Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экстракция и кислотность раствора

Рис. 6-47. Значения коэффициентов распределения циркония и гафния т .при разных кислотностях водной фазы и экстракции 20% раствором трибутилфосфата Рис. 6-47. <a href="/info/1692079">Значения коэффициентов распределения</a> циркония и гафния т .при <a href="/info/1458634">разных кислотностях</a> <a href="/info/1899027">водной фазы</a> и экстракции 20% раствором трибутилфосфата

    Разделение металлов в виде купферонатов проводят путем их осаждения при разной кислотности раствора. Купферонаты металлов хорошо экстрагируются неводными растворителями. Разделение металлов методами экстракции имеет ряд преимуществ перед методом осаждения. Поэтому для разделения металлов лучше применять не осаждение, а экстракцию в виде купферонатов. [c.207]

    В зависимости от кислотности раствора можно разделить катионы всех металлов на две большие группы. Еще большее дифференцирующее действие проявляют органические реактивы, которые являются слабыми кислотами и в то же время образуют очень прочные комплексы с ионами металлов. В качестве примера на рис. 26.3 приведен дитизоновый спектр , т. е. зависимость экстракции дитизонатов некоторых металлов от pH раствора. Из рисунка видно, что ртуть и серебро экстрагируются тетрахлоридом углерода в виде дитизонатов металлов в очень кислой среде ионы висмута и меди экстрагируются в менее кислой среде с повышением pH экстрагируются ионы цинка, кадмия, индия и других металлов. Таким образом, регулируя только pH раствора, можно в значительной мере провести разделение металлов. Подобным образом можно разделить ионы металлов в виде гидр-оксихинолинатов и других комплексных соединений с органическими реактивами. [c.536]

    При экстракции аминами из сульфатных растворов получаются лучшие результаты, чем из хлоридных или нитратных растворов. С увеличением кислотности растворов коэффициенты распределения рения несколько снижаются, тем не менее экстракция третичными аминами позволяет извлекать его даже из концентрированных сернокислых растворов (до- 600 г/л НгЗО ). Чтобы не образовалась вторая органическая фаза, к экстрагенту добавляют немного высокомолекулярного спирта, хотя это и сопровождается уменьшением коэффициента распределения рения. [c.302]

    Эффективность экстракции элементов в виде внутрикомплексных соединений зависит от кислотности раствора. Изменяя кислотность водной фазы, можно избирательно извлекать металлы, [c.330]

    Экстракция широко применяется в аналитической химии золота, поскольку в ряде случаев с помощью одного экстрагента можно не только отделить или сконцентрировать золото, но и определить его количество по оптической плотности органической фазы или же атомно-абсорбционным методом, а после реэкстракции или упаривания растворителя — практически любым методом. Селективность экстракции можно повысить не только подбором экстрагента, но и изменением кислотности раствора, составом электролитов, введением маскирующих веществ. [c.84]


    Кислотность растворов сильно влияет на экстракцию ионов или соединений металлов спиртами, эфирами и кетонами, сами кислоты экстрагируются этими растворителями. [c.107]

    Экстракция начинается при определенной кислотности раствора, зависящей от природы органического растворителя и продукта восстановления. Большинством изученных растворителей — спиртами и кетонами — восстановленная фосфорномолибденовая кислота полностью экстрагируется при кислотности водной [c.87]

    В качестве экстрагента при определении фосфора применен изоамиловый спирт [820, 876, 1026]. Перед экстракцией кислотность раствора должна быть около 1 7V по H2SO4. [c.90]

    Полученные масла анализировались по существующим стандартам. Белок и слизистые вещества в образцах масла отсутствовали, так как эти вещества в условиях экстракции не растворялись в газе. Экстрагированные масла по некоторым свойствам оказались близкими к нерафинированному подсолнечному и хлопковому маслам, а по другим свойствам, например по кислотности, намного лучше их. Для иллюстрации сказаннрго в табл. 65 сопоставлены результаты анализа экстрагированного подсолечного масла с требованиями стандартов. [c.111]

