Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись углерода и карбонилы металлов

    В молекуле окиси углерода между углеродом и кислородом действуют две ковалентные связи С 0 Электронные пары несколько смещены к более отрицательному кислороду, в результате чего молекула становится малополярной с дипольным моментом 0,12D. Полярность молекулы и наличие у атома углерода свободной пары электрона объясняет способность молекулы к реакциям комплексообразования. Оксид углерода может ыть лигандом по отношению к положительному иону металла и нейтральному атому d-элемента в последнем случае образуются карбонилы металлов. Карбонилы делятся на одноядерные, содержащие один атом металла [Сг(СО)б], [Ре(С0)5] и др., и многоядерные, содержащие от 2 до 4 атомов металла [Fe2( 0)eJ, [ o2(GO)g], [Rh4( 0)iJ, [RUg( 0)i2] и др. Координативная связь возникает за счет пары электронов углерода молекулы СО. Особенно легко образуют карбонилы металлы подгрупп хрома, марганца и 8В группы. Карбонилы, как правило, либо жидкости, либо летучие твердые вещества. При нагревании карбонила координативная связь разрывается и происходит разложение на окись углерода и металл [Ni( 0)4l = Ni + 4С0. Этим пользуются для получения чистых металлов, для нанесения металлической поверхности на тела, имеющие сложный рельеф. Карбонилы металлов 8В группы часто применяют в качестве катализаторов. Карбонилы железа используют в качестве антидетонаторов моторного топлива. [c.479]


    Олефины и окись углерода в присутствии карбонилов металлов, например карбонила никеля или других металлических катализаторов, образующих карбонилы, реагируют с водой, спиртами, аминами и другими органическими веществами по уравнениям [c.554]

    В органических растворителях реактив Гриньяра способен вступать в реакции с галогенидами металлов. К числу этих реакций относится частичное восстановление соли. Повидимому, окись углерода способна соединяться с одним из продуктов восстановления, который после разложения кислотой образует в числе других продуктов и карбонил металла. В водных растворах восстановление может быть осуществлено сульфидами, цианидами (см. синтез 76) и даже самой окисью углерода в сильнощелочных растворах  [c.223]

    В то время как физические свойства карбонилов металлов резко отличимы от свойств и окиси углерода и данного металла, химическое поведение карбонилов во многом является характерным для металла и окиси углерода. Так, карбонил никеля бурно реагирует с бромом, образуя бромистый никель и освобождая окись углерода  [c.224]

    В ИХ устойчивой электронной конфигурации, соответствующей электронной конфигурации инертных газов. Если предположить, что окись углерода имеет строение С О а строение карбонила металла — М( С О ), станет ясно, что число электронов в атомных системах металла для Сг(СО)е, Fe( O)s и Ni( 0)4 составляет 24 + 12, 26+ 10 и 28 + 8, или 36. Это соответствует числу электронов инертного газа криптона. Это же справедливо для полиметаллических карбонилов, если предположить, что образование карбонильных мостиков между атомами металлов обусловлено одновременным сдвигом свободных пар электронов от атома углерода и кислорода к двум атомам металла. [c.225]

    В карбонил-процессе всегда осуществляется химическое превращение металла из исходного состояния через промежуточный продукт — карбонил в конечное состояние, которое характеризуется вполне определенными физико-химическими свойствами. При этом химическим агентом, обусловливающим такое превращение металла, является окись углерода. Схематически этот процесс можно представить следующим образом  [c.10]

    Из приведенной схемы видно, что карбонил-процесс всегда осуществляется в две фазы. В первой фазе исходное сырье, содержащее металл в соединении с балластным веществом, взаимодействует с окисью углерода, образуя промежуточный продукт — карбонил, который отделяется от балластной примеси и собирается в чистом виде. Во второй фазе промежуточный продукт — карбонил — претерпевает термическую диссоциацию на чистый металл в виде определенной модификации и окись углерода, которая обычно возвращается для использования в первой фазе процесса. Поэтому первая фаза карбонил-процесса называется обычно синтезом карбонила металла, а вторая фаза — термическим разложением карбонила. [c.10]


    Чистое компактное железо для различных металлургических целей можно получить путем термического разложения пентакарбонила железа на расплавленном металле. Для этой цели армко-железо загружают в ванну электрической дуговой печи и плавят с помощью двух угольных электродов один электрод опушен непосредственно в ванну, другой расположен под дном ванны. Печь оборудована леткой, через которую расплавленный металл спускается в тигель. Пары пентакарбонила железа в токе азота, поступая в нижнюю часть ванны через специальное сопло и соприкасаясь с расплавленным железом, термически разлагаются на металл и окись углерода . Недостатками этого метода являются периодическая забивка сопла, значительный унос паров карбонила и большая продолжительность процесса. [c.17]

