Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основания функция кислотности

    Гордон изучал циклизацию латекса натурального каучука под действием 70—80%-ной серной кислоты в интервале температур 25—90°. Было показано, что скорости пропорциональны первой степени концентрации каучука и логарифму концентрации кислоты. Зависимость скорости от концентрации кислоты представляет собой зависимость, предсказываемую на основании функции кислотности Гаммета, которую можно применить к скорости образования сопряженного иона карбония (ВН+) из каучука (В). Таким образом [c.315]


    Хаммет предположил, что простая концентрация дает возможность экспериментально измерять степень протонизации в разбавленных растворах, соответствующий член в уравнении (XVI.5.4) можно использовать для измерения этого свойства в концентрированных растворах. Функцией кислотности растворов кислот по отношению к нейтральному основанию он назвал величину [c.494]

    Гаммет предложил Г55] выражать кислотность с помощью так называемой нулевой функции кислотности. Яо, которая является мерой стремления протона кислоты перейти к незаряженной молекуле основания. [c.69]

    При сравнении протонодонорной активности растворов заданной концентрации кислоты в различных растворителях оказывается, что функция кислотности Гаммета тем выше, чем ниже основность растворителя. Например, раствор НС1 в бензоле имеет значительно большую кислотность, чем в воде. Определяется это тем, что С1" значительно более слабое основание, чем вода. Таким же образом растворы серной кислоты в-уксусной обладают значительно большей протонодонорной активностью (характеризуемой Но), чем растворы такой же концентрации в воде. В первом случае при внесении в раствор основания В устанавливается равновесие [c.160]

    Основность углеводородов. Степень протонизации вещества в растворе кислоты с данной функцией кислотности Гаммета, как ясно из вышеизложенного, определяется основностью вещества, Для различных углеводородов, являющихся в общем очень слабыми основаниями, основность изменяется в очень широких пределах. Ниже приведены данные об основности некоторых аромати- [c.160]

    Во-первых, соотношение коэффициентов активностей /в//вн зависит от природы основания В, и действительная функция кислотности для данного основания симбатна, но не равна и не строго пропорциональна функции кислотности Гаммета, построенной для оснований определенной химической природы (нитроанилинов). Во-вторых, на реакции с участием ионов очень Сильное влияние оказывают свойства среды (растворителя), в которой они протекают. В органической химии известны реакции, константы скорости которых в различных растворителях отличаются на 6—9 порядков. [c.162]

    На основании исследования кислотно-основных равновесий в ледяной уксусной кислоте с помощью функции кислотности Гамметта, а также расчетов констант по данным Кольтгофа и Вильмана, Смит и Элиот в 1950 г. приняли, что при диссоциации образуются промежуточные продукты  [c.299]


    В дальнейшем были введены другие функции кислотности. В тех случаях, когда применяется в качестве индикатора незаряженная кислота и соответствующее ей основание имеет отрицательный заряд, функцию кислотности обозначают Я( ). [c.413]

    Оказалось, что это далеко не так. Исследование э их функций кислотности в 0,002 н. растворе НС1 в смесях спирта с водой показало для функции Яо иную зависимость от содержания спирта, чем для функции Я( >. Это вполне естественно. В гл. УП были приведены многочисленные данные, согласно которым 70 для кислоты и ее аниона, безусловно, не равны между собой и их отношение не равно единице. Следовательно, Я( ) не передает истинной кислотности раствора. Появление заряда на молекуле основания в результате присоединения протона вызывает также резкое изменение энергии взаимодействия незаряженной молекулы индикатора и ее иона с растворителем. Все это говорит о том, что нельзя приравнивать изменение Яд к изменению кислотности. Задача может быть решена, если будут известны 7д для В и ВН+, только тогда Я о можно исправить и найти истинную [c.415]

    Большинство функций кислотности применимы только к кислым растворам, однако известно несколько работ, посвященных сильно основным растворам. Так, функцию кислотности Я , применяемую к растворам сильных кислот, можно использовать также для растворов сильных оснований с зарядом, равным — 1 в этом случае она служит мерой способности растворителей отрывать протон от нейтральной кислоты ВН [76]. [c.334]

