Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипептиды, белки и нуклеиновые кислоты

    Полиэлектролиты. Если звенья макромолекулы содержат боковые ионогенные группы, то полимеры проявляют своеобразные-электрические, конфигурационные и гидродинамические свойства. Такие полимеры называют полиэлектролитами. К ним относятся поликислоты (полиметакриловая, нуклеиновые кислоты и др.) полиоснования полиамфолиты. Полиамфолиты содержат кислотные-и основные группы в одной макромолекуле. Это белки и синтетические полипептиды. Они построены из аминокислот и содержат основные (ЫНзОН) и кислотные (—СООН) группы, которые располагаются не только на концах цепей, но и в боковых ответвлениях. Раствор каждого полиамфолита в зависнмости от его состава имеет определенное значение pH, при котором сумма положительных и отрицательных зарядов в цепи равны. Это значение pH называется изоэлектрической точкой (ИЭТ). При pH ниже ИЭТ в цепи преобладают положительные заряды из-за подавления диссоциации СООН-групп. При достаточно низком pH полиамфолит превращается в полиоснование. При pH выще ИЭТ полиамфолит постепенно переходит в поликислоту. [c.287]


    Координационные свойства природных соединений. Накопление функциональных групп в органических молекулах, которые могут выступать как лиганды, особенно в соединениях полимерного характера (полисахариды, полипептиды, белки, нуклеиновые кислоты и др.), сильно осложняет картину комплексообразования с ионами и солями металлов. Это происходит в результате того, что свойства функциональной группы будут зависеть от расположения в сложной молекуле, от конформации этой молекулы и от стерического экранирования реакционного центра окружающими фрагментами молекул. Эта ситуация создает много трудноразрешимых затруднений для физико-химического исследования такого комплексообразования и для его термодинамического описания. [c.179]

    Термодинамические методы широко используются при исследовании природных и биополимеров. Вместе с тем, в отличие от обширной литературы, посвященной белкам, полипептидам и нуклеиновым кислотам, термодинамические свойства полисахаридов представлены достаточно скудно. Имеющийся обзор [81] дает некоторые общие сведения о термодинамических характеристиках полисахаридов в растворах и их взаимодействиях с ионами металлов. Термодинамические характеристики комплексообразования иода с полисахаридами существенно расширяют представления о процессах кооперативного взаимодействия. [c.37]

    Для аналитического и препаративного выделения и исследования свойств высокомолекулярных биополимеров — белков, протеидов, полипептидов и нуклеиновых кислот, а также для отделения взвешенных в жидкости частиц, не отделяемых фильтрацией, используют эффект электрофореза — движения под действием внешнего электрического поля дисперсных частиц, находящихся во взвешенном состоянии в жидкой или газообразной среде. Электрофоретические приборы описаны в табл. 24. [c.278]

    Белки, полипептиды и нуклеиновые кислоты [c.38]

    Оптически активными могут быть природные полимеры (белки и полипептиды, полисахариды, нуклеиновые кислоты) и синтетические. [c.160]

    Оптически активные полимеры — высокомолекулярные соединения, обладающие способностью поворачивать плоскость поляризации света, проходящего через их р-ры, расплавы или прозрачные стекла. По происхождению О. а. п. могут быть природными (белки и полипептиды, полисахариды, нуклеиновые кислоты) и синтетическими. В настоящей статье рассмотрены только синтетические О. а. п. [c.240]

    Точность воспроизведения данного полипептида (т. е. собственно белка) при таком механизме невелика, хотя продукт и обладает большим разнообразием каталитических функций. Гораздо большая точность достигается в цепях нуклеиновых кислот, если представить себе их образование по аналогичному способу. Нуклеиновая кислота обладает слабо выраженными каталитическими свойствами, но воспроизводит только сама себя и ошибки при этом бывают относительно редкими. [c.382]