    Для металлизации в газовой фазе чаще всего используют реакции термического разложения. Наиболее подходяш,ими соединениями для этой цели являются карбонилы металлов. В ходе реакции при определенных условиях они разлагаются, оставляя на покрываемой поверхности металл и высвобождая окись углерода, которую опять можно использовать для получения карбонила металла. То есть СО играет роль реагента—переносчика металла. Это не только удобно в производственном отношении, но и сводит к минимуму непроизводительные затраты вспомогательных реактивов, исключает загрязнение окружаю-ш ей среды. В настояш ее время с помош ью карбонильной металлургии производят как металлические покрытия, так и порошки металлов — железа, никеля, кобальта, вольфрама, хрома. [c.18]

    Существенно, что нейтральные атомы хрома, железа и никеля — все имеют четное число электронов и им недостает до конфигурации ближайшего инертного газа соответственно двенадцати, десяти и восьми электронов. Если окись углерода соединяется с металлом за счет дативной ковалентной связи, то во всех случаях добавляется как раз столько электронов, сколько необходимо для достижения числа электронов у инертного газа. Молекулы можно рассматривать как комплексы нейтральных атомов, которые не вносят электронов для связей и поэтому находятся в окислительном состоянии О (см. стр. 190). Так, например, никель имеет десять внешних электронов, которые как раз заполняют пять Зй-орбит. При этом орбиты 4з и 4р могут комбинироваться в тетраэдрические гибридные орбиты для образования связей с молекулами окиси углерода. Хотя кобальт не образует одноядерного карбонила, существует соединение Со(СО)дЫО, так же как Ре(СО)2(КО)2. В этих молекулах вокруг центрального атома имеется такое же количество электронов, как у инертного газа, если ввести вполне разумное допущение [c.173]

    Описаны условия получения гексафторида серы электрохимическим фторированием сульфида карбонила [119]. Последний предварительно получают, барботируя окись углерода через расплав серы при 200—450° С. Образовавшийся продукт помещают в электролитическую ячейку, содержащую безводную плавиковую кислоту и 4 г/л NaF. Электролиз проводят при плотности тока 320 А/м на аноде из никеля или монель-металла и температуре электролита 5—6° С. Выход гексафторида серы в оптимальных условиях достигает 99%. [c.121]

    Для нанесения металлических покрытий используется термическое разложение некоторых нестойких металлов [4, 6, 7], способных переходить в парообразное состояние и разлагаться при относительно низких температурах. Этим требованиям удовлетворяют, в частности, карбонилы, нитрозилы, гидриды металлов и некоторые металлоорганические соединения. Наибольшее применение находят карбонилы металлов, и в первую очередь карбонил никеля, который легко переходит в парообразное состояние в атмосфере двуокиси углерода, азота или водорода и распадается на металл и окись углерода при 190—205° С. Из карбонилов других металлов следует назвать карбонилы хрома, кобальта и вольфрама (температура разложения соответственно 290, 375 и 400° С). Карбонилы металлов весьма летучи, поэтому их хранят при низкой температуре (—40° С) или в среде окиси углерода. [c.140]

    Окись углерода соединяется со многими металлами, образуя карбонилы металлов, например, карбонил железа Ре (СО) 5, карбонил никеля N1(00)4. Последние два вещества представляют собой летучие, весьма ядовитые жидкости. Большинство карбонилов металлов — кристаллические вещества. Наибольшее практическое значение имеют карбонилы никеля, кобальта и железа. Они применяются для получения высокочистых металлов (см. 193), для нанесения металлических покрытий. Кроме того, они служат катализаторами многих важных химических реакций. [c.440]

    В практике получения высокочистых металлов в виде порошков, пленок и покрытий находит применение и так называемый карбонильный метод [71—75], в котором в качестве связующего интересующий металл реагента используется окись углерода. Образующееся соединение — карбонил — подвергается термораспаду. Метод по существу является двухстадийным, так как специальной очистке синтезируемый карбонил обычно не подвергают ввиду его достаточно высокой чистоты, обусловленной специфичностью протекающей химической реакции. Однако получаемый карбонил в ряде случаев может быть загрязнен образующимися при протекании реакции примесями карбонилов некоторых других металлов, близких по свойствам к очищаемому и содержащихся в нем [76]. В результате получаемое вещество будет в той или иной степени загрязняться примесями этих металлов, хотя последующая стадия термораспада карбонила сама по себе является селективной. [c.18]


