Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распределительная хроматография в тонком слое

    Хроматографические методы подразделяют также по способу выполнения. Различают плоскостные и колоночные методы. К плоскостным методам относятся бумажная и тонкослойная хроматография. Здесь разделение веществ происходит в весьма тонком плоском слое. В бумажной хроматографии это бумага, на волокнах которой имеется тонкий слой воды, играющий роль неподвижной фазы. Следовательно, бумажная хроматография относится к распределительной. В, тонкослойной хроматографии порошкообразная неподвижная фаза (адсорбент, ионит, гель) тонким слоем наносится на стеклянную пластинку. Подвижная фаза вместе с разделяемыми веществами перемещается в этом слое. [c.255]


    В пособии изложены физико-химические основы и практические методы хроматографического анализа. Рассмотрена классификация и даны основы распределительного, адсорбционного, молекулярно-ситового, ионообменного, осадочного, адсорбционно-комплексообразовательного и окислительно-восстановительного методов хроматографии. Приведены различные варианты использования этих методов — колоночный, капиллярный, на бумаге, в тонких слоях. Показаны возможности применения хроматографических методов в анализе неорганических и органических соединений, а также для решения задач исследовательского характера. [c.2]

    Тонкослойная хроматография представляет собой разновидность распределительной хроматографии, осуществляемой на пластинках, покрытых тонким слоем носителя окись алюминия, кизельгур, силикагель и др.), который удерживает неподвижный растворитель. [c.29]

    Хроматография — метод разделения и анализа смеси веществ, основанный на различной сорбции компонентов анализируемой смеси определенным сорбентом. Впервые X. предложена в 1903 г. русским ученым М. Цветом. Разделение ведут в колонках, наполненных силикагелем, оксидом алюминия, ионообменными смолами (ионитами) и др., или же на специальной бумаге. Вследствие различной сорби-руемости компонентов смеси (подвижная фаза) происходит их зональное распределение по слою сорбента (неподвижная фаза) — возникает хроматограмма, позволяющая выделить и проанализировать отдельные вещества (процесс подобен многоступенчатой ректификации). В зависимости от агрегатного состояния подвижной фазы различают газовую и жидкостную X. по механизмам разделения — ионообменную, осадочную, распределительную и молекулярную (адсорбционную) X. в зависимости от техники проведения разделения в X. различают колоночную (колонки сорбентов), бумажную (специальная фильтровальная бумага), капиллярную (используют узкие капилляры), тонкослойную X. (применяют тонкие слои сорбентов). Методами X. анализируют смеси неорганических и органических соединений, концентрируют следы элементов. В химической технологии X. применяют для очистки, разделения веществ. X. позволяет разделять и анализировать смеси веществ, очень близких по свойствам (напр,, лантаноиды, актиноиды, изотопы, аминокислоты, углеводороды и др.). [c.151]

    Хроматография веществ в тонких слоях (ХТС) является одним из видов распределительной хроматографии. Разделение проводят на пластинках, покрытых тонким слоем носителя (окись алюминия, кизельгур, силикагель и др.), удерживающего неподвижный растворитель. Нижний край пластинки с нанесенной на нее пробой опускают в подвижный растворитель. При движении растворителя происходит перераспределение веществ между двумя растворителями и перемещение их с различной скоростью, в результате чего вещества разделяются ца составные компоненты. [c.283]


    Распределительная хроматография в тонких слоях. Структура и свойства бумаги оказывают существенное влияние на процесс разделения. Использование тонких слоев различных материалов. (волокно, целлюлоза, АЬОз, силикагель, ионообменные смолы и пр.) устраняет этот недостаток. В методе тонкослойной распределительной хроматографии принцип разделения тот же, что и в бумажной, — подвижная фаза движется сквозь неподвижную в тонком слое, разделяемые компоненты перемещаются с подвижной фазой вдоль движущегося потока с различной скоростью, образуя раздельные зоны. [c.209]

