Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Макромолекулы в растворе как коллоидная система

    Благодаря работам советских и зарубежных ученых было установлено, что коллоидные системы, известные ранее под названием лиофильных золей, на самом деле являются не золями, а истинными растворами высокомолекулярных соединений (ВМС), т. е. гомогенными системами молекулярно- или ионно-дисперсными. В растворах этих соединений взвешенными частицами являются не мицеллы (как в случае лиофобных коллоидов), а гигантских размеров макромолекулы, молекулярный вес которых превосходит 10 ООО, а в отдельных случаях превосходит даже несколько миллионов (опыт 86). [c.175]


    Большинство растворов высокомолекулярных соединений и золи некоторых гидрофобных коллоидов способны при известных условиях переходить в особое состояние, обладающее в большей или меньшей степени свойствами твердого тела. Твердообразная текучая система, образованная коллоидными частицами или макромолекулами высокомолекулярного соединения в форме пространственного сетчатого каркаса, ячейки которого заполнены иммобилизованной жидкостью, называется гелем. Таким образом, гели или, как их еще называют, студни, представляют собой коллоидные системы, потерявшие текучесть в результате возникновения в них внутренних структур (опыт 118—121). [c.229]

    Наряду с дисперсными системами в курсе коллоидной химии изучают свойства растворов высокомолекулярных веществ (ВМВ). Эти системы принципиально отличны от коллоидных систем. Растворы ВМВ — гомогенные термодинамически устойчивые обратимые системы, которые образуются самопроизвольно и по своей природе являются истинными молекулярными растворами. Однако при всех различиях их объединяет с коллоидными системами такой важный признак, как размер частиц. Молекулы ВМВ — макромолекулы как и коллоидные частицы, состоят из многих тысяч атомов. С этим связаны схожесть оптических свойств, малая скорость диффузии, низкое осмотическое давление у тех и других систем. [c.460]

    Вследствие больших размеров молекул растворы высокомолекулярных веществ очень медленно диффундируют макромолекулы неспособны проникать через полупроницаемые мембраны. Эти свойства наиболее характерны для типичных коллоидных систем поэтому растворы высокомолекулярных веществ были отнесены к коллоидным системам. [c.18]

    Из-за больших размеров молекул высокомолекулярных веществ диффузия в их растворах идет медленно макромолекулы неспособны проникать через полупроницаемые мембраны. Эти свойства, как известно, наиболее характерны для типичных коллоидных систем. Поэтому растворы высокомолекулярных веществ ранее относили к коллоидам, и всем таким веществам механически приписывали свойства, присущие коллоидным системам. Однако сравнительное изучение типичных коллоидов и растворов высокомолекулярных веществ показало принципиальное различие их свойств. [c.165]

    Высокополимерные и высокомолекулярные соединения (ВМС) и их растворы занимают особое место в коллоидно-химической классификации. Растворы ВМС, являясь, по существу, истинными молекулярными растворами, обладают в то же время признаками коллоидного состояния. При самопроизвольном растворении ВМС диспергируются до отдельных макромолекул, образуя гомогенные, однофазные, устойчивые и обратимые системы (например, растворы белка в воде, каучука в бензоле), принципиально не отличающиеся от обычных молекулярных растворов. Однако размеры этих макромолекул являются гигантскими по сравнению с размерами обычных молекул и соизмеримы с размерами коллоидных частиц. Приведенные на стр. 13 данные показывают, что размеры макромолекул (гликоген) могут быть не меньшими, а иногда большими, чем размеры обычных коллоидных частиц (золь Аи) и тонких пор. Поскольку дисперсность, как мы уже видели, существенно влияет на свойства системы, очевидно, что растворы ВМС должны обладать рядом признаков, общих с высокодисперсными гетерогенными системами. Действительно, по целому ряду свойств (диффузия, задержка на ультрафильтрах, структурообразование, оптические и электрические свойства) растворы ВМС стоят ближе к коллоидным системам, нежели к молекулярным растворам. Поскольку растворы ВМС диалектически сочетают свойства молекулярных растворов и коллоидных систем, целесообразно называть их, по предложению Жукова, молекулярными коллоидами, в отличие от другого класса, — типичных высокодисперсных систем — суспензоидов [1].  [c.14]