    Из. азотнокислотных растворов золото (1П) экстрагируется гораздо слабее, а палладий, напротив, сильнее, чем нз солянокислотных. Экстракционная способность ДОС н ДОСО по отношению к палладию в азотнокислотных растворах практически совпадает. С увеличением концентрации HNO3 от 0,1 до 6 М при экстракции 0,4 М раствором ДОСО в бензоле коэффициент распределения палладия падает с 590 до 170, коэффициент распределения платины (IV) с 0,78 до 0,21, а для иридия он составляет около 1-10" . При низких кислотностях растворов ДОСО помимо Pd и Аи эффективно экстрагирует ртуть. Экстрагируемость серебра невелика, но, в отличие от ртути, она возрастает с увеличением концентрации HNO3 в водной фазе. Хотя ДОСО экстрагирует ртуть и серебро слабее, чем ДОС, коэффициент распределения этой пары при переходе к ДОСО увеличивается до 1000. [c.194]

    При более высокой концентрации НЫОз экстракция происходит в виде комплексной кислоты Н Ьп(ЫОз) .з-ЗТБФ. Рост коэффициентов распределения РЗЭ с увеличением порядкового номера элемента при высокой кислотности раствора объясняется увеличением прочности комплекса в ряду РЗЭ и уменьшением диссоциации его, подавляемой при большом содержании кислоты [116, 117]. При экстрагировании из [c.128]

    По этой методике авторы получили хорошие результаты по алюминию даже при концентрациях ЫН45СЫ, значительно превосходящих указанные выше оптимальные (1 до 4 ЫН45СЫ), при 2—3-кратной экстракции из растворов с кислотностью 0,5—3 N по НС1 и при соотношении Ре А1 от 1 30 до 30 1 [1186]. Процесс отделения длится 10 мин. [c.178]

    В большинстве случаев раздельное извлечение карбоновых кислот (включая окси-, альдегидо- и кетокислоты) и фенолов из смесей органических веществ основано иа различии в их кислотности. Несмотря на то что карбоновые кислоты являются слабыми, они все же сильнее угольной кислоты, и поэтому, взаимодействуя с бикарбонатами и карбонатами щелоч1Ш1Х металлов, вытесняют ее. Фенолы не способны вытеснять угольную кислоту из ее солей и переходят в феноляты лишь в щелочных средах. Соли карбоновых кислот и феноляты в отличие от свободных кислот и фенолов практически нерастворимы в углеводородах и серном эфире [1], но хорошо растворимы в водно-спиртовых и водных средах. Поэтому карбоновые кислоты удается извлечь из их смесей с углеводородами экстракцией водным раствором соды. К- Бауер [2] указывает, что в растворах карбонатов щелочных металлов фенолы нерастворимы. Этот взгляд разделяют и другие исследователи [31. Изучая возможность селективного извлечения карбоновых кислот из продуктов окисления, содержащих фенолы, 10%-ным раствором карбоната натрия, Н. И. Черпожуков и С. Э. Крейн [4] иришли к выводу, что в условиях анализа увлечение фенолов содой настолько незначительно, что не может отражаться на точности результатов. Однако в литературе есть и противоположные указания. Ф. Фишер [5] наблюдал образование фенолятов при кипячении фенолов с раствором соды. Вайбель 6] рекомендует применять бикарбонат, отмечая, что большинство кислот растворимо в 5%-ном растворе бикарбоната натрия, между тем как другие растворимые в щелочах соединения в раствор не переходят за исключением тех, которые растворимы в воде. [c.206]

    Экстракция гексоном. Экстракцию гексоном проводят из водных растворов, содержащих НС1 и НР. Тантал и ниобий избирательно экстрагируются, так как коэффициенты распределения их между водным раствором и гексоном сильно различаются. При определенной концентрации кислот (до 8 н. по НР) из водной фазы преимущественно экстрагируется Та. Коэффициент разделения в оптимальных условиях достигает 730. Степень экстракции Та и Nb из НР и НС1 зависит от концентрации кислот и экстрагируемых элементов в растворе. В одном из вариантов процесса исходный раствор содержал 140 г/л Nb и 20 г/л Та. Кислотность раствора соответствовала НР 8,3 н., НС1 0,2 н. соотношение органической и водной фаз при экстракции Та 1 1. Раствор направляли на экстракционный каскад, где осуществляли смесительные и отстойные операции. Тантал концентрировался в органической фазе, откуда его выделяли в форме фторотанталата натрия, добав- [c.80]


