Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойные спирали полинуклеотидов

    Азотистые основания представляют собой я-электронные системы. Между плоскими я-электропны.ми циклами, расположенными параллельно друг другу, реализуются значительные дисперсионные взаимодействия. Поэтому плоские молекулы красителей, чья цветность определяется сопряжением я-электронных связей, оказываются способными образовывать полимеры в растворе. Эти полимеры, в которых мономеры связаны дисперсионными силами, обладают особыми оптическими свойствами, так л ак в них происходит экситонная передача энергии возбуждения. В двойных спиралях полинуклеотидов параллельная упаковка оснований проявляется, в частности, в эффекте гипохромизма (см. 5.4). [c.232]


    Нуклеиновые кислоты. Основным типом организации вторичной структуры нуклеиновых кислот является двойная спираль, состоящая из двух полинуклеотидных цепей. Существует ли со стороны регулярной структуры спирали дополнительное-воздействие на воду по сравнению с воздействием отдельных нуклеотидов Этот вопрос исследовался акустическим методом для различных типов спиральных структур полинуклеотидов [149], В качестве гидратационной характеристики использовали концентрационный инкремент скорости ультразвука А, который связан с парциальными объемами и сжимаемостью соотношением [c.61]

    Дж. Д. Уотсон и Ф. X. К, Крик построили модель ДНК — двойную спираль, образованную из двух нитей полинуклеотидов, связанных водородными мостиками, [c.688]

    В заметке излагалось мнение авторов о том, как устроена молекула дезоксирибонуклеиновой кислоты. Сообщалось, что она состоит из двух антипараллельных полинуклеотид-ных цепочек, завитых в двойную спираль что внутри двойной спирали находятся азотистые основания, образующие как бы начинку кабеля, а оболочка кабеля построена из отрицательно заряженных фосфатных групп. Азотистые основания из противоположных нитей образуют пары согласно принципу комплементарности аденин (А) всегда против тимина (Т), а гуанин (Г) против цитозина (Ц) (рис. 30). Пары оснований располагаются строго перпендикулярно оси двойной спирали, подобно перекладинам в перевитой веревочной лестнице. [c.128]

    В соответствии с терминологией, предложенной Линдер-стрём-Лангом [ ], можно сказать, что молекулы обычных полимеров в растворе не обладают вторичной структурой, тогда как молекулы биологически активных полимеров и их синтетических аналогов могут ее иметь. При этом первичной структурой макромолекулы называется число и расположение химических связей в молекуле, а вторичной — регулярная пространственная спиральная структура с определенной периодичностью, стабилизуемая водородными связями. Исследованию вторичных структур биологически активных макромолекул посвящено громадное количество работ, в которых были определены параметры спиральных конформаций для большого числа синтетических полипептидов и полинуклеотидов, а также для природных нуклеиновых кислот и белков. В последнем случае, наряду с вторичной структурой, большую роль играет также третичная структура молекул, т. е. взаимное расположение спиральных и неспиральных участков, обусловленное взаимодействием боковых групп цепи, в частности, связями 5—8. Наиболее известные примеры вторичных сгруктур представляют собой а-спираль Полинга — Кори [2> ] для полипептидов и двойная спираль Крика — Уотсона [ ] для дезоксирибонуклеиновой кислоты (ДНК). Эти структуры [c.291]


    Какую роль можно приписать Mg++ при получении смешанных двойных спиралей поли-А и поли-У, учитывая, что цепи полинуклеотидов в спиральной структуре удерживаются вместе за счет водородных связей между комплементарными основаниями  [c.355]

    Отметим, что в отличие от кривых титрования ДНК кривые титрования синтетических полинуклеотидов оказываются обратимыми. Это обусловлено восстановлением двойных спиралей при уменьшении электростатического взаимодействия. В ДНК из-за гетерогенности структуры ренатурация неполная, что приводит к несовпадению кривых прямого и обратного титрования. [c.32]

    Помимо того, что ДНК контролирует процесс образования других молекул, она копирует сама себя. Уотсон и Крик постулировали следующий механизм удвоения числа молекул ДНК в процессе деления клетки двойная спираль комплементарных полинуклеотидов начинает раскручиваться на отдельные цепи новые полинуклеотидные цепи начинают синтезироваться на старых, как на матрицах новая цепь, синтезированная рядом со старой цепью, идентична другой старой цепи, что сохраняет комплементарность. Таким образом, когда процесс завершается, получаются две двойные спирали, каждая из которых состоит из одной старой [c.687]