    Однако точка максимального наклона кривой потенциометрического титрования достаточно часто не соответствует точке эквивалентности. Это происходит в тех случаях, когда определяемые ионы и ионы титранта имеют различные заряды, т е. стехиометрия реакции отличается от соотношения 1 Г Точка максимального наклона -образной кривой находится с той стороны от точки эквивалентности, где в избытке присутствует ион с меньшим зарядом. Ошибка титрования возрастает при увеличении произведения растворимости осадка в осадительном титровании, при уменьшении силы кислоты или основания в кислотно-основном титровании и при уменьшении прочности комплексов в комплексонометрическом титровании. Несовпадение точки эквивалентности и точки максимального наклона наблюдается также тогда, когда индикаторный электрод обратим лишь к одному из титруемых ионов или крутизна электродных функций к титруемому иону и иону-титранту различна. [c.248]

    Для широкого круга слабых оснований в средах с высокими диэлектрическими проницаемостями приведенные равенства соблюдаются, и как уже показано выше, функцию кислотности можно выразить так  [c.160]

    Следуя Гаммету [177, гл. 9], примем для общего обозначения функции кислотности, безотносительно того, к какой сильной кислоте или к какому классу соединений она относится, символ Нх- Если используемая функция кислотности действительно описывает ионизацию данного вещества, то, согласно уравнениям (6.5) и (6.17), замена pH в формуле (6.9) на Нх позволяет непосредственно получать термодинамические константы Это дает возможность распространить описанную выше стандартную методику определения р а и на более слабые кислоты и основания. Так как функции Нх установлены с меньшей точностью, чем функция pH, при использовании функций кислотности допустимый размах в серии получаемых р/Сд может достигать 0,1 ед. [169, с. 76]. [c.123]

    При работе со слабыми кислотами или основаниями (2 + в формулах (6.20) — (6.28) следует заменить на кх, для чего необходимо знать функцию кислотности, описывающую ионизацию данного вещества. К сожалению, при неизвестных Она и Од. исследователь не может проверить выбор функции кислотности, так как нельзя вычислить индикаторное отношение и оценить наклон прямолинейной зависимости 1 / = = /(Я ). Поэтому в случае неизвестных м. п. п. кислотно-основных форм следует попробовать находить их с использованием нескольких различных функций кислотности и окончательно остановиться на той из них, которая обеспечивает лучшее совпадение экспериментальной и вычисленной кривой В = 1(Нх). При использовании метода избыточной кислотности подбор требуемой Нх заменяется введением в задачу четвертого подбираемого параметра (л. ). [c.127]

    Пример 8.7. при спектрофотометрическом определении основности некоторого амина по 7 точкам построена прямолинейная зависимость логарифма индикаторного отношения от функции кислотности Гаммета. Получено уравнение / = а + ЬНо с параметрами Ь = —1,10 = 0,06. Можно ли рассматривать данный амин как гамме-товское основание  [c.176]

    Для описания соединений, кислотность которых нельзя охарактеризовать с помощью параметра Но, были предложены некоторые разновидности функции кислотности Гаммета. Одна из ких соответствует случаю, когда для построения шкалы кислотности вместо нейтральных анилиновых оснований используются заряженные индикаторы или основания. Влияние кнслот на прототропные равновесия с участием карбониевых ионов настолько сильно отличается от наблюдаемого в случае гамме-товского основания, что пришлось ввести новую функцию кислотности, обозначаемую Н [3] или /о [4]. Величину Яц определяют аналогично Но.  [c.60]


    Как видно из рис. 9.2, графики различных функций кислотности, не пересекаясь, разворачиваются веером. Поэтому можно предположить, что в смесях сильных кислот с водой степень превращения какого-либо основания в его сопряженную кислоту определяется тремя и только тремя переменными. Разумно считать, что одной из них является степень превращения основания в его сопряженную кислоту при некоторых стандартных условиях. Ее можно назвать силой основания и характеризовать величинами р/С°°. Следует, однако, помнить, что эти величины отражают относительную силу группы оснований только в произвольно выбранной стандартной среде. Вторая переменная, которую можно назвать кислотностью раствора, характеризует тенденцию раствора к передаче протона основанию вообще — тенденцию, которая увеличивается с возрастанием концентрации кислоты. Третья переменная, которую можно назвать сольватационной, должна отражать различия, существующие в ответной реакции различных оснований равной силы на воздействие одной и той же среды. Серьезным доводом в пользу гипотезы трех переменных является почти полная идентичность функций Н " и Я , а также пригодность функции Яд для описания поведения К-окисей пиридинового ряда. [c.355]