    Способностью к агрегированию в растворах и образованию термодинамически равновесных лиофильных коллоидных систем обладают не только асимметричные по строению молекулы низкомолекулярных ПАВ, но и высокомолекулярные соединения (ВМС), особенно те, в молекулах которых имеются резко различающиеся по полярности участки. Свойства возникающих при этом систем близки к свойствам мицеллярных систем, образованных низкомолекулярными ПАВ, несмотря на то что отдельные частицы могут здесь формироваться при агрегировании всего нескольких крупных молекул во многих случаях, например в растворах глобулярных белков, и одиночные макромолекулы ведут себя как частицы, очень близкие по свойствам мицеллам ПАВ. Полное рассмотрение свойств растворов ВМС, в том числе и лиофильных коллоидных систем, образуемых ими, составляет самостоятельные разделы физической химии растворов и физикохимии ВМС и обычно не включается в современные курсы коллоидной химии. Тем не менее, в рамках данного курса целесообразно привести краткое описание условий образования, строения и свойств подобных систем в их сопоставлении с коллоидными системами, образуемыми низкомолекулярными веществами. [c.236]

    Вследствие большого размера макромолекул растворы высокомолекулярных веществ по своей малой диффузионной способности близки к типичным коллоидным системам. Тем не менее определение коэффициента диффузии широко используется для установления молекулярного Веса высокомолекулярных соединений, например белков.  [c.456]

    Вследствие большой длины молекулярных цепей, коллоидные системы второго типа в ряде отношений отличаются от растворов низкомолекулярных веществ (глава восьмая). Важно, что эти отличия характеризуют те же свойства макромолекул, которые определяют их поведение и в твердых полимерах (глава десятая). Поэтому твердые полимеры изучаются в коллоидной химии наряду с их растворами. Однако в инертной, нерастворяющей среде полимеры образуют дисперсии со свободными поверхностями раздела, которые по своим- свойствам относятся к первому типу систем. [c.16]

    Истинный раствор полимера, как и низкомолекулярного соединения, представляет собой гомогенную однофазную систему коллоидный раствор - гетерогенная система, состоящая из двух фаз, а именно, дисперсной фазы (коллоидных частиц, являющихся агрегатами молекул) и дисперсионной среды (растворителя). Однако макромолекулы полимера из-за очень больших размеров ведут себя в растворе подобно отдельной термодинамической фазе, что и приводит к сходству истинных растворов полимеров с коллоидными. [c.164]

    Кинетические свойства системы обусловлены подвижностью молекул или атомов. В растворах полимеров присутствуют большие макромолекулы, время релаксации которых очень велико. Поэтому все процессы в истинных растворах полимеров происходят очень медленно, что делает их похожими па коллоидные системы. Но в отличие от коллоидных систем, малая скорость процессов, происходящих в истинных растворах полимеров, не связана с неравновесностью системы. Истинные растворы полимеров — это термодинамически устойчивые равновесные системы. Состояние равновесия устанавливается в них очень медленно вследствие очень больших времен релаксации цепных молекул, причем время релаксации тем больше, че.м винте концентрация полимера в растворе. Рассмотрим это явление подробнее. [c.331]

    Существование многофазных высокомолекулярных дисперсных систем было доказано реологическими исследованиями Трапезникова [33], который обнаружил в растворе ассоциаты макромолекул, существовавшие в течение длительного времени. Эти факты позволяют рассматривать возникающие надмолекулярные структуры как равновесные микрогетерогенные образования, подобные лиофильным коллоидным системам. [c.57]

    Присутствие в низкомолекулярной жидкости полностью развернутых или образующих достаточно рыхлый клубок цепных макромолекул не может рассматриваться как нарушение гомогенности. Поэтому истинные растворы высокомолекулярных соединений могут считаться однофазными. Но системы, содержащие компактные пачки или глобулы диаметром более 10 см, должны считаться гетерогенными, коллоидными системами, даже если каждая глобула образована только одной плотно скрученной макромолекулой. [c.38]