    Анализ результатов рентгеноструктурных исследований А и В форм ДНК, а также РНК подтверждает важную роль стэкинг-взаимодействий в полинуклеотидах. Перекрывание оснований в форме А ДНК и в РНК больше, чем в форме В ДНК, и, вероятно, по этой причине молекулы ДНК, имеющие в клетке конформацию, близкую к В, менее стабильны, чем люлекулы РНК (первые существуют в виде двойных спиралей в более узком интервале температур). [c.419]

    Однако, чем дальше человек углубляется в познание процессов жизнедеятельности, тем более сложные вопросы возникают перед ним. Достаточно вспомнить, что несколько лет назад готово было утвердиться мнение, что строение ДНК установлено (двойная спираль Уотсона — Крика). Теперь же выяснено, что двухспиральная модель далеко не полностью описывает строение ДНК, поскольку полинуклеотиды связаны с белками. Следовательно, предстоит еще очень сложная работа, в которой придется иметь дело с двумя различными типами полимеров. Однако вполне вероятно, что и после выяснения характера нуклеотид-белковых структур проблема снова будет весьма далека от разрешения, так как потребуется установить связь этих веществ с другими компонентами клетки, например с липидами или полисахаридами. [c.5]

    Метод плавления двойной спирали ДНК с последующим ее восстановлением из комплементарных одноцепочечных полинуклеотидных нитей нашел одно из своих наиболее интересных применений в систематике высших организмов. Основная идея, лежащая в основе такого использования, сводится к следующему чем больше одинаковых генов у двух организмов и, следовательно, чем больше у них одинаковых последовательностей оснований в ДНК-полинуклеотиде, тем ближе их родство. Следовательно, чтобы установить степень родства между организмом А и организмом В, необходимо только выделить ДНК из их клеток, нагреть ее, провести отжиг этой смеси ДНК и установить количество образовавшихся гибридных двойных спиралей, которые несут одну полинуклеотидную цепь, полученную от А, а другую — от В. Для осуществления таких экспериментов Боултон и Мак-Карти разработали простой метод определения и количественной оценки гибридных двойных спиралей ДНК. Для этой цели ДНК, экстрагированную из организма А, нагревают до 100 С и быстро охлаждают для разделения нативных молекул ДНК на отдельные полинуклеотидные цепи. Такие разделившиеся цепи добавляют к горячему раствору расплавленного агара, который затем быстро охлаждают. При затвердевании агара отдельные цепи ДНК оказываются неподвижно закрепленными в агаровом геле. Тем временем клетки организма В выращиваются в присутствии радиоактивного предшественника ДНК, такого, как ФО " или С-тимин. Радиоактивную ДНК экстрагируют затем из клеток В, разрывают механически на относительно короткие полинуклеотидные фрагменты, содержащие около 1000 нуклеотидов в длину, нагревают и быстро охлаждают для разделения двойных спиралей на отдельные цепи и затем добавляют к агару, в котором уже закреплены отдельные цепи ДНК из организма А. После этого агар нагревают до 60 °С и выдерживают при этой температуре в течение ночи. В этих условиях начинают образовываться двойные спирали, содержащие одну полинуклеотидную цепь из организма А, а другую— из организма В. Затем через агар пропускают солевой раствор, чтобы отмыть все типы В-поли-нуклеотидных цепей, не образовавших двойных спиралей с закрепленными в агаре А-полинуклеотидными цепями и, следовательно, не включившихся в агар. Определив включение радиоактивных В-цепей, устанавливают, какая доля меченой ДНК организма В может образовать двойные спирали и, следовательно, имеет одинаковые нуклеотидные последовательности с немеченой ДНК организма А. [c.183]

    Дж. Уотсон и Ф. Крик предложили модель ДНК — двойная спираль из нитей полинуклеотидов, связанных водородными мостиками . [c.608]


    Последние несколько примеров показывают, что использование систем с простыми последовательностями в качестве моделей имеет определенные недостатки. Высокая степень симметрии или гомогенность их последовательностей могут приводить к наличию у них свойств, которыми не обладают природные нуклеиновые кислоты. Поэтому имеет смысл сравнить свойства синтетических полинуклеотидов со свойствами природных нуклеиновых кислот. Начнем с природной ДНК. Поскольку обычно эта молекула представляет собой совершенную двойную спираль, ее поведение значительно проще, чем поведение большинства РНК. [c.278]

