Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основания, нуклеозиды, нуклеотиды и нуклеиновые кислоты

    Биохимические реактивы и препараты для научных целей. Интенсивное развитие работ по биохимии и молекулярной биологии в 60-х годах потребовало создания ассортимента биохимических реактивов и препаратов, что оказалось сложной задачей. Эти препараты обладали преимущественно сложным составом при их полз ении использовались в качестве сырья продукты растительного происхождения и способы, основанные на сочетании химического синтеза и микробиологических приемов. К таким препаратам относились аминокислоты и их производные (метаболиты), пуриновые и пиримидиновые основания, нуклеозиды, нуклеотиды, нуклеиновые кислоты, их производные и аналоги, углеводы, белки, ферменты, липиды, жирные кислоты и их производные, стероиды, гормоны, ги- [c.325]


    Синтетические аналоги пуриновых и пиримидиновых оснований, нуклеозидов, нуклеотидов находят широкое применение в молекулярной биологии, фармации и медицине. Их использование связано в первую очередь со структурной ролью нуклеотидов как предшественников синтеза нуклеиновых кислот. [c.176]

    Аденин является основанием, присоединяет два протона — у первого (р/(вн+ = 9,8) и седьмого (р/Свн + = 4,15) атомов азота. Аденин входит в состав нуклеотидов, нуклеозидов и нуклеиновых кислот (аденозин, аденозинтрифосфорная кислота). Используют в качестве исходного соединения для органического и микробиологического синтеза и в медицине, например в качестве консерванта донорской крови. [c.711]

    Исследования действия ультрафиолетового облучения на нуклеиновые кислоты и их компоненты интенсивно развиваются в последнее время (обзоры — см.в трех основных направлениях 1) влияние УФ-облучения на функциональные свойства нуклеиновых кислот (см., например, 2) органическая фотохимия компонентов нуклеиновых кислот 3) физика возбужденных состояний нуклеиновых кислот и их компонентов. В данной главе рассмотрена собственно органическая фотохимия пуриновых и пиримидиновых оснований, нуклеозидов, нуклеотидов и полинуклеотидов. Особое внимание обращено на изменение химических свойств компонентов нуклеиновых кислот при переходе их в возбужденное состояние. [c.615]

    Пуриновые и пиримидиновые основания Нуклеозиды и нуклеотиды Нуклеиновые кислоты [c.305]

    ОСНОВАНИЯ, НУКЛЕОЗИДЫ, НУКЛЕОТИДЫ И НУКЛЕИНОВЫЕ КИСЛОТЫ [c.327]

    НУКЛЕОТИДЫ — сложные органические вещества, природные биологически активные соединения, распространены в животных, растительных тканях и микроорганизмах как в свободном состоянии, так и в составе различных соединений (нуклеиновых кислот, некоторых коферментов и витаминов). Н. состоят из остатков фосфорной кислоты, углевода (рибозы или дезоксирибозы) и азотистого основания (нуклеозида). Играют огромную роль в процессах обмена веществ и энергии живых организмов. [c.177]

    Общее строение нуклеиновых кислот строго доказано. При гидролизе нуклеиновые кислоты распадаются на соответствующие нуклеотиды. Место связи рибозы с фосфорной кислотой установлено с помощью избирательного гидролиза. При этом в зависимости от природы фермента получают нуклеозид-5 -монофосфат, или нуклеозид-3, 5 -ди-фосфат, или нуклеозид-З -монофосфат, откуда следует, что остатки рибозы связаны в нуклеиновых кислотах фосфорной кислотой в положении 3,5. Природа оснований установлена путем их идентификации в продуктах гидролиза нуклеотидов. Наконец, нуклеиновые кислоты титруются как одноосновные кислоты. Это указывает на то, что две гидроксильные группы фосфорной кислоты связаны с двумя остатками рибозы. [c.361]


    Неполный гидролиз нуклеиновых кислот дает нуклеотиды, которые могут быть гидролизованы до фосфорной кислоты и нуклеозидов. При гидролизе нуклеозида получают гетероциклический амин (его часто называют просто основанием) и соответствуюш,ую пентозу. Стадии гидролиза нуклео-протеинов приведены ниже. [c.466]

    Названия нуклеозидов и нуклеотидов связаны с названиями оснований не вполне логичным образом. (Названия главных нуклеотидов, из которых построены нуклеиновые кислоты, приведены в табл. 2-5.) [c.123]