    Вещества с очень большими по размерам и очень сложными по составу молекулами (макромолекулами) способны образовывать отдельные фазы и поэтому давать коллоидные растворы (дисперсные системы). В коллоидных растворах дисперсная фаза обычно находится в виде частиц, имеющих диаметр от ЫО до 5-10 м и содержащих от тысяч до миллиарда атомов. [c.31]

    К высокомолекулярным веществам относятся вещества, состоящие из больших молекул (макромолекул) с молекулярным весом не менее (10 —15)-10. Нередко молекулярный вес природных высокомолекулярных соединений достигает значения нескольких миллионов. Понятно, что и размер макромолекул весьма велик по сравнению с размерами обычных молекул. Если, например, длина молекулы этана равна всего нескольким ангстремам, то линейные размеры молекулы каучука и целлюлозы достигают длины (4 —8)10 А. Это приближает растворы высокомолекулярных соединений к коллоидным растворам. Однако в растворах линейных полимеров отсутствует важный признак коллоидной системы — гетерогенность, т.е. поверхность раздела между дисперсной фазой и дисперсионной средой. Это связано с тем, что молекулы высокомолекулярных веществ большей частью цепные, нитевидные, т.е. очень сильно анизодиаметричны. Отношение длины к поперечному сечению у таких молекул составляет 10 —10 . И хотя их длина достигает размеров коллоидных [c.65]


    Молекулы высокомолекулярных веществ чаще имеют линейное строение, иногда с ответвлениями, которые могут связывать между собой ряд молекул, образуя сетчатую или трехмерную структуру. Из-за больших размеров молекул высокомолекулярных веществ диффузия в их растворах идет медленно макромолекулы неспособны проникать через полупроницаемые мембраны, т.е. в этом отношении они отличаются от типичных коллоидных систем. В противоположность коллоидным системам растворы высокомолекулярных веществ обладают термодинамической устойчивостью, т.е. они могут быть отнесены к истинным (молекулярным), однофазным системам. [c.66]

    При анализе растворов высокомолекулярных соединений в гепловом движегти участвуют не только молекулы как целое, но и фрагменты молекул fSOj. Кроме поступательного и вращательного движений нужно учесть колебания и относительное вращение всех звеньев макромолекулы друг относительно друга. Появляющиеся дополнительные внутренние степени свободы являются причиной отличия поведения растворов высокомолекулярных соединений от обычных растворов. Описание явлений становится существенно более сложным вследствие того, что в больших молекулах устанавливаются связи между их частями. Образуются структуры, пронизанные молекулами растворителя. Такие растворы, являясь молекулярнымя, гораздо ближе по своим свойствам к коллоидным системам, чем к истинным растворам. Вместо одного характерного времени т в случае малых молекул для описания теплового движения макромолекул в растворах используют уже спектр времен п — характерное время, за которое фрагменты макромолекулы смещаются на расстояния порядка радиуса действия мел<молекулярных сил т-2 — время распространения конформационной перестройки по молекуле то — время вращательной корреляции (или характерное время затухания корреляционной функции) и т. д. [81]. Физический смысл величины то в том, что она является средним временем, за которое макромолекула поворачивается на угол 1 радиан за счет теплового движения. [c.44]

    Роль размера частиц дисперсной фазы в устойчивости растворов полимеров связывает их с другими коллоидными системами. Уже можно утверждать, что для систем с компактными сферическими частицами дисперсной фазы отклонения от идеальности хотя и меньше, чем для систем, содержащих линейные макромолекулы, но они все равно остаются отрицательными. Таким образом, только различие в размерах частиц дисперсной фазы и молекул дисперсионной среды вносит вклад в энтропийный фактор устойчивости коллоидных систем. Этот вклад возрастает для лиозолей, стабилизированных с помощью ПАВ и особенно высокомолекулярных соединений. [c.324]