    Экстракция трибутилфосфатом. ТБФ экстрагирует Nb и Та из сульфат-фторидных (наиболее эффективно) и нитрат-фторидных растворов. При кислотности раствора 6 н. коэффициент распределения Nb 80. В 12 н. сернокислом растворе коэффициент распределения Nb возрастает до 400. Процесс разделения исследован [23 ] для раствора, полученного растворением феррониобия в смеси H2SO4 и НР. В непрерывном экстракционном процессе при четырех ступенях экстракции и двух ступенях реэкстракции водой извлекали 99% Nb. Из органической фазы выделяли танталовый продукт с 0,4% Nb. [c.81]

    Нитраты, сульфаты и хлориды Ыа" и ЫН4 , присутствующие в производственных растворах после азотнокислого вскрытия молибденовых и молибден-вольфрамовых концентратов, не мешают экстракции молибдена. Но Р, Аз и Ре(П1) делают экстракцию молибдена неполной. Это связано с образованием гетерополикомплексов, в частности анионов [Н( /з Мов з )02 1] и комплексов железа с алкилфос-форными кислотами.Железо необходимо предварительно удалить в виде Ре(ОН) 3, нейтрализуя растворы. Это осложняет процесс, так как затем снова надо повышать кислотность раствора. В производственных условиях молибден экстрагируют в 5 ступеней и реэкстрагируют 10%-ным раствором аммиака. Экстрагент — 5—7%-нын раствор в керосине. Его регенерируют 30%-ной НЫОз при соотношении органической и водной фаз 10 1. После этого он возвращается в цикл [7, 32]. [c.214]

    Экстракционным путем эффективно извлекается вольфрам из растворов после кислотной промывки шеелитовых промежуточных продуктов обогаш,ения руд скарновых месторождений, а также из натрий-вольфраматных растворов, получаемых при автоклавно-содовом вскрытии тех же промежуточных продуктов, после очистки этих растворов от Si, F, Р, Мо. При экстракции спиртовыми растворами аминов, содержащими 10 г/л НС1, получается органическая фаза, в которой 40 г/л WO3. Реэкстракция раствором аммиака при 50—60° дает раствор с 80—85 г/л WO3 и рафинат с 0,05—0,2 г/л WO3. Извлечение в паравольфрамат 83% при чистоте более 99,9%. Чтобы при реэкстракции не получалось осадка паравольфрамата, процесс ведут при 50—60° [37]. [c.269]

    Фосфорорганические экстрагенты [89, с. 58] экстрагируют рений в составе комплексов вида [Ме S (H20)y ]Re04, где Ме — щелочной металл или гидроксоний, S — молекула экстрагента х растет с увеличением концентрации экстракта в органической фазе и уменьшается с возрастанием кислотности в водной фазе у возрастает с уменьшением кислотности раствора. При экстракции ТБФ извлечение рения уменьшается с переходом от солянокислых к сернокислым и азотнокислым растворам. В случае экстракции из сильнокислых сред в аммиачный реэкстракт переходит большое число анионов, загрязняющих перренат аммония при его кристаллизации. Поэтому предпочитают экстрагировать из слабокислых растворов ( 0,3 н. НС1). В качестве высаливателей могут использоваться хлориды или ацетаты натрия и калия. Триалкилфосфиноксиды — более сильные экстрагенты рения, чем ТБФ и вообще триалкилфосфаты, тогда как ди-2-этил-гексилфосфорная кислота практически рений не экстрагирует. [c.301]

