Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение 2,4-Д в зерне

    Теплопередача внутри пористого зерна катализатора определяется некоторым эффективным коэффициентом теплопроводности так же, как диффузия — эффективным коэффициентом диффузии данного вещества. Конечно, неренос тепла идет в основном через твердую фазу, в то время как перенос вещества — только через норы. Вопрос о том, как связана эффективная теплопроводность со структурой пор и свойствами твердой фазы, обсуждается в главе 5 книги Петерсена (см. библиографию, стр. 147) здесь мы только отметим, что коэффициент теплопроводности может быть определен таким образом, что тепловой поток через единичную площадку внутри частицы будет пропорционален градиенту температуры по направлению нормали к этой площадке с коаффициентом пропорциональности к . [c.142]


    В процессе приготовления катализатора по разным причинам могут возникнуть трудности в приготовлении катализатора с заданной пористой структурой. Поэтому представляет интерес общая зависимость селективности и объемной производительности катализатора или всего реактора от параметров пористой структуры и размеров зерна. При этом определение оптимальной пористой структуры следует рассматривать как часть общего исследования взаимосвязи между пористой структурой катализатора и его объемной производительностью или селективностью. [c.120]

    Для определения влияния внутренней диффузии на скорость контактного процесса нужно знать уравнение скорости в кинетической области и значения эффективного коэффициента диффузии Dg. Здесь коэффициент можно найти по результатам измерений скорости реакции на зернах разных грануляций либо рассчитать, если известны коэффициенты молекулярной или кнудсеновской диффузии и принята определенная модель внутренней структуры зерна (значения и тг). [c.289]

    Коэффициент пористости одинаков для геометрически подобных сред он не характеризует размеры пор и структуру порового пространства. Поэтому для описания пористой среды необходимо ввести также некоторый характерный размер порового пространства. Существуют различные способы определения этого размера. Естественно, например, за характерный размер принять некоторый средний размер порового канала с1 или отдельного зерна пористого скелета. [c.12]

    Сила тяжести в воде оказывает существенное влияние на характер движения зерна. Эта сила для определенного зерна постоянна по величине и направлению [14, 70]. Однако поверхность винтового желоба, по которой движется отдельно взятое зерно, имеет сложную форму, все элементарные участки ее наклонены к горизонту под различными углами. Поэтому силу тяжести зерна в любой точке можно разложить на нормальную и тангенциальную составляющие (рис. 8). Нормальная составляющая этой силы Р определяет величину силы трения, а тангенциальная составляющая P способствует движению зерна в направлении наибольшего уклона дна желоба. Значение тангенциальной составляющей зависит от угла наклона поверхности желоба к горизонту. Действие тангенциальной составляющей удобнее рассмотреть в двух направлениях по оси ОХ — Рд. и оси ОУ — Ру. Составляющая Рх влияет на скорость перемещения зерна вдоль винтового желоба, а составляющая Р способствует движению зерна в сторону оси винтового желоба, так как угол всегда принимается положительным. [c.19]


    Число N отверстий, которые должны встретить зерна для полного прохождения сквозь сито, N 1/р l z —ilO H. Встреча с таким числом отверстий обеспечивается при определенной продолжительности t грохочения. Если время грохочения зерна этого класса встретят число отверстий < N сквозь сито пройдут не вес зерна. [c.209]

    Реакция окисления двуокиси серы — гетерогенно-каталитическая, и это выражение представляет собой квазигомогенную кинетическую зависимость, описывающую экспериментальные данные для катализатора стандартного состава, с зернами определенного размера и формы. Так как реакция идет с изменением объема, при расчете следует пользоваться единицами измерения концентрации. [c.242]

    Проведенное исследование позволяет сделать вывод, что точность оценивания параметров повышается с увеличением радиуса гранул адсорбата и возрастанием объемных скоростей газа-носителя. При увеличении констант скорости адсорбции и адсорбционно-десорбционного равновесия Ка необходимо увеличивать продолжительность подачи импульсов и время между измерениями выходных концентраций реагентов. Необходимо отметить, что удачный выбор временных промежутков между измерениями концентраций Ai позволяет значительно повысить точность определения параметров моделей кинетики адсорбции. Заметим, что влияние различных факторов на точность оценок рассчитывалось при радиусе гранул адсорбата = 2,5 мм, что соответствует радиусу зерна катализатора широкого класса и объемной скорости W = = 1,57 мл/с [69, 24]. [c.218]