    Двухцепочечные нуклеиновые кислоты плавятся при повышении температуры в сравнительно узком интервале. Пропорциональность температуры плавления логарифму ионной силы раствора указывает на то, что двойная спираль дестабилизируется электрическим отталкиванием цепей. Двойная спираль связывает больше противоионов, чем две соответствующие одиночные цепи. Стабильность двойной спирали увеличивается с ростом мольной доли СС-пар и уменьшается при смешении pH от нейтральных значений в ту или другую сторону. Плавление природной ДНК является более сложным процессом, чем плавление синтетических полинуклеотидов, поскольку стабильность отдельных участков двойной спирали различается. Хотя главным фактором, определяющим локальную стабильность, является нуклеотидный состав, в некоторых случаях существенную роль может играть последовательность оснований. [c.305]

    Весьма интересные выводы можно получить при исследовании физических аспектов взаимодействия лигандов с полинуклеотидами. Как было показано ранее, увеличение при связывании лиганда означает, что лиганд связывается предпочтительно с двойной спиралью. Если при связывании увеличивается длина молекулы ДНК, а ее диаметр меняется незначительно, то, как следует из уравнений гидродинамики, рассмотренных в гл. 11 и 12, коэффициент седиментации будет падать, а характеристическая вязкость расти. [c.370]

    Вторичная структура ДНК представляет собой двойную спираль, состоящую из двух переплетенных по-линуклеотидных цепей. Одна цепь изогнута в виде спирали и удерживает около себя вторую полинуклеотид-ную цепь. Образовавшаяся двойная спираль закручена вокруг общей оси, и основания обеих цепей обращены внутрь спирали. Здесь адениновые остатки одной цепи за счет водородных связей связаны с тиминовы.ми остатками второй цепи, а гуаниновые — с цитозиновыми. Благодаря такому взаимодействию оснований [c.431]

    Если представить, что две спаренные нити-слирали ДНК отделяются одна от другой и попадают в среду, где происходит биосинтез полинуклеотидов из мононуклеотидов, то можно ожидать, что благодаря специфическому спариванию оснований около каждой полинуклеотидной цепи будет образовываться совершенно аналогичная ей вторая цепь, т. е., другими словами, воспроизведется исходная двойная спираль. [c.261]

    Рибосома имеет собственное сродство к матричным полинуклеотидшу / Уже давно известно, что среди синтетических полирибонуклеотидов вакантная рибосома лучше всего связьшает полиуридиловую кислоту, на чем и было основано широкое применение поли(и) в качестве матрицы в бесклеточных системах трансляции. Возможно, что отсутствие стабильной вторичной и третичной структуры в поли(и) является существенным фактором ее хорошего связьшания с рибосомой. В случае природных мРНК имеются совершенно определенные предпочтительные места на полинуклеотиде, с которыми могут связьшаться вакантные рибосомы (см. гл. В.VI). В любом случае прочная сплошная двойная спираль вряд ли может служить местом присоединение вакантных рибосом. [c.136]

    Ферментативный синтез полинуклеотидов может идти и без матрицы. В этом случае полимер получается после латентного периода,- продолжительность которого убывает с ростом концентрации фермента. Так идет, например, синтез поли-АТ. Если в качестве затравки введен олигомер, то лаГ Период быстро убывав" с его длиной. Даже короткие олигомеры могут служить матрицами для растущего полимера, который с матрицы соскальзывает. Соответствующая кинетическая теория позволяет получить зависимость времени синтеза полимера от его дли-Hbi и от Скорости отделения цепи от йатрицы, па которой она растет. Эта скорость резко убывает при длине олигомера, превышающей 4 нук-леатида. По-видимому, это критический размер матрицы, при котором новая цепь может образовывать с матрицей двойную спираль. [c.253]

    Двуспиральные участки нуклеиновых кислот моделируются синтетическими полинуклеотидами. В 0,1 Ai растворе Na l Поли-А образует двойную спираль с Поли-У, причем наибольший гипохромизм, т. е. наибольшая степень спирализации, наблюдается при составе смеси полинуклеотидов 1 1 [45]. В присутствии двухвалентных катионов в 1,2-10-2 М плексм Поли у с растворе Mg b максимальный гипохромизм Поли-АУ. [c.499]

