Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Общие представления о структуре растворов полимеров

    ОБЩИЕ ПРЕДСТАВЛЕНИЯ О СТРУКТУРЕ РАСТВОРОВ ПОЛИМЕРОВ [c.442]

    Мы можем сделать теперь несколько выводов. Фазовую диаграмму типа представленной на рис. 10 следует рассматривать в двух приближениях. Первое, равновесное, приближение позволяет лишь в общих чертах предсказать характер структуры на любом участке системы, безотносительно к тому, каким способом соответствующая точка достигнута. Такое рассмотрение основано на полной аналогии между простыми бинарными смесями и растворами полимеров в низкомолекулярных жидкостях. Сущность аналогии заключается в том, что хотя и принимается во внимание принципиальное различие между свободными энергиями смешения простых жидкостей и систем, содержащих полимеры но на диаграмме это различие выражается лишь в резкой асимметрии бинодалей. Второе, неравновесное, приближение учитывает не рассматриваемые в статистико-механических теориях факторы структурной релаксации, грубо характеризуемые формулами (21—24). В этом приближении вопрос о формировании дискретных и сетчатых структур в растворах и о температурно-концентрационных областях их длительного существования решается в значительной мере исходя из того, каким способом достигается соответствующая точка фазовой диаграммы. В несколько иной форме такая идея была впервые высказана В. А. Каргиным 32, 33, [c.109]


    Щихся частиц. Общие представления о возможности диффузии макромолекул при пленкообразовании изложены в работах Марка [39]. Предполагается, что диффузия макромолекул способствует перераспределению эмульгатора, растворению его в полимере, проникновению внутрь частиц или образованию пространственной сетки из эмульгатора, увеличивающей прочностные свойства пленок. При хорошей аутогезии полимера и необходимом количестве эмульгатора, способного растворяться в полимере, получаются гомогенные пленки, не отличающиеся от пленок, полученных из растворов полимера. Последние характеризуются достаточной гидро-фобностью, малой водо- и паропроницаемостью. При большом содержании эмульгатора и плохой его растворимости в полимере пленка состоит из двух взаимопроникающих сеток эмульгатора и полимера. Практически пленки, полученные из латексов, по мнению автора, не характеризуются никогда какой-либо одной из описанные структур. Можно лишь говорить о преобладании структуры одного или другого типа. Из этих представлений вытекает, что структура пленок из дисперсий полимеров отличается от структуры пленок из растворов полимера наличием сетки из эмульгатора. Именно с наличием этой сетки связывают особые свойства пленок из дисперсий полимеров [28, 29], определяемые сеткой, а не структурой полимера. [c.199]