    Экстракционные процессы по типу используемого экстрагента можно разделить на три труппы экстракция кислотными (катионообменными), основными (анионообменными) и нейтральными экстрагентами (табл. 7.3). Нейтральные экстрагенты, как правило, обладающие высокой донорной способностью, используют дпя экстракции незаряженных комплексов ионов металлов с лигандами типа СГ, Вт , Г, 8СН . Натфимер, экстракцию циркония(1У) из хлорндных растворов описывают уравнением [c.226]

    Экстракция солей марганца высокомолекулярными аминами исследована в зависимости от кислотности раствора и природы растворителя [415, 742, 1228]. Максимальная экстракция наблюдается растворами изодециламина в I4 из 8,6 N НС1 и н.доде-циламина в I4 при pH 6 (табл. 31). [c.128]

    Степень экстракции марганца метилдиоктиламином в три-хлорэтплене незначительна (0,07%), но при увеличении кислотности раствора до 10 N НС1 степень извлечения марганца повышается до 32% [1193]. [c.128]

    Плутоний, главным образом Ри(У1), вместе с и(VI) экстрагируют бутексом из азотнокислых растворов. Оптимальная кислотность раствора ННОз равна 3 Л . В этих условиях из продуктов деления экстрагируются главным образом рутений и в меньшей степени цирконий, ниобий и церий. Для улучшения очистки от продуктов деления органическую фазу промывают ЗМ НЫОз. Азотную кислоту, содержащуюся в органической фазе, нейтрализуют раствором аммиака и после этого проводят ре-экстракцию плутония в водный раствор, содержащий восстановитель — сульфаминат железа. [c.313]

    В присутствии фосфорной кислоты можно отделить плутоний от урана и продуктов деления экстракцией ТБФ. Шевченко, По-вицкий и Соловкин [247] описали метод переработки облученных тепловыделяющих элементов первой атомной электростанции СССР. Получаемые после растворения тепловыделяющих элементов азотнокислые растворы содержали уран (от 100 до 120 г/л), плутоний, молибден, магний, осколочные элементы и фосфорную кислоту (до 46 г/л). Кислотность растворов составляла 5 М НМОз. Метод заключался в раздельном экстракционном извлечении сначала урана, а затем Ри(1У) 20%-ным раствором трибутилфосфата в гидрированном керосине. [c.324]

    Сплав растворяют в кипящей 16 М HNO3, содержащей 0,05 /И HF. Кислотность раствора снижают приблизительно до 1 М при помощи раствора NaOH и добавляют азотнокислый гидроксиламин до концентрации 0,05 Ai. Прибавляют нитрит натрия для разрушения оставшегося гидроксиламина и стабилизации плутония в четырехвалентном состоянии. Кислотность раствора доводят до 8 М при помощи конц. HNO3. Проводят 6-кратную экстракцию равным объемом свежеприготовленного экстрагента, содержащего 35 объемн. % вторичного амина, 10 объемн.% децилового спирта и 55 объемн.% растворителя ВТ фирмы Галф . Водную фазу отбрасывают. Органическую фазу встряхивают вначале с водой, при отношении объемов органической и водной фаз, равном 5 1 (для снижения содержания кислоты в органической фазе), и затем трижды с 0,1 М азотнокислым гидроксиламином при таких же соотношениях объемов органической и водной фаз. Водные реэкстракты, содержащие Ри(П1), объединяют и осаждают оксалат плутония (1П). [c.342]

    Система твердая фаза — жидкость. Экстракция в системе твердая фдза — жидкость заключается либо в обработке твердой смеси солей щелочных металлов соответствующим растворителем (35%-ная соляная кислота спирто-кислотный раствор [228, 229, 252, 253, 257, 389—393] бром [235, 236] жидкий сернистый ангидрид [3941 57о-ный раствор (МН4)2504 в этаноле [390] и др.) в аппаратах типа Сокслета или перколяторах [395], либо путем осаждения из водных растворов малорастворимых солей щелочных металлов такими реагентами, как этанол [350], 35%-ная соляная кислота и их растворы (табл. 22). [c.347]

