Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенос энергии в процессах обмена веществ

    Существование двойного электрического слоя (ДЭС) ионов и скачка потенциала на границе раздела двух фаз играет важную, а иногда — основную роль не только в адсорбции понов и ионном обмене, но и во многих других явлениях, важных для теории и практики. К ним относятся электродные процессы, электрокапил-лярные и электрокинетические явления, процессы переноса вещества и энергии через коллоидные системы, поляризационные явления, происходящие при этом, и наконец, явления, связанные с электростатическим взаимодействием коллоидных частиц, определяющим в значительной степени устойчивость дисперсной системы. Все эти феномены, к знакомству с которыми мы переходим, оказываются взаимосвязанными посредством ДЭС. Для выражения этой связи мы вводим термин, появившийся последнее время в литературе, — э л е к т р о п о в е р х н о с т н ы е явления. Этим общим термином мы обозначаем все следствия, имеющие своей причиной существование ДЭС на поверхности раздела фаз. Круг их настолько обширен, что часть из них, непосредственно не связанная с дисперсными системами, рассматривается в электрохимии, в физике твердого тела, в геофизике и других дисциплинах. Однако несомненно, что обобщенное изучение всех следствий существования ДЭС должно составить предмет физической химии дисперсных систем и поверхностных явлений. [c.192]


    Перенос энергии за счет обменных взаимодействий может рассматриваться как особый тип химической реакции, в которой химическая природа партнеров А и О не меняется, а возбуждение переносится от одной частицы к другой. Тогда существует переходное состояние, характеризующееся расстоянием между А и О, не сильно превышающим сумму радиусов газокинетических столкновений, и перенос энергии по обменному механизму, вероятно, имеет место лишь для таких значений г. Как и другие химические процессы, перенос энергии будет эффективным лишь в том случае, если потенциальные энергии исходных и конечных продуктов расположены на непрерывной поверхности, описывающей зависимость потенциальной энергии системы от нескольких межатомных расстояний реакция, протекающая на такой поверхности, называется адиабатической. Другими словами, исходные и конечные вещества должны коррелировать друг с другом и с переходным состоянием. Большинство химических реакций с участием невозбужденных частиц может протекать адиабатически, но для таких процессов, как обмен энергией, когда участвует несколько электронных состояний, требование адиабатичности реакции может налагать ряд ограничений на возможные состояния частиц А,А и 0,0, для которых передача возбуждения эффективна. Так, для атомов и малых молекул необходима корреляция спина, орбитального момента, четности и т. д. Однако в случае сложных молекул низкой симметрии обычно необходима лишь корреляция спина. Для проверки подобной корреляции рассчитывается вероятный суммарный спин переходного состояния сложением векторных величин индивидуальных спинов реагентов (см. разд. 2.5 о сложении квантованных векторов в одиночных атомах или молекулах). Так, для исходных веществ А и В, имеющих спины Зд и 8в, суммарный спин переходного состояния может иметь величины 5а+5в , [c.122]

    Для химического превращения значительных масс вещества, т. е. множества молекул, являются необходимыми столкновение молекул и обмен энергиями между ними (перенос энергии движения молекул продуктов реакции к молекулам исходных веществ путем столкновений). Таким образом реальный химический процесс тесно связан и со второй физической формой движения — хаотическим движением молекул макроскопических тел, которое часто называют тепловым движением. [c.18]


    Подобные структуры встречаются во всех клетках, начиная от цитоплазмы амеб вплоть до нервных клеток высших животных и человека, и являются примером замечательной общности важнейших биологических структур на всех ступенях эволюции. Обмен веществ клетки со средой идет при непосредственном участии этих структур. Однако строение мембран в организме гораздо сложнее, так как они часто имеют многослойный или мозаичный характер. В частности, предполагается наличие в мембранах некоторого количества пор (радиусом в 4—8 А) со стенками полярной природы, нарушающих непрерывность двухмерного липоидного слоя и облегчающих перенос в клетку некоторых полярных веществ. Кроме того, избирательный перенос веществ тесно связан с сопряженными процессами обмена веществ, поставляющими энергию для накопления веществ в клетке при более высоких концентрациях, чем в окружающей среде (перенос против градиента концентрации, или активный перенос). [c.190]