    V Другой особенностью однотяжевых полинуклеотидов является их способность образовывать шпильки, представляющие собой участки двойных спиралей. При этом полинуклеотид накладывается сам на себя таким образом, что небольшие фрагменты, состоящие, по-видимому, из 4—6 оснований, находят комплементарные им фрагменты в удаленных участках полинуклеотида. Доля упорядоченных участков двойных спиралей, или. процент спиральности, можрт быть опреде-гтеня из ряда экспериментальных данных, например, ДОВ и гипо-хромизма. Образование вторичной и даже третичной структур полинуклеотидов, в частности, т-РНК и м-РНК, интенсивно изучается в течение последних 10 лет, с тех пор как Фреско [c.200]

    Оказалось, что дело обстоит иначе. В месте репликации двойная спираль ДНК слегка расплетается и обе цепи реплицируются небольшими фрагментами по 500—1000 мономерных единиц в длину (Оказаки, Су-гимото). Эти блоки образуются действительно путем встречного движения ферментов вдоль цепей. Но затем образовавшиеся блоки соединяются встык ковалентными (фосфоэфирными) связями. В итоге происходит как бы направленное продвижение точки репликации вдоль хромосомы. Стыкование блоков осуществляется с помощью специального фермента — полинуклеотид-лигазы. Этот фермент получен в чистом виде и хорошо изучен (Гурвиц, Вейс, Ричардсон). [c.197]

    Следовательно, макромолекула представляет собой статистическую систему, которая не может быть разбита на элементы с независящими друг от друга состояниями и, таким образом, является кооперативной системой. При этом линейные цепные макромолекулы представляют собой один из немногих реализуемых в природе случаев одномерной кооперативной системы (см. Введение), координационное число которой (т. е. число элементов, являющихся непосредственными соседями данного элемента) равно двум. Это утверждение верно, разумеется, лищь в тех случаях, когда, рассматривая физические свойства макромолекулы, можно пренебречь влиянием взаимодействий дальнего порядка. Тогда число элементов, с которыми каждый данный элемент непосредственно взаимодейств у ет, оказывается много меньшим общего числа элементов системы п. Математические методы рассмотрения таких одномерных кооперативных систем были развиты Изингом [ ], Крамерсом и Ванье [ ] (см. также и вполне приложимы к макромолекулам с взаимодействиями ближнего порядка. Более того, те же математические методы применимы и к макромолекулам, в которых существенны взаимодействия дальнего порядка, если последние носят упорядоченный характер (как, например, в двойных спиралях нативных или частично денатурированных молекул ДНК и синтетических полинуклеотидов (см. гл. 11)). Влияние нерегулярных взаимодействий дальнего порядка (объемных эффектов) на физические свойства макромолекул может быть исключено экспериментально или учтено с ПОМОщьЮ стических методов, и поэтому такие взаимодействия не будут здесь рассматриваться. [c.141]

    Здесь и далее мы испо.пьзуем термин первичная, вторичная, третичная и четвертичная структуры нуклеиновых кислот в следующем смысле. Первичная структура — последовательность пуклеозндпых звеньев, соединенных фосфо-диэфирной связью в непрерывную и неразветвленную полинуклеотидную цепь. Вторичная структура — в случае одноцепочечных, главным образом монотонных полинуклеотидов, — пространственное расположение нуклеозидных звеньев, обусловленное межплоскостным взаимодействием оснований. В случае двух комплементарных цепей вторичная структура представляет собой жесткую двойную спираль, стабилизованную как ме.жплоскостным взаимодействием соседних оснований в пределах одной цепи, так и водородными связями между противолежащими основаниями в параллельных цепях. Третичная структура образуется в результате реализации наряду с двухспиральными иных типов фиксированной укладки полинуклеотидных цепей. Четвертичная структура — пространственное расположение взаимодействующих макромолекул (обычно полинуклеотидов и полипептидов) в нуклеопротеидах — рибосомах, вирусах и т. д. [c.16]

    Прежде чем обсуждать сходство и отличие этих кристаллических модификаций, необходимо условиться об обозначениях, характеризующих конформации двойных спиралей. Как и в случае кристаллических стереорегуляриых полимеров, для кристаллов полинуклеотидов можно выделить ось макромолекулы рентгенограммы волокна дают сведения о периоде (в данном случае [c.417]