    Если принять, что 1) катион ХН" " сольватирован постоянным числом т молекул воды 2) это число одинаково для всех оснований, принадлежащих к классу, который описывается одной функцией кислотности, но изменяется от класса к классу, и 3) другие различия между классами оснований отсутствуют, то индикаторную реакцию можно представить в виде [c.362]

    Мы уже говорили о случаях, когда пирролы, индолы и метоксибензо-лы могут протонироваться в разные положения в зависимости от структуры и условий. Эти соединения могут вести себя как п- или как я-основания в зависимости от условий, и это дает возможность решить, какой шкале кислотности следует соединение — Яо, Яр или какой-то средней. Недавно было замечено [228, 2311, что некоторые замещенные азулены ведут себя как углеродные основания, подобно 1,3,5-триметоксибензолу, и дают хорошую для углеводородных оснований функцию кислотности. [c.223]

    Колориметрический метод определения pH растворов основан на использовании кислотно-основных индикаторов, окраска растворов которых является функцией кислотности среды. Окраска изменяется в результате изменения относительной доли ионизированной (Tnd-) и неионизированной (Hind) форм, Ямакс поглощения которы.х различно. [c.486]

    Такая функция может широко использоваться, только если будет показано, что она не зависит от природы основания В. Этого можно было бы ожидать только в том случае, если бы отношение /во//вн+ было одним и тем же для различных оснований В . Хотя это и не всегда так и в действительности необходимо каждый раз тщательно изучать все условия, было показано, что для структурно подобных классов это положение действительно выполняется. Для целого ряда таких классов достаточно, следовательно, измерить рКв в разбавленных растворах и определить отношение (ВН )/(В ) в концентрированных растворах, чтобы получить функцию кислотности системы вода — кислота, о которой и дет речь. Это соотношение хорошо выполняется для сильных кислот и воды (например, Н2804, НСЮ4, HNOз) в очень большом интервале концентрации. Однако для смесей воды со спиртом или другими растворителями наблюдаются сильные отклонения [59]. [c.495]

    Силу кислотных центров можно охарактеризовать различным образом, в частности способностью поверхности переводить адсорбированные молекулы индикатора-основания из нейтральной в сопряженную кислотную форму. При этом функция кислотности поверхности (Нбудет равна значению рКа индикатора или меньше его. Чем ниже значение рКа индикатора, меняющего свой цвет при адсорбции, тем больше кислотная сила поверхности. [c.382]

    При переходе от 5%-ной концентрации к 100%-пой, т. е. при увеличении молярности в 36 раз, протонирующая сила серной кислоты изменяется на И порядков. Наибольшее изменение происходит в интервале от 90%-ной концентрации до 100%-ной (на три порядка). Сравнительно низкая сульфирующая способность 86%-ной серной кислоты по отношению к сульфидам и кислородным соединениям нефтепродуктов позволяет использовать эту кислоту для их извлечения без изменения структуры. Это объясняется следующим. В водном растворе серной кислоты вода играет роль достаточно сильного основания. Ее эквимо.тьная смесь с серной кислотой образует бисульфат гидроксония. Для такой смеси функция кислотности — Яо равна примерно 7,5. Однако истинную основность воды установить трудно, поскольку с изменением концентрации растворов серной кислоты относительное содержание различных агрегатов свободной воды также изменяется — образуются ионы гидроксония от Н9О4 (в разбавленных растворах) до НдО" (в наиболее концентрированных растворах, в которых количество свободной воды для сольватации мало). [c.229]

    Такой щирокий диапазон изменения Ао (12 порядков) удается охватить в результате большого изменения рАд нитроанилинов в качестве индикаторов в зависимости от заместителей в молекуле. Например, для л<-нитроанилина рАд = 2,50, для 2,4-динитроанилина рАд = -4,53, а для 2,4,6-тринитроанилина рАд = -10,10. Функция кислотности Яо была введена Гамметом и носит его имя. В более поздних исследованиях для определения На использовали и другие классы оснований-индикаторов и получили иные значения кислотности концентрированных растворов кислот (// " для индикаторов N,N-диaлкилнитpoaни-линов Я/ для алкилированных индолов Н для амидов кислот Нц для трифенилкарбинолов). [c.488]