    Мономерными звеньями ДНК и РНК являются остатки нуклеотидов. Нуклеотиды — это фосфорные эфиры нуклеозидов, которые, в свою очередь, построены из остатка углевода — пентозы и гетероциклического основания. В РНК углеводные остатки представлены D-рибозой, в ДНК — 2-1)-дезоксирибозой. Связь между углеводным остатком и гетероциклическим основанием в нуклеозиде осуществляется через атом азота в основании, т. е. с помощью К-гликозидной связи. Таким образом, нуклеозидные остатки в ДНК и РНК относятся к классу N-гликозидов. Как уже отмечалось во Введении, в качестве гетероциклических оснований ДНК содержат два пурина аденин и гуанин — и два пиримидина тимин и цитозин. В РНК вместо тимина содержится урацил. Кроме того, ДНК и РНК обычно содержат так называемые минорные нуклеотидные остатки — производные обычных нуклеотидов по основаниям или углеводному остатку, доля которых в зависимости от вида нуклеиновой кислоты колеблется от десятых процента до десятков процентов. Строение, химическая номенклатура и принятые сейчас сокращенные обозначения нуклеотидов и их компонентов показаны на рис. 2. [c.11]

    ЯМР высокого разрешения используется для изучения нуклеиновых кислот не столь широко, как для исследования полипептидов и белков. Хотя литература по спектрам ЯМР азотистых оснований (т. е. замещенных пуринов и пиримидинов), а также нуклеозидов и нуклеотидов чрезвычайно обширна, работ по исследованию самих нуклеиновых кислот весьма мало, а число существенных выводов из этих работ еще меньше. Поэтому мы рассмотрим эти полимеры и составляющие их единицы значительно более кратко, чем полипептиды белки в гл. 13 и 14. [c.399]

    Основания можно выделить из нуклеиновых кислот при полном гидролизе полимера. Частичный гидролиз ведет к образованию более крупных фрагментов нуклеозидов, нуклеотидов или олигонуклеотидов (табл. 37.1). Компоненты нуклеиновых кислот можно выделить и из внутриклеточного пула, состав которого определяется равновесием между биосинтетическими и [c.35]

    Взаимодействие с гелем особенно наглядно проявляется при очистке фрагментов нуклеиновых кислот. Так, нуклеотиды удается обессолить на биогеле Р-2 лишь при pH выше 7 объем образца должен составлять менее 10% объема колонки. В противном случае наступает перекрывание с зоной соли. Нуклеозиды, а в особенности основания, задерживаются биогелем так же сильно, как и сефадексом [9]. [c.140]

    Нуклеозиды. Под этим названием 0бъединя 0т соедииения, состоящие нз остатков сахаров и пиримидинов или пуриновых оснований. Они получаются непосредственно из нуклеиновых кислот при действии энзимов из семян люцерны, проросшего гороха и т. д. и, следовательно, образуются в результате отщепления фосфорной кислоты от рассмотренных выше мононуклеотидов. Из инозиновой кислоты таким иутем получается инозин, из адениловых кислот дрожжей и мускулов — один и тот же аденозин, из гуаниловой кислоты — гуанозин, из цитидиловой и уридиловой кислот — цитидин и, соответственно, уридин и т. д. Их фор.мулы вытекают из вышеприведенных формул отдельных нуклеотидов. Все нуклеозиды из нуклеиновой кислоты дрожжей и.меют рибозные остатки в фуранозидной форме. [c.1048]

    Для разделения сложных смесей, содержащих вещества разных классов (основания, нуклеозиды, нуклеотиды и их поли-фосфаты, олигонуклеотиды, включая олигонуклеотиды, различающиеся порядком основании, и т. п.), с которыми имеют дело, например, при выделении кислоторастворнмой части клеток или тканей или при анализе ферментативных гидролизатов нуклеиновых кислот, применяют исключительно ионообменную хроматографию. В случае необходимости дальнейшее фракционирование проводят по многостадийной схеме, с использованием указанных выше методик. При этом наблюдаются те же закономерности, что и при анализе нуклеотидов (см. предыдущий раздел), поэтому в дальнейшем будет приведено лишь несколько примеров. [c.58]