    В разделе II — Обмен веществ и энергии (главы 10—15) — рассматриваются вопросы динамического состояния веществ в организмах (основы биоэнергетики, процессы переноса наследственной информации, обмен основных групп биомолекул — аминокислот, белков, углеводов, липидов, минеральных солей и воды). [c.16]

    В начале этого века в физике твердого тела господствовали кристаллографические концепции, согласно которым кристаллические твердые тела составлены из регулярно и плотно упакованных атомов или ионов, занимающих все разрешенные позиции— узлы кристаллической решетки. Такое представление не оставляло места сколько-нибудь плодотворным моделям процессов переноса вещества в кристаллах. Действительно, в целиком заполненной кристаллической решетке транспортные процессы могут осуществляться только путем непосредственного обмена местами соседних атомов. Такой механизм еще мог бы как-то объяснить диффузию в твердых телах, но никак не объясняет ионную проводимость. Действительно, обмен местами одноименно заряженных ионов не приводит к перемещению электрического заряда. Обмен же местами катиона и аниона требует настолько больших затрат энергии (л 15 эВ), что вероятность такого события ничтожно мала (при комнатной температуре один раз за 10 °° лет, при температуре плавления — один раз за 10 ° лет). [c.21]

    Помимо этого фосфор играет большую роль во многих энзиматических реакциях обмена веществ микроорганизмов, особенно в углеводном обмене, в переносе энергии, дыхании клеток, а также в процессах синтеза белка и нуклеиновых кислот. [c.73]

    Химический потенциал как термодинамическую переменную ввел в науку Гиббс. Возникает естественный вопрос как можно было не заметить этой величины раньше при изучении химических процессов Ответ на него кажется несколько неожиданным — все законы химической термодинамики можно получить, ие используя в явном виде химические потенциалы (11, хотя само изложение предмета при этом приобретает. весьма громоздкий вид. Дело в том, что для закрытых систем, не обменивающихся массой с окружающей средой, все относится к внутренним координатам состояния, тогда как основу термодинамического способа рассмотрения составляет метод контрольной поверхности, согласно которому об изменении энергии системы судят по обмену внешними координатами между системой и средой. Тогда внутренние переменные явным образом не входят в (Ш Рассмотрим для примера обратимый переход некоторого количества вещества йп в двухфазной системе при постоянных Т и р н отметим штрихами принадлежность величины к той или иной фазе. Тогда изменение энергии системы с1и=Т(18 — рйУ + [>, —так как йп = —д.п."—йп. В правой части слагаемое 1 — 1")йп является величиной второго порядка малости, так как для обратимого переноса вещества сама разность потенциалов (ц — ц") должна быть величиной бесконечно малой. Поэтому Гиббс как бы рас- [c.72]

    Теперь, познакомившись с некоторыми основными законами, которые регулируют обмен энергии в химических системах, мы можем обратиться к рассмотрению энергетического цикла в клетках. Для гетеротрофных клеток источником свободной энергии, получаемой в химической форме, служит процесс расщепления, или катаболизм, пищевых молекул (в основном углеводов и жиров). Эту энергию клетки используют в следующих целях 1) для синтеза биомолекул из молекул-предшественников небольшого размера 2) для выполнения механической работы, например мышечного сокращения, 3) для переноса веществ через мембраны против градиента концентрации и 4) для обеспечения точной передачи информации. Главным связующим звеном между клеточными реакциями, идущими с выделением и с потреблением энергии, служит аденозинтрифосфат (АТР рис. 14-2). При расщеплении высокоэнергетического клеточного топлива часть содержащейся в этом топливе сво- [c.413]