    При высокой температуре и давлении окись углерода соединяется с некоторыми металлами, образуя летучие, малорастворимые в воде вещества, называемые карбонилами карбонил железа [c.265]

    Карбонил никеля при обычных условиях — бесцветная легколетучая жидкость с резким неприятным запахом. Плотность ее 1,31 г/с.и , температура плавления 20°С, температура кипения 43,2°С. В воде карбонил никеля растворяется незначительно, но хорошо растворим во многих органических растворителях. При нагревании пары N (00)4 разлагаются на металл и окись углерода  [c.6]

    И ПОД давлением 20—50 ата к продуктам реакции добавляли затем воду, чтобы выделить кислоту в свободном виде [11]. В дальнейшем было установлено, что окись углерода может присоединяться к олефинам в присутствии воды, спиртов, аминов и других соединений, образуя соответственно кислоты, сложные эфиры и амиды. Источником окиси углерода служат карбонилы металлов, выделяющие ее в присутствии кислот можно также проводить каталитическую реакцию с газообразной окисью углерода, используя соль металла, способную в условиях процесса образовывать карбонил [12]. Больше всего внимания уделялось синтезу кислот в присутствии карбонила никеля процесс проводили при 200—300° и 150 ат. Этим способом можно превратить этилен в пропионовую кислоту или ее ангидрид. [c.197]

    Хотя известно, что некоторые металлы (например. Ре, Со, Не) в тонко-измельченном состоянии медленно превращаются в соответствующие карбонилы в жестких условиях, активный никель обладает уникальной способностью легко превращаться в карбонил в результате простого контакта с окисью углерода нри комнатной температуре и атмосферном давлении. Монд с сотрудниками получили N1(00)4, пропуская окись углерода при 30° над никелем, который был получен восстановлением окиси никеля водородом при 400°. [c.17]

    В результате разложения карбонила никеля получаются окись углерода и металл. В зависимости от условий металл имеет различный состав и структуру. Если пары карбонила достигают нагретой поверхности, разложение приводит к отложению ком па,ктного или пористого покрытия на нагретом предмете. [c.217]

    Окись углерода, присутствующая в газовой фазе, должна превращаться в жидкофазный карбонил металла. Это, вероятно, происходит в результате превращения трикарбонила кобальта в тетракарбонил или в гидрокарбопил кобальта  [c.121]

    Карбонилы металлов — комплексы металлов с окисью углерода имеют некоторое практическое значение. При получении по методу Монда чистого никеля из железо-ннкелевых руд руду восстанавливают водородом до металлического никеля в таких условиях, при которых окись железа не восстанавливается. После этого при комнатной температуре через восстановленную руду пропускают окись углерода, которая соединяется с никелем и образует карбонил никеля  [c.396]

    Следовательно, -электроны металла не так легко участвуют в образовании связи с окисью углерода в качестве лиганда. Поэтому л-характер связи металл — углерод мал, и связь углерод — кислород соответственно более прочная. Таким способом было дано объяснение опытам Эйшенса и Плискина (1958), в которых полоса валентного колебания карбонила окиси углерода, адсорбированной на железе, смещалась в сторону высоких частот на 160 см после добавления кислорода. Эйшенс и Плискин (1957) нашли, что для появления полосы поглощения при 2193 см к системе никель — окись углерода необходимо добавить кислород. Отсюда не следует, что много кислорода внедряется в поверхностные соединения окиси углерода, или, что эти соединения адсорбируются на поверхностном атоме или ионе кислорода. Объяснение, вероятно, связано со способностью кислорода связывать -электроны металла и таким образом делать их недоступными для образования л-связи с окисью углерода. В этом случае имеется только а-связь углерод — металл, удерживающая окись углерода на поверхности. [c.97]

    Карбонилы металлов. Открытие первого карбонила — карбонила никеля про- изошло на заводе, прогизводившем соцу по методу Сольве. Производство терпело ущерб от коррозии никелевых вентилей в газопроводах, и понадобилось выяснить причины этого явления, тем более пепонятного, что разр-ушение происходило при очень невысокой температуре. Из составных частей газово-й смеси, омывающей вентили, ответственной за коррозию никеля оказалась окись углерода. В процессе этил исследований, — сообщи химик предприятия Монд, — тонко измельченный никель, образованный восстановлением водородом при 400 , обрабатывался чистой окисью углерода в стеклянной трубке при низких температурах в течение нескольких дней. Чтобы предохранить от ядовитой окиси углерода атмосферу лаборатории, мы попросту зажигали газ, выходящий из провода. К нашему удивлению, мы нашли, что при охла- [c.395]