    Распределение нитрата тория между раствором азотной кислоты и диэтиловы.м эфиром впервые исследовано Имре [1098], показавшим, что увеличение концентрации азотной кислоты в водном слое приводит к повышению коэффициента распределения нитрата тория. Позднее было замечено, что насыщение водного слоя нитратами тория [1489] или некоторых металлов, не экстрагирующихся эфиром [398, 399, 783, 1741], значительно повышает коэффициенты распределения нитрата тория. В исследованиях, проведенных Бок [399], кислотность раствора поддерживалась 1 М по HNO3 и определялся процент экстракции тория для эквивалентного объема эфира в присутствии высаливателей. При этом наилучшие результаты были получены с Zn (N03)2 (экстракция тори я осуществлялась па 80,9%) порядок эффективности наиболее пригодных высаливателей оказался следующим Zn(NO3)2>Ре(NO3)2> >Са(ЫОз)2>Ь[МОз>А1(ЫОз)з>Мй( Оз)2- Повышение концентрации азотной кислоты до 3 /V в растворах, насыщенных нитратом цинка, обеспечивает экстракцию почти 90% Th за одну операцию. Несмотря на то, что р. з. э. за исключением Се [913, 1098], практически не экстрагируются эфиром, метод аналитического значения не имеет, так как другие примеси, которые могут присутствовать в исследуемом образце, частично переходят в эфир при высокой концентрации кислоты и высаливателей в водной фазе. [c.121]

    Тиофенкарбонилтрифторацетон [1103, 1670] образует с торием устойчивое клешневидное комплексное соединение, легко экстрагирующееся бензолом [5, 1550]. Как было установлено на примере нитрата иония (Th ) [933, 1090], экстракция индикаторных количеств тория 0,25 М раствором ТТА в бензоле в сильной степени зависит от кислотности раствора и происходит полностью при рН>1, заметно уменьшаясь при под-кислении растворов (см. рис. 26). [c.229]

    М НС1 изоамилацетат экстрагирует 90% Аи, амилацетат — 65—70% изобутилацетат — 30%. Наиболее эффективным экстрагентом является бутилацетат. При экстрагировании 1—100 мкг Аи в присутствии 5 мг Pt, 2 ме Pd и 1 мг ЯЪ в экстракте обнаружено 0,02 мг Pt и 0,006 мг Pd Rh не обнаружен. Бутилацетат и амилацетат из растворов 1—3 МНС1 экстрагируют 85% Аи [569]. Изучалась [1295] экстракция бромаурата бутилацетатом нри различной концентрации КВг и кислотности раствора. Из раствора 0,5 М НС1 в присутствии 0,3—0,5 М КВг можно избирательно экстрагировать Au(III) в присутствии Fe(III), u, Tl(III), Mo. [c.87]

    Бензол и СНС1а экстрагируют хлорид ртути (II) незначительно [114]. Полнота экстракции ртути в виде хлорида зависит от кислотности раствора, снижаясь при концентрации НС1 > 0,1 М. Изменение температуры существенно не влияет на экстракцию. Экстракт, однако, кроме ртути, может содержать значительные количества ЗЬ (V), Аз (III), Оа (III), Ое (IV), Ли (III), Ге (III), Мо (VI), Nb (V), РЬ (II), Ро (II), Ра (V), Т1 (III), Зс (III), и (VI) [65, 224, 409, 1439]. К элементам, частично экстрагируемым, относятся ЗЬ (III), Аз (V), Со (II), 1п (III), Те (IV), Зп (IV), Зп (II). Хлорид ртути(П) может экстрагироваться бутиловым спиртом, насыщенным НС1 при этом коэффициент распределения, найденный экспериментально, равен 0,897 [100]. Для экстракции гало-генидов ртути предложен также изоамиловый спирт [728, 7291. Циклические растворители (циклогексанон, циклогексанол) применяют в геохимическом анализе для экстракции Hg(II) из солянокислых растворов с целью отделения от (II), С(1 (II), Оа(П1), 1п(1П), Т1(1П), Зп( ), РЬ(П), Аз (III), ЗЬ (III) [c.46]