    Результаты теоретических и экспериментальных исследований подобного рода течений воды (плотины и дамбы) и нефти (пласты) в грунтах обобщены в монографиях [22]. Успешно проанализированы многие практически важные задачи о распределении давления и потоков, когда масштабы течения столь велики по сравнению с размерами зерен, что весь зернистый слой можно считать квазиоднородной средой с одной обобщен- ной характеристикой — проницаемостью. Структура же потока и поле скоростей в промежутках между зернами изучены слабо. Поэтому приходится в основном базироваться на различных, весьма идеализированных моделях этой структуры, рассчитывать на основании введенной модели. проницаемость слоя и. сопоставляя с экспериментом, вводить определенные поправки и [c.33]

    Для течений газа в области больших значений Re, нами [88] был предложен другой косвенный метод определения относительных скоростей и по интенсивности массопередачи от поверхности одиночных, медленно испаряющихся зерен, заложенных в различных участках слоя. На основании многочисленных измерений (см. ниже в гл. IV) можно считать, что эта интенсивность, измеряемая убылью массы зерна Ag за единицу времени, в области Rea = 50 — 3000 возрастает со скоростью обдувающего потока по закону  [c.77]

    Если рассматривать, например, процесс измельчения твердых тел до частиц (зерен) определенного размера, то может оказаться, что некоторая часть материала, поступающая в мельницу, уже имеет заданную величину. Измельчение таких зерен будет связано с излишними затратами энергии и, кроме того, приведет к некондиционному продукту. Следовательно, зерна требуемых размеров перед направлением материала на измельчение необходимо отделить. [c.406]

    С ростом скорости потока газа давление на зерна увеличивается, и при определенной ее величине это давление становится равным весу зерен. В этот момент небольшое повышение скорости газа приводит к увеличению расстояния между образующими слой частицами. Последние начинают отделяться друг от друга и перемещаться. Такой режим называют режимом спокойной, н е т у р -булентной флюидизации. [c.140]

    Экспериментальное определение коэффициента г] основано на измерении скорости каталитического превращения для зерен различной величины в одинаковых условиях. Если, начиная от некоторой величины зерна, скорость превращения не изменяется, то в этом случае выполняется условие т] Л 1. Сравнение скорости превращения, достигаемой при большей величине зерен, со скоростью, найденной при зернах такого размера, что т] л 1, дает возможность определить Г1 для поочередно исследуемых зерен другой величины. Если имеются результаты исследований скорости превращения только при зернах двух раз-то коэффициент т] можно рассчитать по Ша по зависимости, представленной на [c.288]

    После окисления определенной доли первоначального количества кокса при высоких температурах (900-1200"С) скорость процесса начинает меняться со временем, что, очевидно, является следствием изменения кинетического режима [3,48]. Экспериментальными данными подтверждено, что в этих температурных условиях реакция окисления кокса протекает во внешнедиффузионной области увеличение диаметра зерна кокса (следовательно, уменьшение внешней поверхности зерна), скорости газового потока и концентрации кислорода в газе приводят к увеличению скорости окисления кокса, а рост температуры, хотя и увеличивает скорость реакции, влияет на нее слабо. [c.75]


    При большой пористости слоя коэффициент диффузии должен быть большим, однако данная модель не дает возможности количественно определить влияние пористости. Свободные пространства между зернами катализатора можно считать каналами, проложенными в определенном направлении и соединенными в узловых точках. [c.41]

    Если для модифицированного критерия Рейнольдса в качестве определяющего размера взят не диаметр канала, а диаметр зерна, то при Ке < Ш поток будет ламинарным, при 10 < Кем < 100 — переходным. Для определения величины Ре в переходном режиме необходимо провести линейную интерполяцию. [c.47]

    Но не будем торопиться объявлять электрон волной. Обратимся вновь к описанному выше опыту, точнее, к его заключительной части. Каждый электрон, попадая на регистрирующую пластинку, вызывает почернение только в одном определенном месте ее поверхности, т. е. в одном зерне фотослоя, что указывает на корпускулярную природу электрона. [c.23]

