Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поведение кислот и оснований в различных растворителях

    Поведение кислот и оснований в различных растворителях [c.18]

    Поведение кислот и оснований в некоторых растворителях. Сила кислот и оснований в среде различных растворителей прежде всего определяется природой самого растворенного электролита. Свойства и структура электролита определяют величину константы диссоциации данного электролита в избранном растворителе. Относительная сила электролитов одной и той же природной группы (например, карбоновые кислоты) в различных растворителях в большинстве случаев сохраняется, и соотношение рК в данном растворителе к рК в воде или к р/< в другом растворителе выражается линейной функцией. [c.404]


    Теория кислот и оснований позволяет предсказать особенности поведения веществ в различных растворителях. Она дает истолкование огромного числа реакций органических веществ. Приведем один пример — объяснение хорошо известного химикам-органикам нитрующего действия смеси серной и азотной кислот. [c.285]

    Современная теория кислот и оснований позволяет предсказать особенности поведения веществ в различных растворителях. Она дает истолкование огромного количества реакций органических веществ. Эти вопросы излагаются в курсе органической химии. Здесь можно ограничиться только одним примером — объяснением хорошо известного химикам-органикам нитрующего действия смеси серной и азотной кислот. [c.254]

    Влияние неводных растворителей на силу кислот и оснований Поведение электролитов в различных по характеру средах. [c.187]

    Свойства и поведение различных растворителей станет более понятным и очевидным после ознакомления с теорией реакций, происходящих между кислотами и основаниями. [c.28]

    Одно и то же вещество может вести себя различно в зависимости т растворителя, в котором оно растворено. Таково, например, поведение мочевины, являющейся кислотой в растворе жидкого аммиака, сильным основанием в среде безводной уксусной кислоты и слабым основанием в водном растворе. [c.146]

    Значение теорий кислот и оснований. Теории кислот и оснований позволяют предвидеть, какие вещества проявляют функции кислоты, а какие - функции основания при взаимодействии друг с другом. Кроме того, они позволяют предсказать особенности поведения веществ в различных растворителях. [c.302]

    Впрочем, разговор о соотносительном влиянии химических свойств растворителя и его ДП на силу кислот и оснований должен быть предметным. Поэтому рассмотрим поведение электролитов в различных группах растворителей. [c.59]

    Поведение электролитов в различных по характеру средах. Многосторонние исследования пока > али, что некоторые вещества, которые ведут себя как кислоты в среде одного растворителя, в другом проявляют себя как основания. Соединения, проявляющие себя как основания в одних средах, ведут себя как кислоты в других нередко в неводных растворах кислые или основные свойства проявляют также вещества, которые, казалось бы, ничего общего не имеют с кислотами и основаниями в обычном их представлении. [c.145]

    Одним из достоинств теории кислот и оснований Бренстеда — Лоури является возможность одинаковой трактовки различных систем кислота—основание в различных растворителях. Для того чтобы рассмотреть эту проблему, необходимо понять, какие факторы играют существенную роль в процессах диссоциации и какие свойства растворителей влияют на диссоциацию. С этой точки зрения к самым важным свойствам растворителей следует причислить донорно-акцепторные свойства и значения диэлектрической проницаемости. Ясную картину всего характера поведения различных растворителей осложняет то обстоятельство, что эти две черты изменяются различным образом при переходе от одного растворителя к другому, а наблюдаемый эффект является результатом совместного действия обоих факторов. К тому же встречается и индивидуальное специфическое действие некоторых растворителей на системы кислота-основание. [c.70]


    Общая картина поведения кислот и оснований в воде и спиртах, которую мы только что рассмотрели, является несколько упрошенной. В первую очередь, обращают на себя внимание превосходящие ошибку эксперимента отчетливые различия в величинах Д (табл. 1) для индивидуальных кислот и оснований. Разброс величин Д был бы намного больше, если бы мы не ограничились двумя сериями, составленными из очень близких соединений — карбоновых кислот и первичных аминов. Например, фенолы отличаются по величинам ДрК от карбоновых кислот. Значительные различия наблюдаются и в поведении первичных, вторичных и третичных аминов — последние часто отличаются от двух первых даже по знаку Др/С. Эти индивидуальные особенности рассмотрены в следующей главе. Во-вторых, все три рассмотренных растворителя имеют близкую химическую природу, а в случае, когда сравнивают растворители различной природы, макроскопическая диэлектрическая постоянная становится еще менее адекватной характеристикой влияния растворителя. Это можно проиллюстрировать на примере поведения кислот и оснований в формамиде [16] —растворителе с диэлектрической постоянной (e=110) несколько большей, чем у воды — обладающем слабыми кислотными и слабыми основными свойствами. Некоторые кислоты являются в формамиде сильными. Поэтому p/(s формамида (16,8) удалось определить потенциометрическим методом. Таким образом, сила кислот и оснований может быть отнесена к частицам растворителя [c.71]