    Однако, прежде чем говорить о распространении или о структурных и функциональных особенностях отдельных полисахаридов, следует, вероятно, сказать несколько слов об общем состоянии структурных исследований в этой области. В последние годы здесь достигнуты большие успехи. Ежегодно удается выделить 10—20 новых полисахаридов. Определение последовательности моносахаридов в полисахаридах в некоторых отношениях легче, а в некоторых — труднее, чем определение последовательности мономеров в полипептидах или нуклеиновых кислотах. Легче оно главным образом потому, что полисахариды обычно построены из относительно небольшого числа повторяющихся единиц и каждый мономер повторяется на протяжении всей молекулы регулярным образом. В противоположность этому индивидуальные аминокислоты или нуклеотиды, по-видимому, распределены беспорядочно или почти беспорядочно в молекулах соответствующих полимерных соединений. Если полисахарид строго регулярен, то определения структуры повторяющейся единицы и молекулярного веса полимера достаточно для установления его полной первичной структуры. Однако в большинстве случаев встречаются некоторые особенности (например, наличие в молекуле точек разветвления), которые в значительной степени усложняют задачу. Главным осложняющим фактором в химии полисахаридов является наличие нескольких типов связей между остатками моносахаридов. В отличие от белков, в которых все аминокислотные остатки связаны пептидными связями, и от нуклеиновых кислот, в которых нуклеотиды всегда соединены между собой 3, 5 -фосфодиэфирными связями, молекулы полисахаридов могут содержать различные связи а-(1 2), р-(1 3), а-(1 4) и т. д. Что касается числа типов мономерных единиц в отдельных полисахаридах, то в этом последние более сходны с нуклеиновыми кислотами, чем с белками в пределах одной молекулы полисахарида редко встречается более четырех типов мономеров. Стоит отметить как общее правило, что установить последовательность мономеров в полимере, содержащем малое число типов мономерных звеньев,. гораздо труднее при большом числе типов эта задача решается проще. [c.265]

    ПОЛИПЕПТИДЫ, ПОЛИМЕРНЫЕ МЫЛА, БЕЛКИ, НУКЛЕИНОВЫЕ КИСЛОТЫ [c.576]

    Полипептиды, полимерные мыла, белки, нуклеиновые кислоты 579 [c.579]

    Полипептиды, полимерные мыла, белка, нуклеиновые кислоты 585 [c.585]

    Основные успехи разделения биополимеров в гетерогенных системах достигнуты при использовании равновесия между раствором и твердой фазой. Одними из наиболее ранних приемов, сохранивших свое значение и до настоящего времени, являются методы осаждения и кристаллизации. Еще большее значение в настоящее время играют процессы сорбции и их динамическая модификация — процессы хроматографии. Одноактная сорбция белков на окислах металлов и других минеральных сорбентах служит для очистки белков и ферментов уже несколько десятилетий. К этим процессам присоединилась избирательная сорбция белков ионообменными смолами. Одним из наиболее значительных достижений современной физической химии в области фракционирования сложных смесей веществ, в частности белков, нуклеиновых кислот, полипептидов, аминокислот и нуклеотидов, явилась хроматография, особенно в виде ее ионообменной модификации и гельфильтрации на сефадексах. [c.7]

    Антибиотики—вещества, образуемые микроорганизмами или получаемые из других природных источников, обладающие антибактериальным, антивирусным и противоопухолевым действием. Они вмешиваются в обмен белков, нуклеиновых кислот и в энергетические процессы пораженных организмов и клеток, избирательно воздействуя на определенные молекулярные механизмы. Так, в биосинтезе белка (о поименованных ниже этапах биосинтеза белка см. гл. VII) пуромицин высвобождает недостроенные полипептиды, тетрацик-лины подавляют присоединение аминоацил-тРНК к рибосоме, хлорамфеникол (левомицетин)—пептидилтрансферазную реакцию в ней, эритромицин блокирует перемещение рибосомы по информационной РНК, стрептомицин искажает считывание кода белкового синтеза. В биосинтезе нуклеиновых кислот (терминологию см. в гл. VI) противораковые и антибактериальные антибиотики (актиномицины, митомицин, новобицин, рифамицин и др.) подавляют процессы репликации и транскрипции. На энергетические процессы в клетке воздействуют антимицин (подавляет перенос электронов в цитохромной системе), ОЛИГОМИ1ЩН (подавляет сопряжение окисления с фосфорилированием) и другие антибиотики. Биосинтез гликопротеинов клеточных стенок бактерий приостанавливается под действием пенициллинов и D-циклосерина проницаемость клеточных мембран нарушается грамицидинами, нистатином и многими другими антибиотиками. [c.175]