    В 80-х годах прошлого века в лаборатории Людвига Монда — крупного инженера-химика и промышленника, одного из основателей химической индустрии Англии — шла работа по очистке газов от примеси окиси углерода. Окись углерода пропускали над накаленным никелем. Случайно заметили, что по окончании опыта, когда никель почти остыл, пламя отходящей окиси углерода из бесцветного сделалось белым. Непонятный факт стал интригующим, когда выяснилось, что это белое пламя на холодном фарфоре оставляет металлический налет. Казалось совершенно невероятным, чтобы такой металл, как никель, давал летучее соединение с окисью углерода. Опыты были повторены еще и еще раз. Когда избыток окиси углерода был поглощен аммиачным раствором хлористой меди и исследователям — Монду, Лангеру и Квинке — удалось сконденсировать в смеси снега с солью первые капли тяжелой бесцветной жидкости, они окончательно уверовали, что никель дает соединение с окисью углерода. Новое вещество — одно из самых интересных соединений элемента №28 — назвали карбонилом никеля. Карбонил никеля потряс воображение химиков мира. Соединение тяжелого металла с газом-- жидкое, текучее, летучее, как эфир  [c.61]

    Карбонилы металлов. Открытие первого карбонила — карбонила никеля произошло на заводе, производившем соду по методу Сольве. Производство терпело ущерб от коррозии никелевых вентилей в газопроводах, и понадобилось выяснить причины этого явления, тем более непонятного, что-разрушение происходило при очень невысокой температуре. Из составных частей газовой смеси, омывающей вентили, ответственной за коррозию никеля оказалась окись углерода. В процессе этих исследований,— сообщил химик предприятия Монд,— тонко измельченный никель, образованный восстановлением водородом при 400°, обрабатывался чистой окисью углерода в стеклянной трубке при низких температурах в течение нескольких дней. Чтобы предохранить от ядовитой окиси углерода атмосферу лаборатории, мы попросту зажигали газ, выходящий из прибора. К нашему удивлению, мы нашли, что при охлаждении прибора пламя становилось светящимся и увеличивало яркость, как только температура достигала примерно 100°. На холодной фарфоровой пластинке, введенной в это светящееся пламя, осаждались металлические пятна, сходные с пятнами мышьяка, получаемыми в аппарате Марша. При нагревании трубки, через которую проходил газ, мы получили мета.члическое зеркало, а светимость пла.мени исчезла . [c.540]

    Необходимо отметить, что в реальных условиях протекания процессов термического разложения карбонилов металлов V—VIII групп в значительных количествах присутствуют лишь карбонил, соответствующий металл и окись углерода. Поэтому основное значение для процесса имеет исследование реакций левого квадрата каждого рисунка. Двуокись углерода, окислы, карбиды и особенно свободный углерод присутствуют в реакторе в весьма незначительных количествах. Их взаимодействие должно рассматриваться лишь при получении особо чистых металлов. [c.91]

    Окись углерода и углеводороды восстанавливают М0О3 до металла. Но около 1000° начинается частичное образование карбида молибдена. Поэтому в молибдене, получаемом восстановлением углеродом из окислов, всегда содержится некоторое количество химически связанного углерода. Восстановление МоОз углеродом и его соединениями также (см. выше) протекает через образование промежуточных окислов. Так, метан при 700° восстанавливает МоОз до М0О2, а при 900° — до Мо. Окись углерода при взаимодействии с МоОз при высоком давлении образует карбонил молибдена Мо(СО)б. Алюминий и кремний восстанавливают с разной степенью активности молибденовый ангидрид до металла или образуют сплавы. [c.277]

    Разделение циркония и гафния в виде карбонилов 2г (СО), и (СО), основывается на различии их температур кипения [156, 1571. В патентах не приводятся температуры кипения карбонилов, но отмечается, что карбонил циркония кипит при более низкой температуре, чем карбонил гафния, и отгоняется первым [156]. Метод заключается в том, что тонкоизмельченный порошок циркония, содержащий гафний, помещают в реакционную камеру, снабженную мешалкой, вюдят активированный уголь, а затем окись углерода в количестве, несколько превышающем стехиометриче-ское. При нагревании смеси под давлением 4—8 атм в интервале температур 300—800° С образуются жидкие карбонилы циркония и гафния, устойчивые при кипении и разрушающиеся при температурах на 50—100° С выше. По окончании реакции смесь карбонилов разделяют перегонкой. Для получения чистых металлов приемники с находящимися в них карбонилами нагревают до температуры разложения последних, при этом выделяется окись углерода, которая снова используется для получения карбонилов цирконий и гафний остаются в виде тонких порошков. В патенте не указывается чистота получаемых металлов и степень их разделения. [c.43]