    Титрование может служить не только для получения прямых количественных результатов, интересующих химика-аналитика. Количественные данные, получаемые при помощи метода титрования, могут быть использованы и в ряде других случаев, например для определения константы диссоциации кислот и оснований, относительной силы кислот и оснований в различных растворителях для изучения поведения электролитов в растворах и электродных потенциалов для составления тройных диаграмм распределения для исследования комплексообразования, распределения молекулярных весов полимеров солевого эффекта продуктов, образующихся при взаимодействии определенных химических соединений, и т. п. [c.13]

    Предшествующее обсуждение показывает, что при растворении любого вещества в воде имеются три различные возможности. Первая из них заключается в повышении концентрации ионов И (водн.), и, следовательно, в таком случае вещество ведет себя как кислота. Вторая возможность заключается в уменьшении концентрации Н (водн.) [что соответствует повышению концентрации ионов ОН (водн.)], и в этом случае вешество обладает свойствами основания. Наконец, может не произойти изменения [Н ], а это означает, что вещество не обладает ни кислотными, ни основными свойствами. Чтобы иметь возможность предсказывать поведение вещества при его растворении в воде, полезно знать, каким образом кислотные или основные свойства веществ связаны с их химическим строением. Правда, не следует надеяться, что простые правила, которые удастся при этом сформулировать, окажутся безошибочными. На ионизацию вешества в полярных растворителях, подобных воде, оказывают влияние многие факторы. Но все же можно надеяться найти такие правила, которые будут обладать достаточно общей применимостью. [c.96]

    В растворах различных веществ в жидких неводных растворителях и сжиженных газах помимо ионов, предсказываемых теорией электролитической диссоциации, имеются разнообразные ионы и молекулы, вызывающие аномалии в поведении истинных растворов, которые не могут быть объяснены ни гипотезой С. Аррениуса, ни современными теориями Дебая — Хюккеля и Л. Онзагера, поскольку предметом их не является изучение влияния растворителей на свойства электролитов. Следует отметить, что теория Бренстеда и другие теории, предметом которых было исследование влияния растворителей на силу кислот и оснований, также не объясняют аномалий в поведении электролитов в неводных растворах. Как показывают исследования, указанные аномалии обусловливаются взаимодействием растворенного вещества с растворителем. [c.391]

    Следовательно, тркэтилсиланол, гексаалкилдисилоксаны, триэтилэтоксисилан ведут себя в среде безводной серной кислоты как основания, акцептирующие протоны. На этих примерах подтверждается в отношении кремнийорганических соединений известное положение, согласно которому поведение растворенного вещества в неводных растворителях проявляется весьма своеобразно. Многие вещества, которые ведут себя в воде как кислоты, проявляют себя в неводных растворителях как основания соединения, проявляющие себя как основания, ве.дут себя как кислоты нередко в неводных средах кислые и основные свойства проявляют вещества, которые ничего общего не имеют с кислотами и основаниями в обычном понима-нии как это видно из приведенных выше при.меров. Показательным примером в этом отношении является поведение мочевины в различных растворителях. Мочевина, являющаяся слабым основанием в водном растворе, в среде безводной уксусной кислоты ведет себя как сильное основание, а в растворе жидкого аммиака — как кислота. [c.69]


    Кузнецова и Крешков [200] исследовали поведение солей орто-, пиро- и метафосфорной кислот в неводных растворителях. Установлено, что в среде гликолевых растворителей, а также в растворах GH3GOOH или (СНзС0)20 соли различной степени замещения этих кислот проявляют основные свойства и, являясь основаниями различной силы, могут быть оттитрованы дифференциально в различных смесях. [c.166]