    Гетерогенный изотопный обмен ионами между кристаллическим осадком и насыщенным раствором протекает по следующим основным стадиям диффузия ионов из раствора к поверхности твердой фазы (может быть исключена сильным перемешиванием) закрепление иона на поверхности твердой фазы перекристаллизация соли путем переноса вещества с одного участка кристалла на другой, что может происходить как с изменением размеров кристалла, так и без него внедрение иона в поверхностный слой твердой фазы путем обмена с соседними ионами по бимолекулярному механизму или за счет циклического процесса, при котором смещаются несколько (5—6) ионов внедрение иона внутрь кристаллической решетки за счет обменной диффузии или диффузии по вакансиям и междоузлиям. Последний процесс, являясь наиболее медленным, определяет кинетику гетерогенного обмена. В результате внешнего и внутреннего облучения кристалла последний приобретает так называемую запасенную энергию. Облучение вызывает образование равновесных и неравновесных дефектов кристаллической структуры, что оказывает влияние прежде всего на обменную диффузию. Для гетерогенного обмена на кривой зависимости Ig (1 —F) от времени t можно выделить два участка, соответствующих разным стадиям обмена. Быстрая стадия связана с обменом на поверхности кристаллов, а медленная — с обменом по всему объему кристаллов. Каждая стадия характеризуется своим периодом полуобмена. [c.193]

    АДЕНОЗИНТРИФОСФОРНАЯ КИСЛОТА (АТФ). Основное соединение, в котором запасается и переносится энергия, необходимая для осуществления синтетических процессов в обмене веществ, а также для выполнения работы нивыми организмами. В состав АТФ входят остатки аденина, углевода рибозы и три остатка фосфорной кислоты. Энергия, высвобождаемая АТФ, может переноситься почти без потерь на другие соединения или использоваться для синтеза белков, нуклеиновых кислот, углеводов, жиров, витаминов и многих других соединений. Энергия АТФ потребляется также при мышечном сокращении, в нервных клетках и при других видах работы в живых организмах. АТФ в организме образуется из адепозиндифосфорной кислоты (АДФ) и минеральной фосфорной кислоты за счет энергпп, которая выделяется при окислении различных органических веществ в живых клетках или при фотосинтезе за счет световой энергии. Во всех этих процессах энергия, как правило, не теряется, а переходит в особый вид химической энергии, заключенной в фосфатных связях АТФ. При окислении в процессе дыхания грамм-молекулы глюкозы, например, может образоваться до 30 молекул АТФ. [c.14]

    В гомогенных реакторах процесс протекает в одной фазе и не сопровождается фазовыми переходами. Отсутствие переноса вещества пли энергии через границу раздела фаз является основным признаком гомогенных процессов. При этом совсем не обязательно, чтобы реактор содержал только одну фазу. Он может быть заполнен инертной твердой насадкой для уменьшения продольного перемешивания плп в него может подаваться ннертное жидкое либо газообразное вещество для барботажпого перемешивания или создания эрлифта. Однако если в реакторе не происходит обмен веществом пли энергией между фазамп, то он должен быть йтпесен к гомогенным. [c.10]

    Биологическое Ф., осуществляемое путем фос-форилазных или фосфокиназных реакций, играет важную роль в обмене веществ, в частности в окислении и синтезе углеводов, фосфолипидов, белков и нуклеиновых к-т, поскольку большинство промежуточных соединений, участвующих в обмене этих классов веществ, подвергается превращениям только в фосфорилиро-ванной форме. Не менее важную роль играют нек-рые фосфокиназы в процессах образования и накопления АТФ, катализируя перенос макроэргич. фосфата между богатыми энергией фосфорилированными соединениями и АТФ (см. Фосфокиназы и Макроэргические связи). [c.253]

    Расщенление макроэргич. фосфатной связи АТФ в реакциях, катализируемых С., служит источником энергии, обеспечивающим синтез (см. Макроэргические связи). К С., образующим С—0-связи, относятся ферменты, осуществляющие активацию аминокислот и перенос их на растворимую рибонуклеиновую к-ту. Катализируемые этими С. реакции являются начальным этаном в процессах биосинтеза белков и играют исключительно важную роль в обмене веществ (см. Молекулярная биология, Нуклеиновые кислоты). С., катализирующие активацию аминокислот, отличаются высокой субстратной специфичностью. Каждая индивидуальная С. катализирует перенос только одной определенной аминокислоты на соответствующую молекулу растворимой РНК. К таким С. относятся L-аланил-зРНК — синтетаза (шифр 6.1.1.7), тирозил-sPHK — синтетаза (шифр 6.1.1.1) и др. [c.442]