    Итак, взаимодействие ультрафиолетового света с нуклеиновыми кислотами приводит к возникновению электронио-возбуж денных состояний различных оснований. При этом нижнее синглетное возбужденное состояние оснований возникает в основном в результате я—я -перехода, хотя в ряде случаев оно может быть следствием п—я -перехпда. Триплетное состояние нуклеотидов, как правило, возникает при я — я -переходе. Нуклеиновые кислоты (а также основания, нуклеозиды, нуклеотиды) при комнатных температурах и нейтральных pH практически не люминесцируют. [c.223]

    ПУРИНОВЫЕ ОСНОВАНИЯ - бесцветные кристаллические вещества с высокой температурой плавления, малорастворимы в воде. П. о.— органические природные соединения, производные пурина, входят в состав нуклеиновых кислот, нуклеотидов, нуклеозидов и некоторых коферментов. Свободные П. о. найдены во многих растениях, в печени, крови, молоке, камнях мочевого пузыря, в рыбьей чешуе и др. Наиболее распространены аденин, гуанин, гипоксаптин. Конечным продуктом пуринового обмена у большинства животных является мочевая кислота. Химические свойства П. о. определяются, главным образом, заместителями в пуриновом ядре. П. о. получают из нуклеиновых кислот, нуклеотидов, нуклеозидов, а также синтетически. [c.206]


    Представление о строении нуклеиновых кислот нуклеозиды и нуклеотиды. Гетероциклические основания, рибоза (дезоксирибоза) и фосфорная кислота как структурные единицы нуклеиновых кислот. Представление о строении РНК и ДНК. Биологические функции ДНК и РНК. Рибосомальные, информационные и транспортные РНК. Связь между строением и биологическими функциями нуклеиновых кислот. Двойная спираль как модель молекулы ДНК. Роль водородных связей аденин — тимин и гуанин — цитозин в образовании двойной спирали. Правило Ча )-гаффа. Проблема передачи наследственной информации. Вещество, энергия и информация — необходимые компоненты при синтезе белка. Гснетическин код как троичный неперекрывающийся вырожденный код. [c.249]

    При более мягком гидролизе нуклеиновых кислот образуется смесь веществ, называемых нуклеотидами. В состав нуклеотида входят одна молекула пиримидирювого или пуринового основания, одна молекула пентозы и молекула фосфорной кислоты. Таким образом, нуклеотиды являются мономерными единицами нуклеиновых кислот. От нуклеотида можно отщепить фосфорную кислоту и получить нуклеозид, состоящий из пуринового (или пиримидинового) основания и пентозы. [c.348]

    Мономерными звеньями нуклеиновых кислот являются нуклеотиды, состоящие из гетероциклического основания, пентозы и остатка фосфорной кислоты. При отщеплении фосфорной кислоты нуклеотид превращается в нуклеозид, в составе которого остается уже два компонента — гетероциклическое основание и пентоза. [c.644]

    НЫ обрааовывать множество связанных водородны.ми связями пар другой структуры. Некоторые из эти.ч пар обнаруживаются экс-пери.ментально для производных нуклеозидов и нуклеотидов, а так-в ко.мплексах ряда синтетических полинуклеотидов. Однако квантово-механические расчеты показывают, что уотсон-криковские А-Т-(в случае РНК —А-1]-) и О-С-пары энергетически наиболее вьггодны. Происходит это потому, что в этих парах центры с повышенной и пониженной электронной плотностью оснований расположены оптимально друг относительно друга. Таки.м образом, комплементарные пары оснований в нуклеиновых кислотах стабилизированы преимущественно электростатнчески.ми взаимодействиями [c.25]

    Пуриновые и пиримидиновые циклические соединения, входящие в состав нуклеиновых кислот, называют попросту основаниями, хотя у некоторых из них основные свойства практически отсутствуют. Ы-гликози-ды (или Ы-гликозильные производные) оснований, содержащие рибозу или дезоксирибозу, называются нуклеозидами, а фосфатные эфиры нук-леозидов—нуклеотидами. Подобным образом называются и родственные биохимические соединения, которые не входят в состав ДНК или РНК. [c.123]

    Многие аминопиримидины, их гидрированные аналоги и конденсированные системы широко распространены в природе и представляют собой биологически активные соединения. Пиримидиновые (цитозин) и пуриновые основания (аденин, гуанин) входят в состав нуклеиновых кислот, нуклеотидов, нуклеозидов, коферментов (тиаминдифосфат) антибиотиков (кордицепин, пликацетин, гоугеротин и другие нуклео- [c.157]