    Высокомолекулярные вещества, растворенные в хорошем растворителе образуют термодинамически обратимые, молекулярные, гомогенные, то есть однофазные, агрегативно устойчивые системы. Однако, в плохо растворяющей или в нерастворяющей среде высокомолекулярные вещества образуют дисперсные системы со свободными поверхностями раздела, поведение которых соответствует типичным микрогетерогенным дисперсным системам. Так, макромолекулы медленно диффундируют в растворе, не проникают через полунепроницаемые мембраны. Однако по некоторым свойствам растворы высокомолекулярных соединений имеют сходство с коллоидными системами, в связи с чем растворы высокомолекулярных соединений иногда называют молекулярными коллоидами. Так, например, размеры макромолекул соизмеримы, или даже превышают размеры коллоидных частиц. Впрочем, эта соизмеримость проявляется лишь по длине макромолекул, поперечные же их размеры соответствуют размерам обычных молекул. [c.28]

    Молекулярные коллоиды — гомогенные однофазные лиофильные системы, устойчивые и обратимые, образующиеся самопроизвольно их частицы состоят из отдельных сольватных макромолекул. Эти дисперсные системы образуются из природных или синтетических высокомолекулярных веществ, которые имеют большую молекулярную массу (от десяти тысяч до нескольких мНоТлиопов). Молекулы этих веществ имеют размеры коллоидных частиц, поэтому их истинные растворы рассматриваются как коллоидные системы. Образование молекулярных коллоидных систем происходит в процессе набухания, при котором молекулы дисперсионной среды проникают в твердый полимер, раздвигая макромолекулы. При неограниченном набухании полимер переходит в растворимое состояние с образованием гомогенной системы. [c.73]

    Однако существуют некоторые причины, действительно сближающие растворы высокомолекулярных веществ с коллоидными системами. Так, растворы высокомолекулярных соединений в плохих растворителях содержат молекулы (или агрегаты молекул), свернутые в компактный клубок с явно выраженной межфазной поверхностью. По существу, они представляют отдельную фазу. Такие растворы высокомолекулярных соединений действительно можно отнести к коллоидным системам. Далее, в концентрированных растворах высокомолекулярных веществ обычно возникают достаточно большие ассоциаты макромолекул, существующие неопределенно долго. Эти частицы также можно рассматривать как вторую фазу или, по крайней мере, как зародыши этой фазы. Наконец, растворы высокомолекулярных веществ благодаря большим размерам их молекул обладают, как будет показано ниже, рядом свойств лиозолей, что позволяет рассматривать многие проблемы одновременно и для коллоидных растворов, и для растворов высокомолекулярных веществ. [c.416]

    К лиофильным коллоидным системам относят растворы высокомолекулярных соединений, которые одновременно проявляют и некоторые свойства истинных растворов. Высокомолекулярные соединения принадлежат к другому уровню организаиии вещества — уровню макромолекул. Таким образом, между лиофильными и лиофобными коллоидными системами имеются не менее принципиальные различия и с точки зрения теории строения вещества. [c.157]

    Молекулярный вес высокомолекулярных соединений очень велик, а размеры их макромолекул огромны. Это приближает их растворы по ряду свойств к коллоидным системам. Однако в растворах линейных полимеров отсутствует важный признак коллоидной системы — гетерогенность, т. е. поверхность раздела между дисперсной фазой и дисперсионной средой. Это связано с тем, что молекулы высокомолекулярных веществ большей частью цепные, нитевидные, т. е. очень сильно анизодиа-метричны. Отношение длины к поперечному сечению у таких молекул 10 —Ю . И хотя их длина достигает (и даже превосходит) размеры коллоидных частиц, поперечное сечение их остается в пределах молекулярных размеров (10 см). Поэтому, несмотря на огромные размеры, такая молекула поверхности раздела со средой не имеет. [c.201]

    Гелеобразование в коллоидных системах и студнеобразова-ние в растворах органических полимеров зависит от ряда факторов, из которых наиболее существенны размеры и форма частиц или макромолекул, соотношение дисперсной фазы и дисперсионной среды (концентрация), температура, время и присутствие электролитов. [c.226]