    Современные теоретические представления о механизме хроматографических процессов в колонках или в тонких слоях (в том числе и на бумаге) возникли при рассмотрении адсорбционно-хроматографических закономерностей, открытых М. С. Цветом. По мере открытия новых хроматографических явлений, известные ранее закономерности в той или иной мере использовались для теоретической интерпретации наблюдений в области ионообменной, распределительной, осадочной и других разновидностей хроматографии. Такая преемственность в формировании теоретических концепций влечет за собой необходимость при обсуждений различных по механизму процессов хроматографии, объединяемых наименованием сорбционные процессы , исходить из сложившихся теоретических представлений об адсорбционно-хроматографических закономерностях и явлениях [5, 61. Это обстоятельство принято во внимание при изложении теоретических основ хроматографии как метода разделения гомогенных смесей (гл. I). Однако рассматривать здесь более подробно метод адсорбционной хроматографии нет оснований ввиду его ограниченного применения в анализе неорганических соединений. [c.10]

    При рассмотрении теоретической основы хроматографии в тонком слое следует отметить, что во всех хроматографических процессах разделения основной принцип один и тот же. Подвижная фаза движется сквозь неподвижную фазу и при этом разделяемые компоненты перемещаются с различными скоростями в направлении движения потока. Получение хроматограмм в тонком слое в основном выполняется методом элюционного анализа. Если в бумажной распределительной хроматографии за основную характеристику принята величина /, то здесь к этому показателю следует относиться с осторожностью. Движение растворителя и веществ протекает в тонких слоях несколько иначе. Так как сорбент в ХТС берется сухой, распределение растворителя вдоль пути неодинаково и относительные скорости перемещения хроматографируемых веществ будут неравномерны. [c.80]

    В табл. 1 дана классификация хроматографических методов анализа, основанная на этих показателях. Как видно изданных, приведенных в таблице, при хроматографическом анализе наиболее часто используется колоночная техника работы. Один и тот же метод хроматографического анализа может применяться в различных вариантах, например, осадочную хроматограмму можно получить в колонке с сорбентом, на бумаге или в гелях. Определенный принцип разделения, например, распределение молекул между двумя фазами, лежит в основе различных методов хроматографического анализа. Необходимо также отметить, что в методах тонкослойной хроматографии возможен практически любой принцип разделения — сорбционный, распределительный, ионообменный и т. д. Однако чаще всего разделение в тонких слоях сорбента используется в адсорбционной, распределительной и ионообменной хроматографии жидкостей. [c.7]

    По геометрии хроматографической системы различают колоночную хроматографию и плоскостную. К последней относится бумажная хроматография, являющаяся разновидностью распределительной, в которой роль неподвижной фазы играет вода, сорбированная волокнами целлюлозы. К плоскостной также относят и тонкослойную хроматографию, в которой могут быть реализованы все виды хроматографии, но неподвижная фаза представляет тонкий слой (закрепленный или не закрепленный) на пластине из инертного материала. [c.687]

    Хроматография в тонких слоях. Одним из недостатков хроматографии на бумаге является зависимость процесса разделения от структуры и свойств бумаги. Эти качества довольно трудно воспроизводимы. Для разделения веществ затрачивается много времени. Метод хроматографии в тонком слое (ХТС), предложенный советскими учеными Н. А. Измайловым и М. С. Шрайбер (17], по технике выполнения являющийся новым вариантом распределительной хроматографии, устраняет многие из этих затруднений. Применение самых разнообразных материалов делает метод поистине универсальным. Вместо волокон целлюлозы в распоряжении исследователя находятся порошки различных сорбентов окись алюминия, силикагель, ионообменные смолы, обеспечивающие высокую скорость фильтрации растворов [18]. [c.80]


    Тонкослойная хроматография. Этот способ разделения веществ основан на адсорбционной, распределительной или обменной хроматографии Обычно эти процессы протекают совместно. Тонкослойная хроматография очень похожа на бумажную, но вместо листа бумаги используют тонкий слой порошкообразного адсорбента. Для этого на прямоугольную стеклянную пластинку наносят тонкий слои (обычно 2—3 мм) гидроокиси алюминия или другого подходящего адсорбента на линии старта помещают исследуемые образцы и свидетели . Затем пластинку помещают в слегка наклонном положении, чтобы нижний конец, вблизи которого находится линия старта, был погружен в растворитель. Через некоторое время фронт растворителя подойдет к верхнему концу пластинки тогда проявляют пятна разделившихся веществ либо специальными краси- [c.147]