    Методы разделения смесей веществ представляют ценность не только как начальная ступень практически любого эксперимента в области исследования биополимеров, так как выделенный и очищенный белок или нуклеиновая кислота претерпевают с течением времени изменения как в растворе, так и в кристаллическом виде или в виде осадка, но и как методы непосредственного изучения свойств биополимеров. Изучение электрохимических свойств белков, нуклеиновых кислот, нуклеотидов, полипептидов методами электрофореза и сорбции, изучение их морфологии методами сорбции и хроматографии представляет собой столь же важную область применения этих методов, как и наиболее до настоящего времени распространенное их приложение для фракционирования и анализа смеси веществ. [c.9]

    Многие очень важные природные полимеры илн макромолекулы, такие, как белки, полипептиды и нуклеиновые кислоты, образуют молекулярные цепи, которые частично или целиком имеют форму спирали. [c.62]

    Процессе позволяет сократить время хроматографического аминокислотного анализа по сравнению с временем наиболее распространенного ионообменного хроматографического процесса. Распределение веществ между паром и жидкостью при испарении и ректификации является областью, пригодной для разделения стабильных органических соединений. Эти методы не находят применения в химии белков, нуклеиновых кислот и их фрагментов. Несколько большие возможности для фракционирования веществ этих классов открывает экстракция. Однако область применения этой методики в виде ее наиболее эффективного варианта — противоточной экстракции — ограничивается лишь разделением сравнительно низкомолекулярных веществ — полипептидов. И только распределительная хроматография, основанная также на использовании принципа распределения веществ между двумя несмешивающимися жидкими фазами, дала ряд примеров успешного разделения смесей высокомолекулярных биологически активных веществ. [c.7]

    Полимерные цени, к которым относятся указанные выше замечания, могут принимать множество форм беспорядочных клубков , ни одна из которых не обладает какими-нибудь преимуществами перед другими. Однако ограниченный класс линейных цепных молекул способен принимать в растворе строго определенные конформации, соответствующие свернутым в спираль стержневидным структурам. Такое поведение типично для некоторых белков, нуклеиновых кислот и их синтетических аналогов. Переход формы цепи из беспорядочного клубка в спиральную конформацию можно рассматривать как одномерный аналог кристаллизации, и, таким образом, значение принципов, лежащих в основе такого явления, выходит за рамки профессиональных интересов химика, имеющего дело с полимерами. Кроме того, очевидно, что только большие молекулы с такими точно определенными пространственными соотношениями, какие, например, следуют из упорядоченных конформаций белков и нуклеиновых кислот, могут проявлять высокую специфичность молекулярных взаимодействий, являющихся неотъемлемой частью жизненных процессов. Это соображение, несомненно, послужило причиной огромных усилий, затраченных в последние годы на детальное выяснение условий, способствующих стабилизации упорядоченных образований в растворах полипептидов и полинуклеотидов. Возникающая в связи с этим проблема опреде-.ления сил, ответственных за складывание полипептидных цепей, состоящих из спиральных и неспиральных участков, в своеобразную третичную структуру нативных белков (см. раздел В-5) остается предметом будущих исследований. [c.86]

    Белки относятся к природным высокомолекулярным соединениям. Это биополимеры, структурную основу которых составляют длинные полипептидные цепи, построенные из остатков аминокислот, соединенных между собой пептидными связями. По составу белки делят на простые, состоящие только из аминокислотных остатков, и сложные — комплексы или ковалентные соединения полипептидов с нуклеиновыми кислотами (нуклеопротеиды), липидами (липопротеицы), пигментами (хромопротеиды), остатками фосфорной кислоты (фосфопротеиды) и др. [c.263]