    Понятие дисперсность неделесообразно распространять на гомогенные (молекулярные) растворы, на отдельные атомы, электроны, ядра и многие другие объекты, ибо это привело бы к потере специфических особенностей содержания, сохраняя лишь идею дискретности (зернистости) материи. Конечно, такое ограничение условно, и наиболее общие закономерности, связывающие воедино коллоидные системы с молекулярными, атомными, ядерными (например, гипотеза капельно-жидкого состояния ядра атома) и другими, могут быть установлены лишь на основе универсальности понятия дисперсности. Однако в начале изучения коллоидной химии целесообразно прежде всего уяснить специфику ее объектов. Таким образом, понятие дисперсности мы будем применять лишь к крупным (относительно обычных молекул) частицам и макромолекулам. В соответствии с этим все дисперсные системы можно классифицировать следующим образом  [c.6]

    Наряду с растворами полимеров широкое применение находят и различные полимерные гете1югенные коллоидные системы,характеризующиеся коллоидной степенью дисперсности Это означает, что частицы в таких системах представляют собой не отдельные макромолекулы, как в растворах, а их агрегаты. Эти агре1 аты нерастворимы в жидкой срсде, называемой дисперсионной средой, н образуют в ней отдельную дисперсную фазу. Состав и свойства коллоидных систем существенно отличаются от состава и свойств истинных растворов. [c.414]

    Большинство полимеров растворяются друг в друге в количестве до. ен процентов, а критическая температура смешения очень высока. Поэтому при температуре эксплуатации и переработки мы имеем дело с двухфазной коллоидной системой Однако олигомеры с молекулярной массой, близкой к молекулярной массе статистического сегмента макромолекулы, как правило, характеризуются неограниченной взаимной раствори- лостью Поэтому многие полимеры, не способные к полному взанморастворению с образованием гомогенного термодинамически устойчивого раствора, при смешении проявляют способность к сегментальной растворимости на поверхности их контакта. Сегментальная растворимость заключается в образовании промежуточного переходного слоя между различными полимерами вследствие взаимной диффузии наиболее подвижных участков их макромолекул (напрнмер, концевых сегментов, боковых ответвлений и др.) Сегментальная растворимость харак- [c.423]

    Скорость ассоциации макромолекул ПВС в растворе зависит не только От концентрации, но и от факторов, приводящих к снижению кристалличности полимера. Методом двойного лучепреломления в потоке, являющимся весьма чувствительным и структурным изменениям в растворе, исследованы влияние ММ, содержания ацетатных групп и способа получения ПВС на процесс структурообразования в его водных растворах [112]. При хранении молекулярнодисперсные растворы ПВС становятся коллоидными системами, содержащими надмолекулярные частицы, имеющие форму сплюснутого эллипсоида [ИЗ]. Число этих частиц, зародышей кристаллической фазы, увеличивается со временем, однако рост их числа замедляется с увеличением как молекулярной массы ПВС (вследствие меньшей подвижности макромолекул), так и содержания в нем ацетатных групп. В водных рас-тво )ах ПВС, полученных из ПВА с неполной конверсией мономера, процесс структурообразования протекает значительно слабее, чем в растворах ПВС, полученных иа ПВА с-полной конверсией. Стабильность растворов ПВС улучшается также при повышении температуры полимеризаций исходного ВА, что может быть объяснено увеличением содержания 1,2-гликолевых структур и коротких ветвлений. [c.112]

    Другой точки зрения на природу растворов высокомолекулярных соединеннй придерживался Штаудингер, считавший, что в разбавленных растворах этн вещества находятся в виде отдельных макромолекул Некоторое сходство в свойствах обычнык (мицел-лярных) коллоидных растворов и растворов полимеров, по его мР1е-н лю, объясняется огромными размерами макромолекул, достигающих величины коллоидных частиц Но вещества, образующие мицеллярные коллоидные растворы, при перемене растворителя нередко дают нормальные, истинные растворы Например, мыло с водой образует коллоидные системы, а со спиртом — истинные растворы Растворы высокомолекулярных соединений всегда отли- [c.478]