    В тонкослойной хроматографии удачно сочетаются преимущества хроматографии на бумаге и распределительной хроматографии на колонке с порошкообразным носителем. В этом случае носитель неподвижной фазы равномерным тонким слоем помещают на стеклянную пластинку. Пластинка одной гранью погружается в растворитель и удерживается в наклонном положении. Хроматографическое разделение происходит за счет всасывания растворителя тонким слоем носителя. Преимуществом этого метода является большая скорость, четкое разделение и возможность обнаружения пятен веществ такими средствами, которыми нельзя пользоваться в других вариантах распределительной хроматографии (серная кислота, термическое разложение, пары иода). [c.444]

    Тонкослойная хроматография — разновидность распределительной хроматографии. Разделение проводят на пластинках, покрытых тонким слоем оксида алюминия, силикагеля или другого сорбента, который удерживает неподвижный растворитель. Нижний край пластинки с нанесенной на нее пробой опускают в подвижный растворитель на глубину 5—8 мм. Тонкий слой сорбента может быть свободно насыпан на пластинку или закреплен на ней с помощью гипса или крахмала. Пластинку с закрепленным слоем погружают в камеру вертикально а с незакрепленным слоем — под углом или горизонтально. Для получения хорошо воспроизводимых результатов необходима строгая стандартизация условий проведения опыта. Под этим понимается форма пластинки, толщина сухого сорбционного слоя, величина наносимой пробы, глубина погружения хроматографической пластинки в подвижный растворитель, насыщение камеры парами растворителя, температура, влажность окружающей среды, чистота применяемых реагентов. [c.201]

    Наибольшее распространение получила распределительная хроматография, основанная на различии в распределении компонентов смеси между элюентом и жидкой неподвижной фазой, нанесенной в виде тонкого (несколько микрометров) слоя на поверхность твердого носителя. В этом случае возможность разделения компонентов определяется различиями в коэффициентах распределения. [c.447]

    Физико-математическое рассмотрение этих процессов приводит в зависимости от подхода к различным общим теориям хроматографии, которые, хотя имеют различную форму, родственны друг другу и в своей основе применимы к любому хроматографическому методу, следовательно, и к хроматографии в тонких слоях. В разделе I мы даем краткое изложение способа рассмотрения, основанного на наглядной модели хроматографического процесса. Несмотря на наглядность в нем отсутствуют априорные положения (например, теоретические тарелки) этот способ в той мере, в какой адсорбционные и распределительные явления не зависят от концентрации, нашел безупречное математическое выражение. Мы увидим ниже, какое распределение вещества имеет место в движущейся зоне, каким образом скорость движения или значения Rf зависят от коэффициентов распределения или адсорбции и почему происходит деформация зоны. [c.82]

    Имеются случаи, где зависимость (22) странным образом не выполняется. Как указывалось, величина Ят иногда изменяется внутри гомологического ряда пропорционально логарифму числа гомологических структурных зле-ментов. Таким образом, влияние, приходящееся на один структурный зле-мент, падает с ростом молекулярного веса. Нам хотелось бы рассмотреть справедливость утверждения, согласно которому в таких случаях дело идет скорее не о распределительной, а об адсорбционной хроматографии и позтому использование формулы (22), вероятно, ведет к ошибкам. В нашей лаборатории мы среди 20 исследованных примеров до сих пор обнаружили только один случай, который описывается билогарифмической зависимостью зто случай с ДНФ-аминами (С — Сд) на силикагеле Г, с бензолом в качестве растворителя . С другой стороны, всюду, где из химических соображений можно предположить распределительную хроматографию, удалось подтвердить зависимость (22). Это удалось, однако, лишь после того, как было установлено, что на хроматограммах в тонких слоях часто происходит разделение растворителя вследствие различной адсорбции его отдельных ком- [c.106]

    Предположение, согласно которому различие состоит в том, что хроматография в тонких слоях основана на адсорбции, а хроматография на бумаге — скорее на распределении между жидкими фазами, кажется нам маловероятным. Согласно нашим опытам, преимущества хроматографии в тонких слоях сохраняются при переходе от растворителей, способствующих адсорбции, к растворителям, для которых можно предположить распределительный механизм. [c.127]

    Тонкослойная хроматография является также разновидностью распределительной хроматографии. Разделение проводят на пластинках, покрытых тонким слоем окиси алюминия, силикагеля или другого какого-либо сорбента, который удерживает неподвижный растворитель. Нижний край пластинки с нанесенной на нее пробой опускают в подвижный растворитель. [c.310]