    Сопоставление данных, приведенных в табл. 5.2 и 5.3, показывает, что пленки ПЭАУ, полученные из исходных растворов, практически не различаются по своим деформационно-прочностным свойствам. При добавлении к раствору в ДМФА метилэтилкетона или бутил-ацетата в случае ПЭАУ-1 прочностные характеристики остаются неизменными, в случае ПЭАУ-2 прочность возрастает в два раза. Увеличение прочности сопровождается перегибом на деформационной кривой при относительном удлинении 200% (рис. 5.11). Начальные участки кривых зависимости Стр—е как для исходных пленок ПЭАУ-1 и ПЭАУ-2, так и для пленок, полученных из смеси растворителей, имеют одинаковый характер и близкие параметры. С другой стороны, условно-равновесный модуль в случае ПЭАУ-2 уменьшается при добавлении МЭК и БАЦ, причем изменение сх. коррелирует антибатно с разрывной нагрузкой при тех же концентрациях добавок. Уменьшение E o у ПЭАУ-2, линейного по своему строению, так же, как и ПЭАУ-1, но обладающего свойствами пространственно-сшитого эластомера (высокая прочность, ограниченное набухание), благодаря присутствию в его макромолекулах большого числа полярных групп, между которыми возникают дополнительные физические связи, предположительно можно связать с характером структурных превращений в растворе ПЭАУ-2 при добавлении к нему МЭК и БАЦ и соответственно с изменением надмолекулярной структуры пленок. Действительно, поскольку функциональность макромолекул ПЭАУ-2 не изменяется при добавлении МЭК или БАЦ, уменьшение числа полярных групп, между которыми возникают дополнительные физические связи, может быть следствием изменения их взаимного расположения в результате перестройки надмолекулярной структуры. Вероятно, при добавлении МЭК или БАЦ к раствору ПЭАУ-2 структурные элементы в нем формируются таким образом, что большая часть полярных групп оказывается внутри них, а группы, оставшиеся на поверхности структурных элементов, образуют редкую пространственную сетку, о чем свидетельствует увеличение степени набухания. Уменьшение числа физических поперечных связей между структурными элементами способствует увеличению подвижности молекулярных цепей, следствием чего является ускорение протекания релаксационных процессов (уменьшение параметра К) и увеличение прочности при разрыве. Возрастание прочности при уменьшении числа поперечных связей на первый взгляд противоречит общим представлениям о прямой связи прочности с концентрацией поперечных связей в пространственно-сшитых полимерах. Однако эти противоречия объясняются спецификой вклада в пространственную сетку полиуретанов прочных поперечных и слабых межмолекулярных связей. Показано [61], что уменьшение числа поперечных связей в полиуретанах способствует увеличению гибкости полимерных цепей последние благодаря этому сближаются, что ведет к образованию между ними большего числа межмолекулярных связей, определяющих прочностные свойства полиуретанов. [c.235]


    Изложенные в предыдущих разделах представления и экспериментальные данные о процессах, протекающих при получении пористых проницаемых материалов из растворов полимеров, позволяют предложить общую схему получения таких структур. Она распространяется как на получение микро- или ультрафильтров, так и на способ формования обратноосмотических мембран. [c.79]

    Обмен ионов характерен также для высокомолекулярных полиэлектролитов и в первую очередь для ионообменных смол, представляющих собой сплошную пространственную сетку (каркас) полимера, в узлах которой равномерно закреплены ионы одного знака (аналогичные ионам внутренней обкладки) подвижные противоионы находятся в растворе внутри сетки и являются обменными. Сетка полимера, заполненная раствором, рассматривается в настоящее время как одна гомогенная фаза поэтому представления о границе раздела фаз и адсорбции в этих системах теряют физический смысл. Тем не менее законы ионного обмена являются общими для таких полиэлектролитов и для типичных гетерогенных адсорбентов. Поэтому все поглотители, для которых характерен процесс эквивалентного обмена подвижных ионов, в то время, как ионы другого знака закреплены в структуре, носят общее название ионитов. [c.124]

    Представленные здесь доказательства почти не остав.т[яют сомнения в том, что растворимые в воде канальные и клеточные комплексы мПогих видов могут существовать в водной фазе. Подобные соединения могут играть важную роль в образовании растворов. длинноцепочечных белков, целлюлозы, сахаров и синтетических полярных полимеров. Стереоспецифическая полимеризация в растворителе или в реакционноспособных клеточных и канальных структурах приобретает большое значение, особенно для вернеровских комплексов и других комплексных соединений. Эти процессы могут заключаться в(/ взаимодействии с захваченными ионами, радикалами и нейтральными молекулами. Большое число дискуссий о клеточных эффектах в реакциях с участием органических веществ указывает на возрастающий интерес к роли растворителя в быстрых реакциях. В недавнее время Полинг [74] предложил новую молекулярную теорию общей анестезии, которую он объяснил образованием в мозгу крошечных твердых кристаллогидратов клатратного тина. В действительности они могут принадлежать к тем самым растворимым формам клатратных соединений, которые были обсуждены в этом разделе. [c.508]