    Очевидно, что многие нуклеозиды являются интермедиатами в биосинтезе н расщеплении нуклеотидов и полинуклеотидов. В дополнение к так называемым спонгонуклеозидам (термин, применяемый к модифицированным пуриновым нуклеозидам, полученным из карибской губки ryptotethya rypta), которые являются производными арабинозы, многие антибиотики являются производными нуклеозидов, часто имеющих модифицированные углеводные остатки они будут детально обсуждаться позднее. Нуклеозиды сравнительно легко выделить из химических или ферментативных гидролизатов природных полинуклеотидов условия и практические детали этого процесса можно найти в общих учебниках по нуклеиновым кислотам [2, 7, 24]. Все коммерчески доступные образцы основных нуклеозидов получены этим путем. Для выделения больщих количеств таких нуклеозидов наиболее целесообразно применение относительно грубого фракционирования, основанного на различной растворимости, и методов ионного обмена. Для выделения малых количеств модифицированных нуклеозидов либо из природного источника, либо полученных в результате химического синтеза, пригодны многочисленные более эффективные методы, и они будут обсуждаться отдельно. Наконец, следует помнить, что выделение нуклеозидов часто осуществляют дефосфорилированием нуклеотидов [25], выделение и разделение которых не будет рассматриваться в настоящей главе. [c.72]

    Больщая часть важнейших коферментов — я-электронные сопряженные системы, содержащие гетероциклы или ароматические циклы. Как мы видели, к той же группе органических соединений относятся азотистые основания, нуклеозиды и нуклеотиды, из которых строятся цепи нуклеиновых кислот. Низкомолекулярные нуклеозиды и нуклеотиды и их производные в ряде случаев являются коферментами. Вероятно, важнейшим из них следует считать аденозинтрифосфат (АТФ). Сюда же относятся основные участники окислительно-восстановительных процессов — никотинамидные коферменты НАД и НАДФ и фла-виновые коферменты ФАД и ФМН. Напишем структурную формулу первых двух соединений  [c.95]

    Нуклеиновые кислоты представляют собой полинуклеотиды, в которых отдельные нуклеотиды связаны фосфодиэфир-ными мостиками, образующимися в результате этерификации гидроксильной группы при одного полинуклеотида остатком фосфорной кислоты при С другого нуклеотида. Фосфо-диэфирная связь характерна и для РНК, и для ДНК, так как в её образовании не участвует атом замещение которого отличает РНК и ДНК друг от друга. Доказательства наличия фосфодиэфирных мостиков получены при изучении результатов ферментативного гидролиза нуклеиновых кислот. Последовательный гидролиз нуклеиновых кислот панкреатической дезоксирибонуклеазой и фосфоди эстеразой змеиного яда приводит к образованию нуклеозид-З -фосфатов. При гидролизе панкреатической дезоксирибонуклеазой в комбинации с фос-фодиэстеразой селезёнки получаются нуклеозид-З -фосфаты. Изображение структуры нуклеиновых кислот привычными структурными формулами (формула а на приводимой далее схеме) оказывается слишком громоздким, поэтому для описания последовательностей нуклеиновых кислот можно использовать более краткие записи. В первом варианте (запись б на приводимой схеме) остатки пентоз изображаются горизонтальными линиями, на которых указаны условные положения всех атомов углерода пентозы, участвующих в образовании молекулы (Г, 3 и 5 ). На конце черты возле атома С указывают обозначение нуклеинового основания (на приведённой схеме тимин, аденин и гуанин), а атомы С и С соединяют через атом Р. Второй вариант обозначения (запись в) — буквенная система, в которой используются буквенные обозначения нуклеиновых оснований (А, О, Т, U, С), а фосфатная группа обозначается буквой "р . Если она находится справа от обозначения нуклеинового основания, это означает, по зтери-фицирована группа при С , а если слева — при С . [c.115]