    Действительно, качественная картина сложного явления взаимодействия паровых и жидких смесей в условиях тесного контактирования в ректификационном аппарате представляется как двусторонний обмен веществом и. энергией. Количественная же оценка диффузионного переноса при контактировании фаз зависит от возможности расчета коэффициентов массоиередачи и величины двин ущей силы процесса. Однако коэффициенты массопередачи не сохраняют постоянного значения в различных интервалах концентраций, а равновесный коэффициент т, отвечающий наклону в различных точках кривой равновесия, изменяется иногда весьма значительно, что заметно влияет на движущую силу межфазового переноса. [c.84]

    В разд. 5.9.8 уже говорилось, что обмен веществами между отдельными клетками и окружающей их средой может происходить пассивно, т. е. за счет процессов диффузии и осмоса, и с затратой энергии — путем активного транспорта, эндоцитоза и экзоцитоза. Внутри клетки вещества перемещаются в основном благодаря диффузии, однако и там известен энергозависимый транспорт, например с токами цитоплазмы. Эти способы переноса обеспечивают достаточную скорость и эффективность обмена на небольщих расстояниях, поэтому одноклеточные организмы и даже многоклеточные с высоким отнощением поверхности тела к его объему не нуждаются в особых транспортных системах. Например, у таких относительно мелких животных, как дождевые черви, обмен дьгхательных газов (кислорода и диоксида углерода) осуществляется путем их диффузии между окружающим воздухом и внутренними органами через наружные покровы тела. [c.97]

Рис. 6.3. Общая схема компартментальной модели биосистемы. Скорость изменения вектора концентраций к равна сумме скоростей утилизации, переноса и синтеза комноиеит. участвующих в обмене веществ. Поскольку величина темпов утилизации ие может регулироваться виутреиними механизмами системы, эти темпы играют роль независимых переменных—первичных темпов. Регулирующие механизмы должны уравновесить расход компонент их синтезом и доставкой. Поэтому темпы процессов, направленных иа компенсацию трат вещества и энергии, играют роль зависимых переменных — вторичных темпов. В стационарном состоянии вторичные темпы по величине должны быть равны первичным. Рис. 6.3. <a href="/info/1403016">Общая схема компартментальной модели</a> биосистемы. <a href="/info/21565">Скорость изменения</a> <a href="/info/24993">вектора концентраций</a> к равна сумме <a href="/info/759993">скоростей утилизации</a>, переноса и синтеза комноиеит. участвующих в <a href="/info/70788">обмене веществ</a>. Поскольку величина темпов утилизации ие может регулироваться виутреиними <a href="/info/33088">механизмами системы</a>, эти темпы <a href="/info/1907646">играют роль</a> <a href="/info/26344">независимых переменных</a>—первичных темпов. <a href="/info/616085">Регулирующие механизмы</a> должны уравновесить <a href="/info/324823">расход компонент</a> их синтезом и доставкой. Поэтому <a href="/info/1879955">темпы процессов</a>, направленных иа компенсацию трат вещества и энергии, <a href="/info/1907646">играют роль</a> <a href="/info/25962">зависимых переменных</a> — вторичных темпов. В <a href="/info/2856">стационарном состоянии</a> вторичные темпы по величине <a href="/info/1633404">должны быть</a> равны первичным.
    Необходимо еще раз подчеркнуть, что большее значение для жизнедеятельности клетки имеет активное поступление. Именно оно ответственно за избирательное накопление ионов в цитоплазме. Поглощение питателс>ных пеществ клеткой тесно связано с обменом веществ. Эти связи многосторонпи. Для активного переноса необходимы синтез белков переносчиков и энергия, поставляемая в процессе дыхания. Надо учитывать также, что чем быстрее поступающие ионы включаются в метаболизм, тем интенсивпее идет их поглощение. [c.60]