    В книге сделан обзор работ по применению ЯМР-спектро-скопии высокого разреимения для изучения структуры синтетических и биологических полимеров. Кратко изложены основы метода ЯМР рассмотрена изомерия в полимерных цепях. Подробно описаны спектры синтетических полимеров и дана их интерпретация с целью определения структуры, стерео-химической конфигурации, конформации и механизма роста цепи. Обсуждаются спектры винильных полимеров, а также полидиенов, полимеров, получаемых при раскрытии циклов, и других типов полимеров. Большое внимание уделено природным полимерам (полипептидам, белкам, нуклеиновым кислотам) и малым молекулам — моделям рассматриваемых биополимеров. [c.4]

    Целый ряд экспериментальных данных подтверждает существование химической основы памяти. Например, введение животным небольших доз стрихнина облегчает обучение [131]. Другие вещества, например пуромицин (рис. 15-18), оказывают противоположное действие [129, 132]. Процесс обучения у животных связан с увеличением синтеза в нейронах мРНК и белков. Существенно важно, что синтез полипептидов и нуклеиновых кислот протекает в основном в теле нервной клетки, а не в окончаниях аксонов или в дендритах. Тело нервных клеток покрыто обычно синаптическими пуговками, и вполне вероятно, что-кменно стимуляция поверхности мембран тела клетки индуцирует синтез макромолекул. [c.351]

    Полипептиды, полимерные. иыла, белки, нуклеиновые кислоты 577 [c.577]

    Удельное и, следовательно, молярное вращение зависят от длины волны света. Это явление называется дисперсией оптического вращения. Его изучение позволило обнаружить конформащюнные изменения белков в процессе их денатурации. В последние годы для изучения конформационных изменений в белках, синтетических полипептидах и нуклеиновых кислотах применяют метод оптического кругового дихроизма. Этот метод основан на различии коэффициентов поглощения левого и правого циркулярно-поляризованного света в зависимости от длины волны. [c.205]

    Под конформацпоннымн превращениями в макромолекулах до самого недавнего времени понимали превращения (переходы) спираль — клубок в полипептидах и нуклеиновых кислотах. Предполагалось, что, в отличие от макромолекул нативных белков, нуклеиновых кислот и их синтетических моделей — полипептидов и полинуклеотидов, где внутримолекулярные взаимодействия (в основном, водородные связи) обеспечивают наличие вторичной структуры, внутримолекулярные силы у обычных синтетических поли.меров недостаточны для поддержания уиорядоченности в цепи. Макро.молекулы первых существуют в растворах в конформации одионитевых (белки, полипептиды) или двунитевых (нуклеиновые кислоты, полинуклеотиды) спиралей (см. [251, 510]). Двойная спираль Крика — Уотсона [511] для дезоксирибонуклеиновой кислоты и а-сиираль Полинга — Кори [512] для полипептидов — наиболее известные примеры вторичной молекулярной структуры. Макромолекула в спиральной конформации подобна по своей структуре одномерному кристаллу. Изменением температуры или других условий (состав смешанного растворителя, pH растворителя — [c.252]

    Однако О.ргел [3541] в очень интересной дискуссии по вопросу о том, какие соединения появились первыми — полипептиды или нуклеиновые кислоты, — пришел к вьшоду, что существование высокоорганизованной биологической системы, в основе которой лежат белки, возможно только в том случае, если спонтанно будет осуществляться репликация одного полипептида за другим , для чего структура белков совершенно не приспособлена. Строение же нуклеиновых кислот таково, что точная репликация полинуклеотидов и в отсутствие ферментов становится вполне возможной . И действительно, было показано, что при наличии конденсирующих агентов даже в отсутствие ферментов полинуклеотид [например, poly(U)] может действовать. как матрща, на которой из мононуклеотидов образуется вторая цепь. Однако новая цепь отличается от обычной молекулы нуклеиновой кислоты тем, что нуклеотиды связаны между собой не 3, 5 -, а 2, 5 -связями, поэтому такой процесс вряд ли можно называть репликацией. При синтезе нуклеотидов химическим путем наблюдается четкая тенденция к образованию связей 2, 5, а не 3, 5.  [c.139]