    Как было показано в разделе П1. 1, вследствие упаковки элементов слоя в группы с различным коэффициентом пустот газ движется по слою с флуктуациями скорости. Такие флуктуации должны вызвать колебания в интенсивности массоотдачи по отдельным зернам. Действительно, наши опыты с определением убыли массы каждого отдельного зерна показали, что эта убыль рааглична с колебанием 4% вокруг среднего значения (в области Кеэ > 100). При обработке опытов коэффициент массоотдачи рассчитывали как усредненный по суммарной убыли массы на весь ряд. Проверкой корректности метода локального моделирования массообмена одним рядом возгоняемых шариков являются опыты с двумя рядами таких шариков, уложенными один на другой. Движущая сила переноса вещества, определяемая с учетом наличия нафталина в газе на входе в слой, для второго ряда меньше, чем для первого. Расчеты коэффициентов массоотдачи р в этих опытах показали, что в обоих рядах р практически одинаков. [c.149]

    Возникает необходимость в более совершенных подходах к идентификации параметров пористой структуры катализаторов, установлению адекватных кинетических моделей адсорбции, определению оптимальных условий протекания процесса на зерне катализатора. Более совершенная стратегия принятия решений ориентирована на применение современных принципов автоматизации научных исследований в катализе, в частности на использование универсальной автоматизированной комбинированной установки для изучения свойств адсорбентов и катализаторов, рассматриваемых в гл. 4. [c.163]

    Простейший пример механизма сопряжения — совместная работа двух катализаторов (например, с помощью прямого взаимодействия промежуточных продуктов частных реакций различного типа, адсорбированных на соприкасающихся кристаллах (зернах) контактов разных функций, через перемещение адсорбированных промежуточных продуктов с контакта на контакт посредством поверхностной диффузии, а также через газовую фазу с десорбцией с одного контакта и адсорбцией на другом). Преимущественное использование смешанных катализаторов перед простыми и необходимость применения носителей и модификаторов вызваны необходимостью обеспечить скрытое сопряжение, требуемое для получения определенного продукта. Для эффективного сопряжения, как правило, требуются сложные каталитические системы. До сих пор их находят в основном эмпирически. Сознательный подбор и конструирование таких систем — одна из насущных задач теории катализа. Его частный и особенно важный вид — морфологический катализ — состоит в обеспечении определенного строения продуктов реакции. [c.306]

    Решение системы уравнений (10.1)—(10.5) в полном виде достаточно сложно. Для упрощения практического решения задачи можно экспериментально определить р (с ) для зерна катализатора промышленного размера. Здесь р ) — эффективная скорость реакции, отнесенная к единице его внешней поверхности, как функция вектора концентрации реагентов у поверхности катализатора. Определение ведется в условиях отсутствия внешнедиффузионного торможения, т. е. когда г с". Далее уравнение (10.4) заменяется уравнением [c.190]

    А. Л. Розенталь (СССР). В реакторе с неподвижным слоем катализатора эффективный коэффициент диффузии газов в порах частиц. может меняться при переходе от одной частицы к другой. Его величина может зависеть от диаметра и формы пор, от характера взаимосвязей между порЗхМИ, от способа измельчения катализатора, от способа засыпки зерен в реактор и от других факторов, которые в теории приходится рассматривать как случайные. Но для исследователя, -который приводит кинетические измерения во вполне определенном реакторе, с вполне определенными зернами катализатора, эти факторы [c.137]

    Определение е сильно осложняется при наличии пористых элементов слоя, даже если эти поры не глубоки и имеют характер крупных, относительно размеров зерна, шероховатостей поверхности. В этом случае для отыскания г нужно найти кажущуюся плотность зерна и наибольшие затруднения доставляет определение объема элемента v и необходимо независимым способом определять внутреннюю пористость зерна евнутр. [c.48]