    При добавлении к золю высркомолекулярного соединения, например желатина, агрегативная устойчивость его значительно повышается. Объясняется это тем, что макромолекулы длиной до 800 10 м, адсорбируясь на поверхности коллоидных частиц, покрывают их мономолекуляриым слоем, из-за чего коллоидный раствор низкомолекулярного соединения превращается как бы в коллоидный раствор высокомолекулярного соединения с присущими ему свойствами. Если высокомолекулярного соединения будет добавлено недостаточно для мономолекулярного покрытия коллоидных частиц, то наблюдается не повышение, а понижение устойчивости золя. В этом случае одна длинная макромолекула, адсорбируясь своими отдельными звеньями одновременно на нескольких коллоидных частицах, как бы стягивает их в один общий агрегат, уменьшая тем самым агрегативную устойчивость коллоидной системы. При этом происходит сенсибилизация, т. е. повышение чувствительности коллоидного раствора к факторам коагуляции. Поскольку защищенный золь в противоположность незащищенному обладает высокой агрегативной устойчивостью, он может быть получен более концентрированным, о имеет большое физиологическое и техническое значение. Например, находящиеся в крови человека в коллоидном состоянии малорастворимые карбонаты и фосфаты кальция не выпадают в осадок потому, что защищены высокомолекулярными белковыми веществами. Когда при заболевании содержание защитных белковых веществ в крови становится недостаточным, карбонаты и фосфаты кальция начинают выпадать в осадок, образуя камни в почках, печени и других частях организма. Защитное действие высокомолекулярных соединений ши- [c.350]

    ФЛОКУЛЯЦИЯ (от лат. flo ulus — клочок) — выделение из суспензий, золей или растворов высокомолекулярных соединений сильно гидратированного хлопьевидного осадка. Обусловлена молекулярными силами притяжения мещду коллоидными частицами или макромолекулами высокомолекулярных соединений. В коллоидных системах аналогична явной коагуляции. Ф. высокомолекулярных соединений из их истинных растворов происходит в результате изменения т-ры, водородного показателя (pH) или при добавлении низкомолекулярных соединений. В процессе Ф. часто наблюдается коацерва-ц и я — разделение смеси па два слоя, один из к-рых представляет собой насыщенный раствор высокомолекулярного соединения в растворителе, а второй слой растворителя в высокомолекулярном соединений. Обычно эти слои выделяются в виде мельчайших капелек (коацерватов). В полярных средах капельки приобретают электр. заряд, придающий им определенную агрегативную устой-чивость. Коацервация происходит при взаимно ограниченной растворимости компонентов раствора. Если агрегативная устойчивость коацер- [c.655]

    Физико-химический характер загущенных горючих. При загучцении нефтяных горючих для создания нужной вязкости среды происходит образование коллоидной системы. Загущение производится растворением в углеводородах высокомолекулярных веществ или солей высокомолекулярных жирных кислот, с образованием коллоидных систем, называемых в зависимости от их характера золями или гелями. Эти системы характеризуются, в отличие от истинных растворов, структурированием системы в результате взаимодействия растворенных сольванированных частиц (макромолекул) между собой, благодаря их высокому молекулярному весу с образованием сеток или ячеек, в которые- включен растворитель. Благодаря этому резко повышается вязкость раствора по сравнению с исходным растворителем. Такие растворы в углеводородах называются лио-фильными золями. [c.107]


Смотреть страницы где упоминается термин Макромолекулы в растворе как коллоидная система: [c.29]    [c.282]    [c.432]    [c.283]    [c.339]    [c.282]    [c.12]    [c.339]    [c.339]    [c.12]    [c.92]   
Смотреть главы в:

Введение в химию высокомолекулярных соединений -> Макромолекулы в растворе как коллоидная система




ПОИСК





Смотрите так же термины и статьи:

Макромолекула в растворе

Растворы коллоидные

Системы коллоидные



© 2025 chem21.info Реклама на сайте