    Неподвижной фазой в хроматографических методах этого типа является жидкость, нанесенная и удерживаемая в виде тонкого слоя на твердофазной подложке. В зависимости от агрегатного состояния подвижной фазы методы распределительной хроматографии разделяются на две основные группы  [c.420]

    Наиболее универсальными и быстрыми методами контроля чистоты меченых соединений являются распределительная хроматография на бумаге [161] и в тонких слоях [162]. Эти методы позволяют не только установить факт наличия примесей, но и выяснить их природу. Известно, что идентификация примесей с помощью метода бумажной хроматографии основана на специфи- ческих качественных реакциях искомого вещества и установлении по ним положения пика этого вещества на хроматограмме. Роль характерных реакций может выполнять радиоактивность соответствующих продуктов. Тогда положение веществ, выражаемое величиной Rf, устанавливается путем наблюдений за радиоактивностью отдельных участков хроматограммы. [c.91]

    Распределительная хроматография — метод, основанный на процессах распределения веществ, между двумя жидкими фазами. Одна из фаз представляет собой подвижный раствор, а другая жидкая фаза удерживается твердым носителем. Носителями неподвижной фазы могут быть силикагель, крахмал, целлюлоза, синтетические полимерные вещества. Распределительную хроматографию можно проводить в колонках, на бумаге, б тонких слоях пористых материалов, нанесенных на стеклянную поверхность. [c.123]

    Определение Р-каротина в присутствии других каротиноидов является главной проблемой следующей стадии анализа. Для отделения Р-каротина от сопутствующих пигментов широко применяют адсорбционную хроматографию, реже — распределительную. Оба вида хроматографии могут быть проведены с использованием колонок или пластинок с тонким слоем адсорбента. Тонкослойная хроматография обеспечивает хорошее разделение и применяется для идентификации каротиноидов. Однако ее использование в количественном анализе лимитируется быстрым окислением и изомеризацией каротиноидов в тонком слое адсорбента. [c.202]

    Распределительная хроматография. Основана на различном распределении отдельных компонентов исследуемой системы между двумя несмешивающимися жидкими фазами — подвижной и стационарной. Анализируемый раствор вводится, например, в колонку, где с помощью подвижного раство- рителя осуществляется перемещение разделяемых компонентов. Неподвижная фаза удерживается в виде тонкого слоя на поверхности инертного носителя, находящегося в колонке и индифферентного по отношению к разделяемым веществам и применяемым растворителям. В колонке происходит перераспределение каждого компонента между двумя жидкими фазами в соответствии с его коэффициентом распределения [c.46]

    Разделительные колонки. В газовой хроматографии применяют колонки двух типов спиральные и капиллярные. В спиральных колонках (из стекла или различных металлов) диаметром 2—6 мм и длиной 0,5—20 м находится стационарная фаза. В случае адсорбционной газовой хроматографии она состоит из адсорбента (табл. 7.3), в случае газовой распределительной хроматографии из возможно более инертного носителя с тонким слоем жидкой фазы. Около 80% всех применяемых в газовой хроматографии колонок составляют спиральные колонки. Они представляют собой наиболее простую и не требующую затрат на обслуживание форму. К материалу носителя для газовой распределительной хроматографии предъявляют определенные требования (разд. 7.3.2) применяемые в настоящее время носители представляют собой разновидности силикагелей (диафорит, хромосорб, целит) или изоляционные материалы (породит, стерхамол). Необходимо устранять активные центры в носителях, которые затрудняют распределение вследствие явлений адсорбции. При проведении анализа полярных веществ на хроматограмме наблюдается появление хвостов , что затрудняет проведение анализа (разд. 7.3.1.2, стр. 346). Дезактивацию проводят промыванием растворами кислот или щелочей, а также силанированием . Под силанированием пони- [c.364]

    К распределительной хроматографии относится бумажная хроматография (шш хроматография на бумаге) в ее обычньгх вариантах. В этом методе вместо пластинок с тонким слоем сорбента, упофебляемых при ТСХ, применяют специалыгую хроматофафическую бумагу, по кот орой, пропитывая ее, перемещается жидкая ПФ во время хроматофафирования от линии старта до линии финиша растворителя. [c.278]

    Силикагель и кремневая кислота используются для жидкостной и газовой адсорбционной хроматографии, для распределительной хроматографим на колонках и в тонких слоях, для осушки газов н сбезЕОживания жидкостей. [c.207]