    Для характеристики кислотных свойств сильных кислот Л. Гаммет предложил использовать функцию кислотности Но, экспериментально определяемую с помощью цветных кислотно-основных индикаторов-оснований. Из выражения константы диссоциации протонированной формы индикатора-осно-вания [c.60]

    Протонизирующую силу кислоты выражают также посредством функции кислотности Ид), характеризующей состояние равновесия при комплексообразовании кислот и оснований в органических расгвори-телях. В качестве оснований чаще всего используют индикаторы, изменяющие окраску в зависимости от силы кислоты, что позволяет исследовать систему спектроскопическими методами. При этом важно, чтобы в спектре идентифицировались полосы ассоциированиого и свободного оснований. [c.234]

    Мы не рассматриваем других теорий кислотно-основного взаи-, модействия — теории сольвосистем Э. К. Франклина, теории кислот и оснований М. И. Усановича, исследований функции кислотности и гидратации Н. А. Измайлова и др. [c.214]

    Возвратимся к основному вопросу — к определению единой кислотности, Согласно Гамметту, окраска одного индикатора изменяется в различных растворителях только в связи с изменением абсолютной кислотности растворов, а константа индикатора основания в любом растворителе остается неизменной. Соотношение основной и кислой форм индикатора изменяется только в связи с изменением кислотности раствора. Свою функцию кислотности Гамметт обозначает Яц, так как индикаторы основания не имеют электрического заряда. По Гамметту [c.413]

    В настоящее время для оценки кислотности кроме функций ш Я( ) предложены функция Я(+), основанная на зависимости положения равновесия реакции BH + В+ + Н+ от кислотности, а также функция кислотности основанная на зависимости положения равновесия реакции ВОН + + Н+ + НаО (R+ — ион карбония, ВОН — арилкарбинол) от кис- [c.416]

    Величина Но отражает способность системы растворителя отдавать протоны, но она применима только для кислых растворов с высокой диэлектрической проницаемостью, главным образом к смесям воды с такими кислотами, как азотная, серная, хлорная и т. п. Очевидно, что использование величины Но представляет ценность только в тех случаях, когда отношение НИя1+ не зависит от природы основания (индикатора). Но это условие выполняется лишь тогда, когда основания структурно сходны, поэтому использование функции кислотности Но имеет известные ограничения. Даже при сравнении структурно сходных оснований наблюдается много отклонений [69]. Разработаны и другие шкалы кислотности [69а], среди них шкала Н-для оснований с зарядом, равным —1 шкала Як для арилкар-бинолов [70], шкала Як- для арилолефинов и других молекул, сопряженные кислоты которых представляют собой устойчивые карбокатионы, не образующие водородных связей с растворителем [71], шкала Яс для оснований, протонирующих атом углерода [72], шкала Не для алифатических сложных эфиров [73] [c.333]

    Следовательно, в концентрированных растворах существует не единственная характеристика кислотных свойств среды. Однако линейный характер отдельных участков графиков требует, чтобы в пределах этих участков функции кислотности для оснований различных классов были пропорциональны друг другу. Это означает, что в формуле (XIII.94) для к следует ожидать пропорциональности или даже равенства выражения h д/Ус sh+ И кислотности среды, к примеру ho. Тогда для /с  [c.763]

    В водных и водно-спиртовых растворах НС1 [20—23] и H IO4 [23, 24] при большом содержании воды каталитическое разложение ГПК протекает по двум каналам 1) перегруппировка с образованием фенола и ацетона и 2) обратимый гидролиз до НООН и РЬМСзСОН, На основании измерения функций кислотности Яд и Hq растворов НС1 и H IO4 в водных и водно-спиртовых растворах, а также кинетики разложения ГПК и образования продуктов в этих же системах был установлен ряд закономерностей. [c.298]