    Двадцать пять лет тому назад соединение, образующееся при полимеризации акрилонитрила, рассматривали как любопытный лабораторный продукт, непригодный для переработки, — нерастворимый в обычных органических растворителях, не плавящийся и не поддающийся формованию. Важным моментом явилось открытие того факта, что полиакрилонитрил может растворяться в сильно полярных растворителях. В результате для определения природы химических сил, обусловливающих инертность полиакрилонитрила, стало возможным исследовать как растворы, так и частицы различной формы, полученные из растворов полиакрилонитрила. Однако до СИХ пор полностью не выяснили природу этих сил. Различные лаборатории не смогли согласовать своей точки зрения относительно свойств разбавленных растворов. Кроме того, диапазон изменений в молекулярной структуре полимера ограничен, и это затрудняет установление связи между структурой и химическими свойствами. Несмотря на большое число исследований, посвященных полимеризации акрилонитрила, и общее качественное объяснение феноменологических особенностей процесса, различные лаборатории продолжают детальные количественные исследования. Результаты количественных исследований очень важны, поскольку свойства полимера зависят от условий полимеризации. Цель данной главы состоит в том, чтобы дать обзор современных представлений о строении твердого полиакрилонитрила, механизме полимеризации акрилонитрила, сополимеризации его с другими мономерами и влиянии сомономера на свойства полимеров, полученных на основе акрилонитрила. [c.351]

    Что же происходит при достижении критического молекулярного веса, обозначенного на рис. У.З как Согласно существующим представлениям при достижении некоторой длины цепи она становится достаточно гибкой, чтобы появилась возможность образования флуктуационных топологических контактов типа петель, за-хлестов, переплетений и т. п., называемых в общем случае зацеплениями . Это означает, что вязкоупругие свойства расплава полимера при М > Мс моделируются поведением сетки статистически перепутанных цепей. Эта модель, безотносительно ее соответствия реальной структуре расплава, играет важную роль в физической химии полимеров, позволяя качественно (а в некоторых случаях и количественно) объяснить экспериментально наблюдаемые закономерности поведения растворов и расплавов полимеров и связать различные [c.180]


    Цри, растворении в ортофосфорной кислоте — 1,0—1,5 моль окиси алюминия на каждый моль пятиокиси фосфора получается высоковязкий раствор, который в результате высушивания превращается в аморфное вещество. Полагают, что эти растворы содержат агрегированные полимеры, в которых взаимодействие фосфатов и алюминатов (к. ч. А1 = 6) приводит к образованию пространственных структур [27, 169—172] общего тина представленных ниже. [c.38]

    Как уже отмечалось выше, зависимость между индивидуальными свойствами и структурой изолированных макромолекул и макроскопическими свойствами полимеров в блоке является достаточно сложной. Поэтому на современном уровне полимерной науки, которая развивается на основе самых общих представлений о специфических особенностях ценных молекул, по мере дальнейшей детализации теории удается лишь косвенно выяснить связь между индивидуальными характеристиками макромолекулы и йекоторыми физическими свойствами полимера. Иначе говоря, в настоящее время предсказания теории можно использовать лишь для нахождения корреляционных соотношений между структурой и свойствами полимера. Например, вряд ли можно говорить о возможности описания физических свойств расплавов или концентрированных растворов полимеров в терминах индивидуальных характеристик макромолекул. Задача детального обсуждения зависимости между различными макроскопическими свойствами и молекулярным строением полимера выходит за рамки предмета настоящей главы, и поэтому мы рассмотрим лишь два параметра, а именно температуру плавления и температуру стеклования полимера, которые, по-видимому, проявляют наиболее четкую связь со структурой макромолекул. Кроме того, анализ этих свойств подтвердит высказанную ранее идею о том, что молекулярная структура не является единственным фактором, определяющим макроскопические свойства полимера. [c.164]