    Последним из хроматографических методов, разработанных на основе теории распределительной хроматографии Мартина и Синджа, явилась колоночная хроматография в жидкой фазе. Этот метод развивался сравнительно медленно из-за высоких требований к аппаратуре, необходимой для его реализации. Только в последние годы жидкостная хроматография получила широкое распространение благодаря исключительно большим возможностям применения как в аналитических, так и препаративных целях, причем скорость анализа и его высокая чувствительность компенсируют высокую стоимость соответствующих приборов. Хотя метод жидкостной хроматографии имел те же предпосылки для развития, что и метод газовой хроматографии, в решении некоторых аналитических задач, прежде всего в области высокомолекулярных соединений, жидкостная хроматография имеет большие преимущества. Тем не менее в большинстве аналитических лабораторий жидкостная хроматография не может вытеснить хроматографию в тонких слоях, поскольку ТСХ выгодно отличается простотой оборудования и обслуживания и малыми затратами денежных средств. [c.14]

    МОЖНО, однако, преодолеть указанные затруднения. Соответствующие опыты показали, что плохо разделяемые методом адсорбционной хроматографии группы полярности можно легко разделить при определенных условиях методом распределительной хроматографии в газовой фазе [68]. Если имеется около 1 г смеси, то лучше всего проводить разделение на фракции (группы полярности) на колонках с силикагелем или с окисью алюминия и затем исследовать их методом газовой хроматографии. В обоих случаях фракции проверяют методом ХТС. Для установления принадлежности к данной группе можно использовать, кроме величин Rf, также и цветные реакции. Миллер и Кирхнер показали, что для идентификации функциональных групп можно проводить превращения, например дегидратацию, окисление, восстановление, омыление, непосредственно в тонких слоях. Следует, однако, всегда дополнительно охарактеризовать соединения одним из проверенных микрометодов (производные, температуры кипения, вращение плоскости поляризации, УФ- и ИК-спектры). [c.188]

    В группе ионообменных методов реакции, идущие на поверхности твердой фазы, происходят с непосредственным участием этой твердой фазы. Наряду с этими методами имеются еще две группы методов разделения, где твердая фаза не участвует в химической реакции. Твердая фаза является здесь, главным образом, носителем, удерживающим разделяемые компоненты в определенных местах. Иногда это удерживание основано на адсорбции вещества на поверхности носителя. В других случаях более важное значение имеет тонкий слой воды (или специальной жидкости), адсорбированный на поверхности носителя этот слой реэкстра-гирует вещество из движущегося слоя органического растворителя или поглощает его из газа и т. п. Разумеется, в таких методах невозможно применение статических приемов разделения (см. выше) возможны лишь динамические методы, когда разделяемая смесь проходит через сорбент, имеющий определенную форму, например, колонки, полоски бумаги или пластинки и т. п. К таким методам относятся бумажная (распределительная) и молекулярно-адсорбционная хроматография. Для обоих методов характерно то, что они применимы для разделения ионных компонентов молекулярных соединений. Молекулярно-адсорбционная хроматография применяется почти исключительно для разделения смесей органических соединений. [c.55]

    Весьма разнообразны методы хроматографии, играющие большую роль в аналитической химии, особенно в анализе органических веществ. Разделение смесей осуществляется при движении жидкой или газообразной фазы сквозь слой неподвижного сорбента, состоящего из дискретных элементов — обычно зерен или волокон. Сорбент обладает большой суммарной поверхностью. Разница в адсорбируемости компонентов разделяемой смеси или в кинетике их сорбции и десорбции обеспечивает разделение. Дело в том, что при движении смеси через слой сорбента элементарные акты сорбции и десорбции повторяются множество раз это позволяет эффективно использовать даже очень малую разницу в сорбируе-мости компонентов или разницу в кинетике сорбции — десорбции. Механизм сорбции может быть различным — простая адсорбция, ионный обмен, образование осадков, растворимых комплексных соединений, распределяемых между двумя жидкими фазами. Соответственно известны и применяются адсорбционная, ионообменная, осадочная, распределительная хроматография. Различна и техника хроматографического разделения сорбентом можно заполнить колонку, его можно использовать в виде тонкого слоя — мы будем иметь дело с колоночной, бумажной или тонкослойной хроматографией. Иногда хроматографическое разделение осуществляют ири наложении электрического поля и тогда появляется [c.80]