    На рис. 11.9 приведены две линейные зависимости рКа (в воде) и АНМР (в нитрометане). Прямая, показанная сплошной линией, характеризует соотношение для аминов, пунктирная прямая — для амидов и замещенных мочевин. Азотистые гетероциклические основания и аминоспирты не обнаруживают такой зависимости. Это иллюстрирует тот факт, что соединения, содержащие группу —СО—а также азотистые гетероциклические основания и аминоспирты, по отношению к аминам оказываются более сильными основаниями в нитрометане, чем в воде. Такое поведение для амидов и замещенных мочевины не было отмечено ни в уксусной кислоте [9], ни в уксусном ангидриде ТО], но вероятно, может иметь место в таких растворителях, как ацетонитрил или ацетон. Наиболее вероятно, что оно обусловлено возникновением водородной связи между молекулами растворителя и растворенного вещества в различных растворителях. [c.424]

    Как было указано выше, одним из главных факторов, влияющих на поведение растворенного вещества в растворе (например, СНзСООН), способного проявлять различную степень диссоциации в разных растворителях, и даже диссоциировать по разному типу (как кислота, основание), является химическая природа растворителя, а не только его диэлектричеокая проницаемость. [c.168]

    Обнаружение конечной точки титрования. Обычно титрование в неводной среде проводят со стеклянным индикаторным электродом, удовлетворительно реагирующим на изменения активности водородных ионов в различных растворителях (см. разд. 4-10). Разработаны визуальные индикаторы, которые часто выбирают эмпирически. Кристаллический фиолетовый и метиловый фиолетовый издавна применяют для определения оснований в ледяной уксусной кислоте. Фритц и Гейнер [60[ приводят перечень индикаторов для титрования кислот гидроксидом тетрабутиламмония в пиридине. Кольтгоф, Чантуни и Боуми [61] изучали индикаторы с рК диссоциации в ацетонитриле в интервале от 2 до 30. Для спиртов и водноспиртовых смесей можно применять обычные индикаторы, применяемые для водных растворов, если известен их сдвинутый интервал pH (см. разд. 4-9). Хигучи, Фельдман и Рем [62] изучали поведение 13 индикаторов в ледяной уксусной кислоте. В табл. 6-2 представлены значения рК некоторых индикаторов в различных растворителях [61, 63, 64]. [c.135]

    Рассматривая поведение силоксановых каучуков в органических растворителях, зарубежные исследователи [109] отмечают следующие факты. Каучуки общего назначения (типа отечественных СКТ и СКТВ) обладают большей стойкостью к растворителям, чем морозостойкие каучуки, к которым относят фенилсилоксановые и фенилвинилсилоксановые эластомеры. Каучуки более твердые лучше сопротивляются влиянию растворителей, чем мягкие. И, Наконец, увеличение продолжительности вулканизации оказывает положительное влияние на стойкость резин к органическим продуктам. Конкретные данные по степени набухания и по изменению физико-механических свойств резин на основе различных силоксановых каучуков во многих растворителях помещены в монографии [109]. Там Же можно найти цифровые данные, относящиеся к водным растворам кислот, солей и оснований и к водяному пару с различными параметрами. [c.90]

    Сильные и качественно ясные эффекты в системах I и П классов, очевидно, можно использовать для оценки параметров Н-связей по их хроматографическому проявлению (по величинам ). Отчетливее всего парные взаимодействия кислота—основание проявляются в системах I класса которые и были использованы для газохроматографической оценки энергий Н-связей АН В простых молекул кислот АН с различными основаниями В. Естественно, что проявления водородных связей много сложнее и многообразнее в менее однородных системах 1П класса, где складываются противоположные э(Й>екты образования и разрыва Н-связей. Здесь суммарный результат может иметь любой знак — как увеличение, так и уменьшение величин удерживания — в зависимости от того, преобладает ли образование Н-связей хроматографируемого вещества с растворителем или разрыв Н-связей между молекулами неподвижной фазы. В этих противоположных случаях поведение систем сближается с типичным поведением систем I и П классов. [c.135]

    Развитые до настоящего времени теории кислот и оснований позволили многое понять в свойствах растворителей и растворов. И наоборот, исследования свойств растворителей в значительной мере способствовали развитию теорий кислот и оснований. Однако еще не создана всеобъемлющая теория растворителей, которая на основе единой концепции строения системы растворитель — растворенное вещество могла бы количественно описать все ее важнейшие свойства. В то же время для различных классов растворителей разработаны теории, которые могут качественно объяснить и предсказать результат влияния природы растворителя на процесс растворения и поведение растворенного вещества в различных реакциях. Среди этих теорий можно назвать теорию сольвосистем, которая разработана для ионизирующихся растворителей, координационную теорию, рассматривающую по большей части растворители с донорно-акцепторными свойствами, протонную теорию, пригодную для растворителей, в которых происходит перенос протонов. [c.440]