    Видимо, следующим шагом биопоэза было образование из продуктов неорганических реакций, протекавших на первой стадии, различных полимеров, таких, как полипептиды и нуклеиновые кислоты. Эксперименты, описанные в предыдущей главе, показали, что такие реакции вполне возможны и без участия организмов. Вполне вероятна и дальнейшая неорганическая полимеризация в белки и другие крупные молекулы. [c.126]

    С тех пор как в 1959 г. Орнстейн (Ornstein, 1964) и Дэвис (Davis, 1964) описали диск-электрофорез, этот метод широко используется для аналитического разделения белков, полипептидов и нуклеиновых кислот. [c.95]

    Действительно, вангаейтиие типы биополимеров - бел ки, полисахариды, нуклеиновые кислоты — построены ии сравнительно небольших мономерных блоков, соединенных связями через гетероатом. В белках и полипептидах — это остатки аминокислот, соединенных амидной связью. [c.218]

    Результаты титрования позволяют определять константы диссоциации слабых кислот и оснований, в том числе поли-функциональных. По этой причине потенциометрический метод являе1ся одним из важнейших методов изучения нолиэлектро-литов, в том числе и биополимеров, таких как белки, полипептиды, нуклеиновые кислоты. [c.245]

    Типичным примером водородной связи является связь, обра-зуемая водородом гидроксильной группы. Водородная связь может возникать не только между молекулами, но и в пределах одной молекулы, например белка, обеспечивая скручивание полипептид-пой цепочки с образованием глобулы. Такой тип внутримолекулярного взаимодействия является характерным для биологических макромолекул — белков, полисахаридов, нуклеиновых кислот. [c.27]

    Такое планирование оправдано в тех случаях, когда потенциальное исходное соединение является бросовым товаром (например, является отходом того или иного производства и желательна его рациональная утилизация, либо когда в целевой молекуле легко распознать структурные фрагменты, отвечающие доступным соединениям. Наиболее выразите.льньш примером второй ситуации может служить синтез биополимеров (белков, полисахаридов, нуклеиновых кислот). Все они построены из небольших мономерных блоков, соединенных через гетероатомы. Такими мономерами для полипептидов и белков являются аминокислоты, для полисахаридов — моносахариды, а для нуклеиновых кислот — нуклеотиды. В биополимерах эти мономеры соединены амидной, 0-гли-козидной и фосфодиэфирной связями соответственно. Такие связи легко расщепляются при химическом или ферментативном гидролизе. Обратное превращение — сборка межмономерных связей — представляет собой обыч- [c.295]

    Аминокислоты как основные составные части белков участвуют во всех жизненных процессах наряду с нуклеиновыми кислотами, углеводами и липидами. Кроме аминокислот, входящих в состав белков, живые организмы обладают постоянным резервом свободных аминокислот, содержащихся в тканях и в клеточном соке. Они находятся в динамическом равновесии при многочисленных обменных реакциях. Аминокислоты используются в биосинтезе полипептидов и белков, а также в синтезе фосфатидов, порфи-ринов и нуклеотидов. [c.10]


Смотреть страницы где упоминается термин Полипептиды, белки и нуклеиновые кислоты: [c.381]    [c.242]    [c.7]    [c.109]    [c.198]    [c.126]    [c.286]    [c.55]   
Смотреть главы в:

Оптический круговой дихроизм -> Полипептиды, белки и нуклеиновые кислоты




ПОИСК





Смотрите так же термины и статьи:

Белки полипептиды

Нуклеиновые кислоты

Полипептиды



© 2024 chem21.info Реклама на сайте