    Нуклеотиды. Третий компонент нуклеиновых кислот — ортофос-форная кнслота — образует сложноэфирные связи со спиртовыми группами рибозы нли дезоксирибозы. Путем расщепления нуклеиновых кислот в контролируемых условиях удается выделить сложные эфиры нуклеозидов и фосфорной кислоты — нуклеотиды. Названия нуклеотидов производятся от названия гетероциклического основания, входящего в нх состав, с добавлением слова кислота цитидиловая кислота, адениловая кислота и т. д. В современной номенклатуре указываются также положения фосфатной группы или групп (аденозии-5 -фосфат, адеиознн-З -фосфат, дезоксиаденозии-5 -фосфат) часто используются однобуквенные сокращения для 5 -фосфатов — рА, рС, рС, ри, pN, р<1А, р<1С, р<1С, р<1и, pdN, для З -фосфатов — Ар, Ср, Ср, ир, Np, dAp, Ср, d p, dUp, dNp, для 2 -фосфатов —А(2 )р, С(2 )р, С(2 1р, и(2 )р, N(2 )  [c.301]

    Гидролитическое расщепление нуклеиновых кислот может привести к образованию олигонуклеотидов, мононуклеотидов, нуклеозидов, пуриновых и пиримидиновых оснований, углеводфосфатов и свободных углеводов. Кроме того, всегда появляются еще вторичные продукты расщепления, например продукты диаминирования аминопуринов и аминопиримидинов или их нуклеозидов и нуклеотидов. а) Кислый гидролиз [c.441]

    Рандерат первым описал анализ методом ХТС нуклеиновых оснований, нуклеозидов и мононуклеотидов [68—71], а также анализ нуклеотид-полифосфатов и нуклеотид-коферментов [71—73]. По эффективности разделения ХТС на целлюлозе и силикагеле Г превосходит хроматографию на бумаге [69, 70]. При получении хроматограммы на слое целлюлозы и хроматограммы на бумаге при совершенно одинаковых условиях пятна на тонком целлюлозном порошке получаются меньше и более резко очерченными, чем на волокнистой бумаге [71]. Кроме того, для разделения производных нуклеиновых кислот методом ХТС затрачивается меньше времени, чем для разделения методом хроматографии на бумаге [70—72]. [c.442]

    Подробный анализ процесса хроматографии нуклеиновых кислот и их продуктов гидролиза на ионообменнике был опубликован Коном [14, 22, 23], а также Собером и Петерсоном [81]. Рандерат впервые описал фракционирование низкомолекулярных осколков нуклеиновых кислот (нуклеиновых оснований, нуклеозидов и мононуклеотидов) на эктеола [68, 69, 73] и на слоях ДЭАЭ [72, 73]. Он установил, что нуклеотиды можно разделить методом ионообменной ХТС значительно быстрее и лучше, чем при использовании других методов кроме того, метод ХТС значительно чувствительнее метода хроматографии на бумаге. [c.447]

    Гликозидам родственны так называемые N-гликoзиды, т. е. производные моносахаридов, в которых аномерный центр связан не с атомом кислорода, а с атомом азота аминов или гетероциклов. К-Гликозидная связь характерна для нуклеозидов, нуклеотидов и нуклеиновых кислот, где моносахариды О-рибоза и 2-дезокси-0-рибоза (аналог О-рибозы без гидроксильной группы в положении 2) связаны с нуклеиновыми основаниями. Такие К-гликозиды называются нуклеозидами, например аденозин Сложные эфиры нуклеозидов — нуклеотиды, например у р и д и н-5 -ф о с ф а т, являются, как известно, мономерными звеньями нуклеиновых кислот. В целом полимерная молекула нуклеиновой кислоты построена из нуклеотидов, связанных между собой остатками фосфорной кислоты. [c.396]

    Основным структурным элементом нуклеиновых кислот являются соединения, именуемые нуклеотидами. В состав нуклеотида входят азотистое основание, углевод (рибоза или дезо-ксирибоза) и фосфорная кислота. Азотистые основания, соединяясь по типу гликозидов с альдегидным атомом сахара рибозы или дезоксирибозы, образуют нуклеозиды. После присоединения к гидроксилу углеводного компонента в 3- или 5-положении фосфорной кислоты образуются фосфорные эфиры нуклеозидов — нуклеотиды. В состав нуклеиновой кислоты может входить различное число нуклеотидов — от нескольких до сотен и даже тысяч. [c.28]

    Мономерное звено нуклеиновых кислот — нуклеотид — состоит из основа яяя, моносахарида и Н3РО4 в составе нуклеотида различают еще нуклеозид — фрагмент, включающий основание и моносахарид (получается в результате отщепления от нуклеотида фосфорной кислоты). [c.551]