    ТОЛЬКО в случае тех полимеров, у которых фибриллы имеют пластинчатую форму. К счастью, такие полимеры довольно многочисленны. Толщина пластинок, их общий вид и ориентация молекул перпендикулярно плоскостям пластинок — все это подтверждает, что они образуются складывающимися цепями. Очевидно, что структуры, наблюдаемые на поверхностях сферолитов, гораздо труднее согласовать с мицеллярной структурой. У полимеров с высокой степенью кристалличности и с пластинчатыми фибриллами структура должна так или иначе несколько отличаться от структуры, представленной на рис. 1, и более близко соответствовать наракри-сталлической упорядоченности, которую описали Стюарт [130] и другие. При анализе кинетики сферолитного роста полимеров Гофман и Лауритзен [42] изложили свою точку зрения о том, что пластинчатые кристаллы должны быть нестабильными, если молекулярные цепи в значительной степени не сложены. Эти авторы доказывают, что кристаллизация из расплава пластинок со сложенными цепями молекул определяется в основном теми же кинетическими факторами, что и рост монокристаллов из раствора. Их предсказание об увеличении толщины пластинок с ростом температуры кристаллизации, по-видимому, подтверждается экспериментально, а тангенциальная ориентация молекул в сферолитах является естественным следствием описанного ими процесса. В связи с этим особый интерес представляет тот экспериментальный факт, что изредка в тонких пленках полимера с открытой поверхностью образуются полиэдрические кристаллы или агрегаты таких кристаллов. Пока еще непонятно, какая связь существует между этими кристаллами и сферолитами однако ясно, что они составлены из сложенных молекул [31 ]. [c.468]

    В практических условиях большое значение имеет величина набухания ионитов (различных ионных форм) в воде и в равновесии с растворами электролитов. Фактические данные и теоретическое обсуждение можно найти в работах [17, 61—68], здесь мы ограничимся общими представлениями. Различия в значениях набухания вообще тем меньше, чем больше содержание ДВБ в полимери-зациопных ионитах и соответственно жесткость трехмерной структуры в поликонденсационных смолах (рис. 2). Для смол, содержа- [c.21]

    Сведений о надмолекулярной структуре расплавов и концентрированных растворов полимеров в специальной литературе очень мало, так как их исследование является весьма сложной задачей. Однако, исходя из общих представлений о растворении высокомолекулярных соединений, можно утверждат- что при переходе в расплав или раствор надмолекулярная структура твердых полимеров частично сохраняется. [c.53]

    В связи с отмеченным выше влиянием на жесткость цепи типа растворителя следует в качестве дальнейшего развития общих представлений о фазовых превращениях в растворах полимеров с образованием жидкокристаллической фазы рассмотреть опубликованную недавно работу Чиферри [25], посвященную анализу причин образования специфической структуры и свойств у новых, сверхвысокомодульных волокон из синтетических полимеров. После краткого изложения общих положений автор отмечает, что теория Флори предусматривает не все возможности регулирования перехода растворов полимеров в анизотропное состояние. В частности, он [c.61]

    Так называемая четвертичная структура фибриллярных белков мало изучена, но если иметь в виду, что эти белхи представляют собой резко асимметричные образования жесткого типа (например, трехтяжные спирали коллагена), то можно полагать, что на различных стадиях синтеза и укладки этих белков важную роль в организации структуры должны играть именно те факторы, которые ответственны за самоупорядочение в растворах жесткоцепных полимеров. Конечно, образование дисульфидных связей, которые накладываются на упорядоченную структуру, значительно осложняет расшифровку стадий процесса, приводящих к конечному строению фибриллярных белков. Но это не является ограничением применимости основных принципов образования жидкокристаллических систем к случаю природной организации белковых тел. Интересные фактические данные о структуре фибриллярных белков, которые могут быть использованы при анализе рассматриваемой проблемы, приводятся в монографии Михайлова [3]. Общие представления о механизме сборки макромолекул были изложены Френкелем [4]. [c.222]