    Второй метод определения обтекаемой поверхности требует создания в аппарате настолько высокого вакуума, чтобы взаимные столкновения молекул разреженного газа, протекающего между зернами слоя, были крайне редки по сравнению с ударами этих молекул о поверхность зерен (кнудсеновский или молекулярный режим течения газа). Теория этого метода, расчетное уравнение для определения и необ) одимая аппаратура разработаны в СССР Дерягиным с соавт. [55]. Предложены также [56] расчетные уравнения и для переходного режима ме- [c.50]

    П1. Определение коэффициентов теплоотдачи методом локального моделирования теплообмена в зернистом слое. Этот метод позволяет ограничиться одним или несколькими зернами-калориметрами, в которые вмонтированы электронагреватели. Калориметры изготавливают из высокотеплопроводного металла, обычно меди для измерения температуры поверхности достаточно одной термопары тепловой поток определяют по мощности электронагревателя. [c.144]

    Однако установить однозначную зависимость между N и Ре одновременно от всех вероятностных характеристик пока не удается. Совмеш ение одной вероятностной характеристики приводит к расхождению других. Так, несмотря на внешнее сходство кривых (Л, i) и г[з (Pe i) они по своей сущности значительно отличаются друг от друга. Этот факт объясняется тем, что перенос вещества в ячейках и между ними характеризуется не только числом Ре., о чем свидетельствуют данные экспериментальных исследований, связанных с определением коэффициента продольного переноса. Соотношениями (IV.62) и (IV.63) легко объяснить значения коэффициента продольного переноса в газофазных реакторах с сильно тур-булизированным режимом, когда достигается равенство между эффективными коэффициентами продольного переноса и температуропроводности, т. е. при Z) = a i — = Kf , где X и Су — соответственно коэффициенты теплопроводности и теплоемкости реагирующей массы. В этом случае, предположив, что длина ячейки-реактора AL равна диаметру зерна катализатора [82 ] при L о и Л > 10, [c.104]

    Исследование диффузионной кинетики встречает ряд осложнений в связи с трудностями зкспериментального определения диффузионных параметров системы сырье-катализатор. Однако в последние годы зтот подход находит все большее оснешение в литературе. Применение методов диффузионной кинетики для обработки результатов испытания различных катализаторов позволяет более обоснованно выбирать катализаторы, носители для них, размеры зерна и ряд других важных технологических показателей, связанных с оценкой эффективности процесса. При решении проблем моделирования реактора и оптимизации процесса наиболее правильным считается использование диффузионных моделей. [c.71]

    Сопротивление диффузии в ламинарной пленке у поверхности зерна зависит от многих параметров, таких как скорость движения зерен относительно основного потока, размер зерен, свойства потока. Эти параметры коррелируются на основе экспериментальных данных полуэмпирическими зависимостями безразмерных величин, которые связывают соответствующим образом изменения при определенном способе контактирования газа с твердым телом (неподвижный слой, псевдоожиженный слой, свободное падение зерен). Одним из примеров таких зависимостей может служить уравнение Фрослинга (1936 г.) для переноса массы компонента основного потока (мольная доля х) к поверхности свободно падающих зерен (движущийся слой)  [c.269]

    Зависимость эта имеет определенный физический смысл, поскольку отношение ildz приближенно равно числу пустот между зернами катализатора, уложенными рядами и образующими как бы каскады микрореакторов полного перемешивания. Поскольку dz I, величина как правило, очень велика, и реактор с наполнением можно рассматривать как идеальное приближение к реактору полного вытеснения. [c.328]

    Поскольку при экзотермической реакции температура во внутреннем объеме зерна катализатора повышается, представляется, что в определенных температурных зонах кажущаяся энергия активации может превышать истинную величину. Это наблюдается в области между температурными зонами, в которых она имеет нормальное и половинное значения. Данный вопрос рассмотрен Вейцем и Хиксом [24] и Остергаардом [29]. [c.43]

    Из этих двух уравнений трудно установить зависимость Г и с от координат х, у, г, так как скорость реакции г зависит и от температуры, и от концентрации. Даже если эта зависимость известна, рещение может быть получено только для определенной формы зерна. Однако, как показал Прейтер, можно получить весьма полезное общее решение, если заменить задачу о нахождении Тис как функции координат задачей о нахождении [c.183]

