать предварительную приближенную оценку общего числа молей поглощенных компонентов газовой смеси, используя метод Кремсера (формула VII, 4) при этом предварительном расчете температуру по всей высоте абсорбера считаем постоянной. Примем ее, например, равной фактической средней.температуре входа абсорбента и газа, т. е. 40° С. Имея значения р и t, определяем константы фазового равновесия К для всех компонентов. По выражению (VII, 2) находим для этих компонентов значения А. При помощи фиг. 70 определяются коэффициенты извлечения (р для каждого компонента и далее подсчитываются количества извлеченных из газа отдельных компонентов и состав остаточного газа. Весь расчет произво дится нами по отношению к 1 Молю сырого газа. Свойства фракции s+ (пентан и высшие) приняты по н.-гексану. Расчет по Кремсеру представлен в табл. 46 и 47. Б этих таблицах индексы i показывают, что рассматривается любой -тый компонент. Данные этих таблиц положены в основу дальнейшего расчет 3. Для оценки по формулам (VII, 10) и (VII, 11) значений G и на каждой тарелке, в соответствии с данными табл. 46 принимается, что в процессе абсорбции общее поглощение газовых компонентов из каждого килограмм-моля сырого газа составляет 0,473 Моль. [c.257]


Смотреть страницы где упоминается термин Общие методы, использующие константы равновесия: [c.197]    [c.197]    [c.164]    [c.12]    [c.15]    [c.132]    [c.24]    [c.385]    [c.47]    [c.240]    [c.290]    [c.98]    [c.25]    [c.178]    [c.342]    [c.134]    [c.61]   
Смотреть главы в:

Термодинамические и теплофизические свойства продуктов сгорания том 1 -> Общие методы, использующие константы равновесия




ПОИСК





Смотрите так же термины и статьи:

Константа равновесия

Равновесие константу, Константа равновесия



© 2025 chem21.info Реклама на сайте