    Изучалось отделение цинка от кобальта экстракцией из солянокислых растворов [1020]. Исследовано извлечение раствором метилдиоктиламина в трихлорэтилене, раствором трпбен-зиламина в хлороформе, трихлорэтилене и ксилоле. В различных условиях цинк переходит почти количественно в неводный слой, увлекая небольшие количества кобальта так, при экстракции из 3 Л/ раствора соляной кислоты раствором трибензилами-на в хлороформе около 72% цинка вместе с 0,11% кобальта переходит в неводный слой. При этой же кислотности раствор метилдиоктиламина в трихлорэтилене извлекает практически весь цинк и около 1,5% кобальта. Установлена возможность разделения роданидов железа, никеля и кобальта посредством противоточной экстракции фурфуролом [1345], Для получения очень чистого кобальта для мишеней при циклотронной бомбардировке и очистки его от никеля использована экстракция роданида кобальта неводными растворителями. Из 14 исследованных растворителей наилучшие результаты были получены с Метилизобутилкетоном (гексоном), метил-н-амилкетоном и бутилацетатом, так как коэффициенты распределения роданида никеля в этих растворителях оказались самыми низкими [1307]. [c.73]

    Другие соли металлов. В последующих работах [597, 645] было подтверждено исключительное превосходство первичных аминов над вторичными и третичными при экстракции из сульфатной среды. Независимо от класса амина максимум D сульфатов металлов наблюдается при кислотности раствора ниже 0,1Л/, и при увеличении отношения бисульфат сульфат экстрагируемость металлов уменьшается [530, 537, 557, 581, 582, 646—651]. Вероятно, существует несколько различных сульфатных соединений урана (VI) в фазе амина в зависимости от условий, главным образом от кислотвости водной фазы [530, 537, 581, 582, 648]. [c.67]

    Данные по кислотности растворов, разлагающих экстракты дитизонатов различных металлов, приведены в табл. 25. Из 1—2Ы растворов КаОН комплекс кадмия с дитизоном хорошо извлекается хлороформом. Q,2N кислоты легко разлагают его дитизонат и переводят кадмий в водную фазу. Hg, Аи и Си экстрагируются вместе с кадмием из щелочной среды. При обработке органического слоя 0,2 ЛГ кислым раствором эти элементы остаются в экстракте. Таким путем можно отделить кадмий от 100-кратных количеств указанных металлов. От 1000-кратных количеств ионов В1 , РЬ " " и кадмий отделяют экстракцией раствором дитизона в СС14 при pH 14. Препятствуют экстракции кадмия ионы 3 ", СК в сильнощелочной среде, цитраты и тартраты — в нейтральной. [c.146]

    KJ Bi Метилпзо-бутил кетой Экстракция из растворов с кислотностью 0,8—3 N [850] [c.50]

    Клитиной [149] изучено восстановление фосфорномолибденовой кислоты и влияние на ее экстракцию различных факторов — природы восстановителя, кислотности раствора, избытка молибдата, присутствия нейтральных солей. [c.87]

    В присутствии избытка NajMo04 введенная в солянокислый раствор фосфорная кислота в форме Na2HP04 переходит в органический слой в виде кислых натриевых солей фосфорномолибденовой кислоты. С повышением кислотности раствора количество экстрагируемого фосфата сначала быстро увеличивается. При концентрациях НС1 2N экстрагируемость фосфора уменьшается, а Мо увеличивается, что указывает на разложение фосфоромолибдата. V(V) мешает экстракции, V(IV) и Fe(III) не мешают при концентрации свободной кислоты 1,2—1,5 N. [c.89]


Смотреть страницы где упоминается термин Экстракция и кислотность раствора: [c.10]    [c.193]    [c.145]    [c.298]    [c.131]    [c.133]    [c.203]    [c.128]    [c.307]    [c.336]    [c.128]    [c.43]    [c.151]    [c.88]    [c.121]   
Смотреть главы в:

Методы аналитической химии Часть 1 -> Экстракция и кислотность раствора




ПОИСК





Смотрите так же термины и статьи:

Кислотность растворов

Экстракция из растворов



© 2024 chem21.info Реклама на сайте