    Приведенные в этом разделе данные показывают, что в настоящее время уже имеется богатый экспериментальный материал, необходимый для теоретического конформационного анализа син- тетических полинуклеотидов и нуклеиновых кислот. Наиболее интересными представляются следующие вопросы, которые могут быть решены методом атом-атом потенциалов 1. Соответствуют ли локальные или абсолютные минимумы энергии динуклеозидфосфатов и однотяжевых полинуклеотидов геометрии, характерной для двойных спиралей нуклеиновых кислот 2. Каковы относительные энергии форм А и В двойных спиралей и какие расчетные параметры дают минимумы энергии, ссответетвующие этим формам 3. По какому пути осуществляется кснформационный переход форма В -> форма А, необходимо ли при этом преодоление [c.421]

    ДНК, комплементарного к цепи 50 первых нуклеотидов т-РНК аланина иллюстрируется на рис. 128. Синтезируются четыре цепи нуклеотидов изображенные в верхней части рисунка горизонтальными линиями. Каж дая из четырех цепей содержит по 20 нуклеотидов. Цепи построены так что верхняя правая линия соответствует 20 нуклеотидам ДНК, компле ментарньш к первым 20 нуклеотидам т-РНК аланина, верхняя левая линия соответствует двадцати следующим. Две нижние горизонтальные линии верхней части рисунка символизируют также отрезки ДНК по 20 нуклеотидов каждый, из них 20 - - 10 нуклеотидов комплементарны к соответствующим 30 нуклеотидам двух верхних цепей. В целом получается жестко связанная 30 парами комплементарных нуклеотидов система четырех цепей ДНК со свободными концами по 10 нуклеотидов в верхней и в нижней цепи. Имеются два разрыва фосфатных связей, отмеченные стрелками. Действием фермента лигазы эти разрывы зашиваются , и на их месте возникают фосфатные мосты. Таким образом, четыре первоначально взятых полинуклеотида превращаются в две цепи, в средней части комплементарно связанные друг с другом. Осталось с помощью полимеразы и набора свободных нуклеотидов комплементарно достроить оба свободных конца молекулы, и двойная спираль из 50 полинуклеотидов готова. Одна из ее цепей комплементарна к 50 первым нуклеотидам т-РНК, другая — комплементарна к первой. [c.695]

    Под конформацпоннымн превращениями в макромолекулах до самого недавнего времени понимали превращения (переходы) спираль — клубок в полипептидах и нуклеиновых кислотах. Предполагалось, что, в отличие от макромолекул нативных белков, нуклеиновых кислот и их синтетических моделей — полипептидов и полинуклеотидов, где внутримолекулярные взаимодействия (в основном, водородные связи) обеспечивают наличие вторичной структуры, внутримолекулярные силы у обычных синтетических поли.меров недостаточны для поддержания уиорядоченности в цепи. Макро.молекулы первых существуют в растворах в конформации одионитевых (белки, полипептиды) или двунитевых (нуклеиновые кислоты, полинуклеотиды) спиралей (см. [251, 510]). Двойная спираль Крика — Уотсона [511] для дезоксирибонуклеиновой кислоты и а-сиираль Полинга — Кори [512] для полипептидов — наиболее известные примеры вторичной молекулярной структуры. Макромолекула в спиральной конформации подобна по своей структуре одномерному кристаллу. Изменением температуры или других условий (состав смешанного растворителя, pH растворителя — [c.252]

    Согласно первой догме, генетический код представляет собой точную последовательность нуклеотидов, с помощью которой генетическая информация гена записана в полинуклеотидных цепях ДНК. Иными словами, длинная двойная спираль ДНК должна представлять собой подобие телеграфной ленты, на которой записана информация с помощью четырехбуквенного алфавита — А, Г, Ц и Т. Такая информация, как уже указывалось в этой главе, в каждой молекуле ДНК записана дважды, и, следовательно, она дважды записана и в каждом гене, так как любое основание, находящееся в одной цепи из двух спирально закрученных полинуклеотидов, определяет комплементарное ему основание в другой цепи. Из этого следует, что, хотя для записи наследственной информации используется один и тот же четырехбуквенный алфавит, информация в двух цепях ДНК записана различным языком. [c.185]