    Понятия К. и о. оказывают разностороннее влияние на формирование и совершенствование мн. теоретич. концепций во всех осн. хим. дисциплинах. Это свидетельствует о чрезвычайно широкой распространенности в природе процессов, связанных с кислотно-основными взаимодействиями Из всех теорий К. и о. протонной теории удалось создать наиб, разработанный количеств, подход к рассматриваемым явлениям. На основании этой теории разработаны такие разделы хим. наук, как рН-метрия в неводных средах, гомог. кислотно-основиой катализ, теория функций кислотности и др. [c.395]

    С уменьшением концентрации сильной щелочи или кислоты /д и /на стремятся к единице, и тогда функция кислотности совпадает с функцией pH. Отношение коэффициентов активности ионизированной и не-ионизированной форм является примерно постоянным- лишь для веществ с одинаковым кислотно-основным центром. В соответствии с этим введено около 20 функций кислотности, каждая из которых отвечает ионизации кислот (или протонизации оснований) определенного химического типа. Так, функция кислотности Но описывает протонизацию первичных нитрозамещенных ароматических аминов, функция Яд — ароматических амидов, функция Я, —индолов, функция Ят — тиосо-единений и т. д. [177, 179]. [c.123]

    Кроме шкалы Яо (функции кислотности Гаммегга), существует большое число шкал функций кислотности (Я, с различными индексами), которые установлены для индикаторов иных классов, тогда как Яо получена с серией нитро- и галогенопроизводных анилина для растворов с большим интервалом кислотности. Различные серии Я/ изменяются с неодинаковой скоростью при нарастании кислотности. Это обстоятельство связано с различием хромофорных систем выбранных индикаторов, с неодинаковым воздействием на них протона (одного из сильнейших ауксохромов), а также с различной сольватацией основной (В) и кислой (ВН форм различных индикаторов. Это привело Гаммегга, основоположника теории функции кислотности, к заключению о том, что понятия абсолютной силы кислоты или основания не имеют смысла и что нельзя построить абсолютную шкалу кислотности растворителей. [c.147]

    Подобным же образом ХайнманиЛэнг [191 предложи ли функцию кислотности Я , основанную на поведений [c.353]

    Для применения к двум основаниям однэй и той жз функции кислотности необходимо, чтобы для нлк бли одинаковы величины бд11 (авн ), где оператор описывает влияние изменяющейся концентрации кислоты. Линейный характер отдельных участков графиков, изображенных на рис. 9.3 и 9.4, требует, что5э1 в пределах этих участков величины б ig(a н+/iJ fl) Д я оснований различных классов были пропорциональны друг другу и, кроме того, пропорциональны величине [c.359]

    При концентрации серной кислоты выше 70% разности Яр — Яо и Н " — Яо почти перестают зависеть от концентрации кислоты. Поэтому, если бы мы выбрали в качестве стандартного растворителя серную кислоту, а не воду, то различия между функциями кислотности начали бы проявляться при концентрациях воды около 30% и выше, а при более низких концентрациях воды величина ахОвн+/йхн+йв была бы равна единице для всех оснований. Этот вывод согласуется с другими данными, которые свидетельствуют о том, что в этом интервале концентраций для растворов серной кислоты характерно удивительно простое поведение. [c.364]

    Метод Флексера, Гаммета и Дингуэлла оказывается удивительно эффективным средством нахождения точки полупротонизации данного основания при использовании любой функции кислотности. Если в уравнении (53) Ло заменить на Лд, то также получится хорошая линейная зависимость, однако р/С станет равным —4,1. Это находится в разумном соответствии с уравнением (52). Таким образом, метод удобен для тех, кто игнорирует или предпочитает не замечать, что используемая им функция кислотности в действительности неприменима. [c.380]


Смотреть страницы где упоминается термин Основания функция кислотности: [c.282]    [c.78]    [c.178]    [c.269]    [c.260]    [c.308]    [c.142]    [c.48]    [c.75]    [c.365]    [c.373]    [c.377]   
Начала органической химии Книга первая (1969) -- [ c.159 ]

Начала органической химии Кн 1 Издание 2 (1975) -- [ c.149 ]




ПОИСК





Смотрите так же термины и статьи:

Кислотная функция

Кислотность оснований

Функция кислотности



© 2025 chem21.info Реклама на сайте