    Согласно Н. А. Измайлову, спирты обладают более слабым дифференцирующим действием по сравнению с кетонами. Это верно в отношении лишь низших спиртов — метилового и этилового. Что касается изопропилового и изобутилового спиртов, то по своим дифференцирующим свойствам в отношении слабых кислот они почти не уступают кетонам, однако плохо дифференцируют сильные кислоты. Следовательно, дифференцирующее действие амфипротных растворителей при переходе от растворителей одной. природной группы к другой по- разному проявляется в отношении электролитов различной силы. Это положение подтверждается также работами Фритца [99—101] по потенциометрическому титрованию четырехкомпонентной смеси фенолов в среде трет-бути-ЛОБОГО спирта. Отметим также работу Хаммельстеда и Хьюма [130] по титрованию четырехкомпонентной смеси кислот в среде изопропилового спирта. Можно привести еще ряд примеров поведения смесей кислот или оснований в неводных растворах, которые нельзя объяснить с позиций классификации дифференцирующего действия по И. А. Измайлову. Дальнейшие исследования должны внести коррективы в эту классификацию. [c.36]

    С точки зрения электролитической теории как будто небольшая разница для процесса, присоединяется ли при кислотном катализе временно к реагирующим молекулам недиссоциированная молекула кислоты или присоединяется такой комплексный катион, как сольватированный растворителем водородный ион, или соответственно при щелочном катализе присоединяется недиссоцииро-ванное основание, анион кислоты, гидроксильный ион или другой акцептор протонов, вызывающий отдачу протона реагирующей молекулой. Каталитическое поведение различных доноров-протонов и акцепторов-протонов выражается константами их удельного каталитического действия, отражаюхцими индивидуальные скорости, с которыми происходят отдача и принятие протонов. Специфическое каталитическое действие комплексных ионов, образованных из Н+ ионов и молекул растворителя, часто весьма различно. Комплексные ионы воды <Нз0)+, спирта (СаН50Н2)+. В смешанном растворителе, например воде, содержащей спирт, устанавливается равновесие между отдельными видами комплексных ионов, и небольшой сдвиг в нем может сильно влиять на ход реакции. Комплексы, образованные Н+ ионами и молекулами спирта НОН+, могут быть каталитически более активны, чем те комплексы, которые образованы Н+ ионами и молекулами воды НОН . С этой точки зрения Гольдшмитд [191, 192] пытался объяснить замедляющее действие воды в кислотном катализе при реакции этерификации в спиртовых растворах. На основе химического равновесия, известного как кислотно-основное равновесие, можно получить определение кислоты и основания  [c.205]

    Для объективной оценки различных методов хроматографической классификации антибиотиков было проведено хроматографирование более 400 препаратов в 20 системах растворителей [786]. Среди испытанных систем были растворители Омати — Шевчика (петролейный эфир, бензол, хлороформ, диэтиловый эфир, этилацетат, ацетон, бутанол, метанол, вода, 3%-пый хлористый ахммопий), бутанольные системы с добавлением оснований пли кислот (н-бутанол — пиридин — вода, 1 0,6 1 н-бутанол— уксусная кислота — вода, 2 1 1 н-бутанол, насыщенный водой, с добавлением 2% пиперидина или паратолуолсульфокислоты), высшие гомологи отдельных растворителей (диизо-а.миловый эфир, метилбутилкетои, амилацетат, изооктиловый спирт). Для проверки принципа Миядзаки использовали только два растворителя воду и 3%-иый хлористый аммоний. При анализе литературных данных было найдено, что общие характерные особенности в поведении антибиотиков можно выявить, используя только эти два растворителя. [c.86]


Смотреть страницы где упоминается термин Поведение кислот и оснований в различных растворителях: [c.609]    [c.230]    [c.189]    [c.281]    [c.418]    [c.205]   
Смотреть главы в:

Основы аналитической химии Часть 1 -> Поведение кислот и оснований в различных растворителях




ПОИСК





Смотрите так же термины и статьи:

Основания и кислоты

РАЗЛИЧНЫЕ РАСТВОРИТЕЛИ

Различные кислоты

Растворители оснований



© 2025 chem21.info Реклама на сайте