    Примером этого может служить спиртовое брожение в дрожжевых клетках, в процессе которого водородные атомы переносятся с фосфоглицеринового альдегида на ацетальдегид с образованием этилового спирта. Этот процесс протекает без участия атмосферного кислорода и поэтому называется анаэробным. Анаэробные процессы окисления имеют место и в организмах высших животных и человека. К ним относится прежде всего гликолиз, обмен глицерина, окислительное дезаминирование некоторых аминокислот и многие другие процессы. Однако решающее значение для жизнедеятельности высших организмов имеют процессы аэробного окисления, в которых водород через целый ряд промежуточных соединеннй передается на молекулярный атмосферный кислород с образованием воды. Окислительные процессы, протекающие с участием атмосферного кислорода, осуществляются до конца, т. е. с максимальным высвобождением энергии окисляющегося субстракта. Это — характерная черта обмена веществ у высших организмов. В реакциях биологического окисления субстрактов отщепляющийся водород соединяется с атмосферным кислородом. Поэтому такие процессы получили название тканевого дыхания. Таким образом, разница между анаэ- [c.192]

    Можно думать, что энергия, используемая грибом для собственных синтетических процессов, заключена в макроэргических связях нестойких соединений, возникающих на первых этапах цепи переноса электронов, до звена, нарушаемого динитрофенолом. Указанием на различия в энергетическом обмене может служить то, что у шампиньона молекула фосфата присоединяется к неидентифи-цированному пока соединению, не сходному ни с одним из веществ, фосфорилируемых в клетках высших растений. [c.171]

    Разные соединения одного и того же элемента имеют различные термодинамические, физико-химические и- гидродинамические параметры (свободные энергии, коэффициенты ионной и молекулярной диффузии). Поэтому процессы массопереноса (растворение, ионный обмен, кристаллизация, диффузионные и конвективно-диффузионные перемещения вещества в растворах), составляющие основу формирования химического состава подземных вод, невозможно правильно интерпретировать и прогнозировать без знания форм переноса элементов. Именно эти формы определяют возможность, геологическую значимость процессов, а также их кинетику. Имеются и другие геохимические вопросы, правильное рещение которых невозможно без знания состояний элементов в подземных водах. Так, при оценке степени насыщения подземных вод карбонатом или сульфатом кальция использование в расчетах суммарных активностей кальция, карбонатов и сульфатов без вычета тех их частей, которые связаны в сложных ионных и молекулярных соединениях, часто приводит к ошибочным выводам о пересыщениях ими подземных вод. Суждение о мнимом пересыщении, подземных вод этими соединениями широко распространено в гидрогеохимической литературе. При образовании устойчивых комплексных соединений происходит смещение равновесий в геохимических процессах (растворении, выщелачивании, осаждении и соосажде-нии, сорбции, ионного обмена, окислении, восстановлении) в сторону водной фазы. При этом чем устойчивее комплексное соединение, тем сильнее эти смещения. Экспериментально установлено, что комплексообразование предохраняет элементы-гидролизаты (Ре, А1, Ве, Си и др.) от полного гидролиза, тормозит образование гидроокисных соединений и удерживает эти элементы в околонейтральных и даже щелочных водах. Геохимическими последствиями этого является расширение кислотно-щелочного диапазона водной миграции гидролизующихся элементов, [c.33]


Смотреть страницы где упоминается термин Перенос энергии в процессах обмена веществ: [c.20]    [c.9]    [c.155]    [c.227]    [c.77]   
Смотреть главы в:

Метаболические пути -> Перенос энергии в процессах обмена веществ




ПОИСК





Смотрите так же термины и статьи:

Вещества энергия

Обмен веществ и энергии

Обменные процессы

Процесс энергии

Процессы переноса энергии

Энергией обмен

Энергия обменная



© 2024 chem21.info Реклама на сайте