    Анализируя проблему возникновения жизни, Д. С. и Н. М. Чер-навские [322] выдвинули гипотезу о возможном механизме установления соответствия между последовательностями нуклеотидов и аминокислот. Они предположили, что двойная полинуклеотидная спираль служит гетерогенным катализатором, ускоряющим синтез пептидных связей между аминокислотами, адсорбированными на полинуклеотиде. Так образуется белковый чехол, предохраняющий полинуклеотидную двойную спираль от разрушений, который сам может обладать каталитическими свойствами, способствующими тем или иным путем образованию полинуклеотидных цепей. Для того, чтобы такой механизм играл биологическую, т. е. эволюционную, роль, последовательность, аминокислот, образующих белковый чехол, должна зависеть от последовательности нуклеотидов. Гипотеза ценна тем, что ее можно проверить экспериментально (см. также [371]). [c.54]

    Крика. По этой модели молекула ДНК состоит из двух очень тош<их длинных цепей, закрученных правильными витками вокруг одной общей для них оси в двойную спираль (она похожа на электрический шнур, состоящий из двух переплетающихся проводов). В 1969 г. в Калифорнийском университете (США) при огромном увеличении удалось получить электронно-микроскопический снимок, на котором хорошо видны обе сппрали молекулы ДНК (рис. 54). В бактериальной клетке длина молекул ДНК достигает 1 см, а в клетке человеческого тела более 1 м. Каждая из двух цепочек представляет собой полинуклеотид, т. е. полимер, в котором остатки сахара двух соседних нуклеотидов связаны фосфатными группами. Между собой такие полинуклео-тидные цепочки соединены азотистыми основаниями. При этом пуриновые основания, состоящие из двух колец, связаны слабыми водородными связями с пиримидиновыми основаниями, состоящими из одного кольца. Этими же связями удерживаются вместе две цепи всей молекулы. [c.143]

    Гидродинамические методы применяли при изучении как одно-, так и двухцепочечных нуклеиновых кислот. Расчеты, основанные на статистической модели конфигурации цепи в приложении к одноцепочечным полинуклеотидам, довольно хорошо согласуются с наблюдаемыми в опыте размерами их цепей. В случае двухцепочечной ДНК исследовали, в частности, характер зависимости характеристической вязкости и коэффициента седиментации от молекулярной массы. Результаты этих исследований показывают, что молекулы ДНК, молекулярные массы которых не превышают примерно 10 , ведут себя как ква-зистержнеобразные молекулы и что молекулы с большей массой больше похожи на клубок. Это заставляет предположить, что двойная спираль ДНК подобна по своим гидродинамическим свойствам жесткой червеобразной нити. Такие цепи удрбно рассматривать, пользуясь моделью, известной как цепь Порода — Кратки. Эта модель оказывается весьма полезной при описании конформации и размеров молекул ДНК. [c.176]

    Конформация, принимаемая гомополинуклеотидами, определяется термодинамикой взаимодействий между мономерными звеньями и между мономерами и растворителем. Полидезоксирибонуклеотиды и полирибонуклеотиды различаются только присутствием или отсутствием 2 -гидроксильной группы в сахаре. Это различие, однако, оказывает глубокое влияние на предпочтительную конформацию рибозного кольца, которая в свою очередь влияет на статистические размеры одноцепочечных полинуклеотидов. Оно ответственно также за значительные различия в конформациях двойных спиралей, принимаемых комплементарными двухцепочечными РНК и ДНК. Поэтому не удивительно, что локальная структура различных гомополимеров, выявляемая при исследовании их оптических свойств, также зависит от наличия 2 -гидроксильной группы. Например, спектры КД ро1у(с1С) и ро1у(гС) существенно различаются по интенсивности (рис. 22.2). Поскольку оптические свойства ёС и гС почти одинаковы, можно быть совершенно уверенным, что эти спектральные различия связаны с различиями в структуре. Замена 2 -ОН- группы на 2 -ОМе приводит к образованию полимеров, весьма близких по своим свойствам к обычным полирибонуклеотидам. [c.243]


Смотреть страницы где упоминается термин Двойные спирали полинуклеотидов: [c.230]    [c.29]    [c.150]    [c.355]    [c.355]    [c.508]    [c.257]    [c.266]    [c.272]    [c.737]    [c.182]    [c.202]    [c.306]    [c.92]   
Смотреть главы в:

Конфирмации органических молекул -> Двойные спирали полинуклеотидов




ПОИСК





Смотрите так же термины и статьи:

Кислые формы двойных спиралей полинуклеотидов

Полинуклеотиды



© 2025 chem21.info Реклама на сайте