    Рассмотрение таких методов, которые целесообразно выделить в отдельную группу, можно и начать с газовой хроматографии — исключительно важного приема анализа, нашедшего широкое применение главным образом в анализе органических соединений. Метод восходит к фундаментальной работе Мартина и Синджа, в которой была предложена распределительная хроматография. В газовой хроматографии подвижная фаза газообразна, а неподвижной может быть просто твердая поверхность (газо-адсорбцион-ная хроматография) или тонкий слой жидкости, нанесенный на твердую поверхность (газо-жидкостная). Разделение смеси основано на различном распределении компонентов между этими фазами. Газовая хроматография позволяет разделять и определять вещества, обладающие значительной летучестью и термической устойчивостью. Многие органические соединения обладают такими свойствами. Достоинства газовой хроматографии— высокая степень разделения, относительная простота, низкий предел обнаружения, возможность автоматизации. [c.90]

    В распределительной хроматографии для разделения и предварительного концентрирования микропримесей используются обычные хроматографические колонки длиной 10—15 см и внутренним диаметром 0,4—0,8 см. Перед набивкой твердого носителя нижняя часть колонки закрывается тонким слоем стеклянной ваты. [c.418]

    Распределительная хроматография может быть осуществлена в колонках, на бумаге (бумажная хроматография) или в тонких слоях пористых материалов, нанеседных на стеклянную или иную [c.122]

    Эрхард и Крамер [32] разделяли на тонких слоях силикагеля с помощью распределительной хроматографии карбобензокси (ИБО) производные аминокислот, КБО-пептиды, эфиры КБО-пептидов, пептиды со свободной аминогруппой, аминокислоты и хлоргидраты эфиров аминокислот. Для разделения применялись системы, состоящие из бутанола, ацетона, уксусной кислоты и водного аммиака или водного пиридина с различным соотношением компонентов. В этих системах эфиры КБО-пептидов двигаются вблизи фронта растворителя, КБО-пептиды — несколько медлен-нее, хлоргидраты эфиров аминокислот попадают в среднюю часть хроматограммы, а аминокислоты и пептиды остаются вблизи старта [33]. [c.315]

    В большинстве случаев разделение, достигаемое посредством аналитической ТСХ, можно перевести на микро- или полу-микропрепаративный уровень. Препаративное разделение на тонких слоях чаще всего проводят методами адсорбционной и распределительной хроматографии, тогда как препаративное разделение методом ионообменной или колоночной хроматографии проводится только на колонках. Помимо препаративной тех существуют и другие методы препаративного разделения (например, классическая жидкостная хроматография и особенно высокоэффективная жидкостная хроматография, или хроматография при высоком давлении, см. гл. 4), которые в ряде случаев могут оказаться более эффективными. Методом сухой колоночной хроматографии (СКХ) можно проводить препаративное разделение в таких же условиях, которые применяются при разделении методом ТСХ [36]. Поэтому рекомендуется прежде всего проанализировать достоинства и недостатки различных типов и методов хроматографии и оценить целесообразность их применения для разделения конкретных соединений (устойчивых или неустойчивых, с близкими или значительно различающимися величинами Rf). Выбор метода зависит также от того, какие количества соединений и как быстро необходимо получить. [c.121]

    Пан [45] разработал способ разделения природных или по-лусинтетических пенициллинов очень близкой структуры с помощью распределительной хроматографии на бумаге или на тонких слоях целлюлозы. Разделение проводится на ватмане № 1 и готовых пластинках MN300 (5X20X0,025 см). В качестве неподвижных фаз используют буферные растворы с pH 4,1 [c.136]


Библиография для Распределительная хроматография в тонком слое: [c.379]   
Смотреть страницы где упоминается термин Распределительная хроматография в тонком слое: [c.99]    [c.181]    [c.255]    [c.348]    [c.73]    [c.344]    [c.145]    [c.73]    [c.267]    [c.428]    [c.310]    [c.218]   
Смотреть главы в:

Хроматография неорганических веществ -> Распределительная хроматография в тонком слое




ПОИСК





Смотрите так же термины и статьи:

Распределительная хроматография в тонком слое носителя

Распределительная хроматография на бумаге и в тонком слое

Распределительная. хроматографи

Распределительный щит

Хроматография распределительная

Хроматография слоями

тонкой



© 2025 chem21.info Реклама на сайте