    На основании самых общих представлений о структуре растворов низкомолекулярных веществ в полимерах можно выделить по крайней мере три типа главных структурных элементов, предопределяющих его основные физические характеристики ассоциаты молекул пенетранта с функциональными группами сегментов макромолекул, кластеры молекул пенетранта и статистически распределенные в матрице полимера молекулы сорбата, подчиняющиеся либо закономерностям Генри, либо Флори — Хаггинса. Анализ изотерм сорбции с помощью теорий БЭТ, Флори — Хаггинса, Генри, двойной сорбции , Зимма — Лунберга (см. гл. 8) позволяет установить границы появления и развития этих структурных элементов. Например, кластеры из молекул пенетранта возникают вблизи границ совместимости, ассоциаты молекул — при низких активностях диффузанта и т. п. Если принять, что каждый из указанных типов структурных элементов характеризуется своим локальным коэффициентом диффузии ),, то образование в матрице вторичных структур может и должно приводить к появлению дополнительных составляющих в общем трансмембранном потоке. Так, естественно ожидать, а отдельные эксперименты это подтверждают [47, 86], что кл в кластерах молекул пенетранта выше Д, для статистически распределенных молекул. При коалесценции кластеров в объеме мембраны и образования бесконечного кластера, соединяющего две стороны мембраны, возникает канал , обладающий более высокой проницаемостью ( ) г, кл> 1 )- Образование такого канала происходит при вполне определенной концентрации кластеров (Скл 16%), как это следует из теории перколяции [138]. Поскольку образование кластеров, их разра- [c.72]

    Плавление полистирола как пример многостадийного плавления изотактического полимера со спиральной конформацией макромолекул (табл. 2.10) было изучено более широко. Несколько пиков плавления, о которых впервые сообщили Бун и др. [25], позднее были подробно проанализированы [ 137, 139, 175, 237]. Белл и Дамблетон [16] ошибочно предположили, что, как и в случае найлона-6,6 (разд. 9.3.2.8), один из двух главных пиков плавления связан с плавлением кристаллических образований, более близких к ламелярной структуре (температура этого пика плавления около 232°С, отжиг мало влияет на температуру плавления, но приводит к уменьшению пика), а второй - с плавлением кристаллических образований, более близких к сноповидной структуре (температура и площадь которого увеличивались в процессе отжига). Пелыхбауэр и Мэнли [ 179] обнаружили также небольшой третий пик плавления при более низкой температуре, который они связали с наличием стереоблоков в макромолекулах или других примесей в образце (площадью, составляющей около 10 % общей площади пиков плавления). Эти первые представления о числе и природе пиков плавления были уточнены благодаря более подробному исследованию Лемстра и др. [ 137], включившему также исследование плавления кристаллов, выращенных из раствора (разд. 9.3.1.2 и рис. 9.17). [c.237]

    Картина надмолекулярной организации еще более усложняется при переходе к образцам, закристаллизованным из концентрированных растворов или расплавов. В таких образцах в общем удается выделить основные упомянутые выше морфологические формы со складчатой упаковкой макромолекул, вместе с тем возникают и существенные изменения в характере упаковки макромолекул, в особенности на границах раздела кристаллических структур. Прежде всего, уже при кристаллизации полимеров из растворов умеренных концентраций наблюдается появление проходных цепей, т. е. макромолекул, участвующих одновременно в образовании кристаллических решеток двух соседних ламелей. Наряду с проходными цепями предполагается и появление на поверхности кристаллов нерегулярных складок типа больших петель. Крайним выражением такой картины может служить модель Флори, представленная 5 Согласно Флори, по крайней мере 50% макромолекул могут покинуть кристалл, образуя на его поверхности неупорядоченные области в виде статистических клубков. Вероятно, что часть таких цепей образует проходные молекулы или большие нерегулярные петли. Но это действительно крайняя точка зрения, когда речь идет о блочных полимерах или закристаллизованных из раствора, поскольку, несмотря на некоторую противоречивость пмеющихся данных, можно все-таки утверждать, что наличие регулярных гладких поверхно- [c.47]


Смотреть страницы где упоминается термин Общие представления о структуре растворов полимеров: [c.18]    [c.153]   
Смотреть главы в:

Физико-химия полимеров 1978 -> Общие представления о структуре растворов полимеров




ПОИСК





Смотрите так же термины и статьи:

Представления о структуре

Растворы полимеров



© 2025 chem21.info Реклама на сайте