    Новым материалом для обессоливания компонентов нуклеиновых кислот является гель поли-Ы-винилпирролидона, с которого компоненты нуклеиновых кислот элюируются водой [28] в следующем порядке нуклеотиды, нуклеозиды, пиримидины, пурины [29]. Хроматографическая-подвижность нуклеозидов и оснований в геле поли-М-винилпирролидона, а также в биогеле падает вследствие образования водородных связей с матрицей [30]. Хлориды лития и натрия можно легко отделить от любых компонентов нуклеиновых кислот, но сульфат аммония элюи- [c.38]

    При разделении оснований, нуклеозидов и нуклеотидов используют различия в константах диссоциации рКа, табл. 37.5), коэффициентах распределения, в форме и размерах молекул. В качестве сорбента обычно используют синтетические иониты [32, 33] в сочетании с градиентным элюированием [34, 35]. При анализе последовательности нуклеотидов в нуклеиновых кислотах олигонуклеотиды—-продукты ферментативного гидролиза нуклеиновых кислот — разделяют на ионитах на основе целлюлозы или геля декстрана [36, 37] в градиенте pH и ионной силы в присутствии мочевины [38]. [c.40]

    При разделении защищенных нуклеозидов, например ано-мерных рибофуранозилпроизводных урацила, в качестве сорбента с успехом используют нейтральную окись алюминия, а в качестве элюента — смеси бензола и этилацетата в разных пропорциях [44, 45, 84, 85]. В табл. 37.6 приведены значения Ка основных нуклеозидов на колонке с сефадексом на основании этих данных можно оценить возможность разделения той или иной смеси методом гель-проникающей хроматографии при использовании элюентов различного состава [47, 48, 67—69]. Хорошие результаты дает разделение на обычных или специально фракционированных биогеле Р-2 [86, 87] и сефадексе 0-10 [88]. Показано, что эти два геля можно использовать для определения нуклеотидного состава нуклеиновых кислот (рис. 37.11). Биогель Р-2 применяют также для разделения нуклеозидов в присутствии большего количества нуклеотидов, которые в этом случае элюируются существенно быстрее, чем на сефадексе 0-10. Хроматографию на биогеле Р-2 или сефадексе 0-10 неоднократно использовали в качестве микроаналитического метода при определении нуклеозидного состава энзиматических гидролизатов ДНК [89—91] и идентификации концевых нуклеотидов [92]. Смесь рибо- и дезоксирибонуклеозидов разделяли на колонке с фракционированным биогелем Р-2 в буферном растворе (pH 10,1), содержащем тетраборат натрия (рис. 37.12) [87]. Для отделения тимидина от 5-бром- и 5-иоддезоксиуридинов предложено проводить хроматографию на сефадексе 0-10 в фос-фатноцитратном буферном растворе с pH 3,5 [93, 94]. [c.53]

    Порошки полиамидов используют в хроматографической практике с 1955— 1956 гг. Полиамиды применяют для жидкостной адсорбционной хроматографии липофильных и гидрофильных веществ — фенолов, фенолгликозидов, флаво-ноидов (флавонов, халконов, катехинов и др.), кетонов, хинонов, лактонов, полиспиртов, углеводов, органических кислот, сульфокислот и сульфонамидов, тиаминов, ароматических нитросОединений, ДНФ- и дансил-производных аминокислот, азотистых гетероциклических соединений (индолов, хинолинов, алкалоидов, нуклеиновых оснований, нуклеозидов и нуклеотидов, желчных пигментов), стероидов и желчных кислот, каротиноидов, витаминов, антибиотиков, пестицидов. [c.47]


Смотреть страницы где упоминается термин Основания, нуклеозиды, нуклеотиды и нуклеиновые кислоты: [c.581]    [c.205]    [c.1048]    [c.341]    [c.11]    [c.25]    [c.395]    [c.40]    [c.41]   
Смотреть главы в:

Лабораторное руководство по хроматографическим и смежным методам Часть 1 -> Основания, нуклеозиды, нуклеотиды и нуклеиновые кислоты

Лабораторное рук-во по хроматографическим и смежным методам Ч 1 -> Основания, нуклеозиды, нуклеотиды и нуклеиновые кислоты




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты

Нуклеиновые кислоты, нуклеозиды и нуклеотиды

Нуклеотиды

Основания и кислоты



© 2025 chem21.info Реклама на сайте