    Перед насыщением ацетиленом адсорбенты высушивали до постоянной массы (веса). Высушенные об-)азцы имели следующую насыпную массу силикагель <СК —0,43 г см , силикагель КСМ — 0,72 г см , активный глинозем— 0,86 г/см . Образцы адсорбентов насыщали техническим ацетиленом из баллона в течение 8 ч при скорости потока ацетилена 20 см 1мин, после чего их рассыпали тонким слоем на листы бумаги, чтобы удалить ацетилен, накопившийся между зернами. После перемешивания адсорбент снова засыпали в сосуды и охлаждали сначала до 203° К, а затем до 90 К По мере испарения хладоагента происходило медленное отогревание до комнатной температуры. Такой способ насыщения был необходим для того, чтобы избежать образования твердого ацетилена на поверхности зере адсорбента. Количество поглощенного ацетилена в пробах образцов адсорбентов определяли десорбцией ацетилена с последующим определением его с помощью реактива Илосвая. Количество ацетилена в различных образцах составляло 0,3—1,2% (по массе). [c.62]

    Исходя из статистических исследований такой модели, де Ионг и Сафман вывели зависимости для определения коэффициентов продольной и радиальной диффузии. Авторы исходили из предположения, что все каналы имеют некоторую длину м, и что скорость жидкости в каждом канале одинакова или изменяется по параболическому закону. Предполагается также, что скорость потока зависит от угла, образуемого осью канала и направлением потока. Уравнения, полученные этими авторами, кроме скорости течения и диаметра зерна катализатора, учитывают молекулярную диффузию и величину пути, пройденного жидкостью в слое. Коэффициент диффузии для газов и жидкостей различен и возрастает с ростом длины реактора. [c.41]

    Авторы изучали теплообмен между горячим газом и холодными псевдо-ожнжеиными твердыми частицами (дробленая окись алюминия и зерна Во ех-50) в аппарате диаметром 60 мм и высотой 250 мм. Они сделали вывод, что слой не может рассматриваться как однородно расширенный напротив, следует полагать, что определенная доля газа проскакивает через слой без контакта с твердыми частицами. [c.402]

    Поскольку П рюцессы во внешнедиффузионном режиме, как показывают приведенные выше примеры, часто сопровождаются изменением температуры паверхностного слоя, может возникнуть задача определения как скорости, так и температуры каталитического зерна. На необходимость такого определения укажет значительная величина параметра (соотношение 1.14) или оценки (1.12), (1.13). [c.14]

    В связи с этим необходим анализ возможных разогревов зерна катализатора при регенерации. Такой анализ приведен в главе 6. Очевидна также. нео бходамость изучения процессов превращения вещества и тепла на единичном зерне, чему посвящены главы 3 и 4. Подчеркиваем также, что анализ устойчивости требует определения как коэффициентов тепло- и массопереноса, так и предэкспоненциальных множителей и энергий активации химических реакций. [c.18]

    Изучение кинетики регенерации на единичном зерне во 0нутридиффузио1нном режиме позволяет предложить удобный метод для определения Одф. Такой метод будет рассмотрен в разделе 2.2. [c.23]

    Энергия активации, определенная по изменению величины к с температурой из опытов с измельченным катализатором, оказалась равной 96,3 кДж/моль, то есть О на близко совпадает с энергией активации дотя кинетической области, найденной из опытов с крупными зернами катализатора. [c.39]

    Температура по поперечному сечению реактора и по по- пер0Ч1ному сечению зерна катализатора не меняется. Это допущение оправедливо лишь при определенных концентрациях и температурах окисляющего газа. Поскольку указанные условия желателыны для регенерации и могут быть определены из анализа процесса на зерне, будем считать, что они вы- [c.137]


Смотреть страницы где упоминается термин Определение 2,4-Д в зерне: [c.487]    [c.48]    [c.49]    [c.163]    [c.63]    [c.185]    [c.316]    [c.91]    [c.163]    [c.223]    [c.43]    [c.135]   
Смотреть главы в:

Определение ядохимикатов в биологических субстратах -> Определение 2,4-Д в зерне




ПОИСК





Смотрите так же термины и статьи:

Зерно



© 2025 chem21.info Реклама на сайте