    Последние несколько лет широко применялось индуцирование реакций ди- и олигоолефинов с карбонилами металлов путем облучения ультрафиолетовым светом. Механизм этих реакций фотохимического замещения изучался Стромайером и сотр. [396, 397, 515]. Согласно представлениям этих авторов, карбонил металла, поглощая квант энергии излучения, переходит в возбужденное состояние с очень коротким временем жизни и затем быстро разрушается с потерей СО-группы. Оставшийся, очень реакционноспособный фрагмент, у которого на одну группу СО меньше, чем у исходного карбонила, имеет свободное координационное место, куда может быть присоединена молекула олефина. Так как выделяющаяся окись углерода может вести себя как донор, необходимо использовать избыток олефина и удалять СО из сферы реакции. Вопрос о том, является ли в отсутствие ультрафиолетового облучения (при получении ди- и олигоолефиновых карбонилкомплексов металлов) стадия диссоциации карбонила металла [c.26]

    Окись углерода поглощает при 2143 см , т. е. в области, связываемой обычно с колебаниями по тройной связи [8], и в настоящее время является общепринятым представление о том, что это соединение существует по крайней мере частично в виде структуры с тройной связью. Однако в отношении карбонилов металлов существуют серьезные разногласия по поводу того, имеют ли они структуру X—С=0 или Х=С=0. Кроуфор (9, 10] исследовал карбонил никеля и показал, что он дает полосы поглощения при 2039 и 2050 слС . Ряд других карбонилов, в том числе Ре(С0)5, Рез(СО)12 и Ре2(С0)д, был изучен Шелайном [11, 12] и Ше-лайном и Питцером [13]. Каждое из этих соединений дает аналогичную карбонилу никеля пару полос, а Рез(СО)12 и Ре2(СО)9 дают, кроме того, полосу вблизи 1830 Для карбонилов марганца, рения [33, 34] и хрома [35] обнаруживается поглощение только в области 2000 а для дикобальтоктакарбонила и Со4(СО) 2 [36, 37] —дополнительное поглощение вблизи 1850 см . [c.185]

    Среди металлоорганических соединений металлов этой группы наибольшее значение имеют карбонилы, кроме того, газовую хроматографию применяют для анализа металлоценов и трнкарбониловых комплексов железа. Как уже говорилось, первые работы по газовой хроматографии карбонила железа были основаны на его разложении. Кроме упомянутой выше работы [64], в которой исследовали содержание окиси углерода в карбонилах железа и иридия, метод газовой хроматографии был применен [72] для определения содержания пентакарбонила железа в технических газах. Метод основан на разложении пентакарбонила при прохождении газа через трубку, заполненную железными опилками. Образующуюся окись углерода пропускают затем через реактор с хромннкелевым катализатором  [c.192]

    Выход адиподинитрила может быть увеличен, если во время реакции непрерывно отводить окись углерода, выделяющуюся при разложении карбонилов . Роль карбонила металла сводится к тому, что он с акрилонитрилом образует комплекс [Со(СО)2-СН2 = СНСЫ], при гидрировании которого получается адиподинитрил. Этот комплекс может быть выделен в чистом виде при нагревании эквимоль-ных количеств карбонила и акрилонитрила в кипящем циклогекса- [c.75]

    В ряде случаев к образованию карбонильных соединений металлов приводит непосредственное присоединение окиси углерода к свободному металлу. Были описаны реакции, в которых окись углерода при умеренном давлении присоединяется к комплексам, имеющим такие лиганды, как карбонил, циклоиентадиенил, фосфин или галогенид. Окись углерода способна также расщеплять галогенные мостики (ср. стр. 294). [c.251]


Смотреть страницы где упоминается термин Окись углерода и карбонилы металлов: [c.91]    [c.164]    [c.283]    [c.561]    [c.125]    [c.318]    [c.131]    [c.79]    [c.296]    [c.154]    [c.164]    [c.8]    [c.112]    [c.166]   
Смотреть главы в:

Химия травляющих веществ Том 2 -> Окись углерода и карбонилы металлов




ПОИСК





Смотрите так же термины и статьи:

Карбонилы металлов

Металлы углерода



© 2025 chem21.info Реклама на сайте