Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Макромолекулы и их физические свойства

    Результаты изучения различных физических свойств сажевых смесей показывают, что около частиц сажи, в области связанного каучука, подвижность макромолекул ограничена. Можно сказать, что в сажевой смеси существуют мягкие и жесткие области (рис. 1,6). [c.73]

    В этой главе собраны работы, посвященные исследованию физических свойств воды в различных модельных и природных дисперсных системах, а также вблизи активных групп макромолекул и биополимеров. Сопоставление данных, полученных разными методами и для разных объектов, приводит к общему выводу об отличиях свойств воды в граничных слоях от ее свойств в объеме. Характер этих изменений существенным образом зависит от природы воздействующих на воду групп и поверхностей. Наиболее сильное влияние на структуру воды оказывают заряженные центры и полярные группы, способные к образованию водородных связей с молекулами воды. При этом оказываются важными эпитаксиальные эффекты — число и характер расположения активных центров на твердой поверхности. [c.6]


    Таким образом, статистический сегмент Куна - это математическая абстракция, мера гибкости макромолекул, введенная для описания физических свойств полимеров законами идеальных систем. [c.85]

    Следует отметить, что одна полимерная цепь может проходить через несколько таких флуктуационных пачек. В результате структура полимера в аморфном состоянии может быть представлена изотропной флуктуационной сеткой, узлами которой являются домены, пачки макромолекул. Такая сетка весьма лабильна. Под влиянием внешних силовых полей, а также при изменении температуры ее физические свойства - прочность, деформируемость - будут изменяться, причем доля вынужденной эластичности при повышении температуры возрастает. [c.136]

    Химические и физические свойства полимерных соединений зависят от химического строения отдельных звеньев, составляющих макромолекулы, структуры макромолекул, величины среднего молекулярного веса полимера и степени его полидисперсности. [c.20]

    Свойства полимеров резко зависят от геометрической формы макромолекул. Так, линейные полимеры, обладая большой прочностью, эластичностью, могут образовывать растворы с высокой вязкостью. Это связано с высокой степенью ориентации линейных макромолекул друг относительно друга и их довольно плотной упаковкой. Разветвленные полимеры обладают иногда даже большей растворимостью по сравнению с линейными полимерами. Степень разветвленности определяет их прочность и вязкость растворов. Например, полимеры с высокой степенью разветвления образуют растворы с пониженной вязкостью, что объясняется меньшей гибкостью этих макромолекул, а значит, и незначительной их асимметрией. Разветвленность макроцепи является еще одним видом нерегулярности макромолекул полимера, который мешает и даже препятствует процессу кристаллизации. С увеличением степени разветвленности макромолекул полимеры приближаются по физическим свойствам к обычным низкомолекулярным веществам. Сетчатые полимеры по свойствам очень отличаются от линейных и разветвленных полимеров. Они не растворяются и не плавятся без разложения, практически не кристаллизуются. Все эти и другие свойства зависят от степени связывания макромолекулярных цепей [c.382]

    Соответственно, число способов упаковки макромолекул в полимерном теле весьма велико и физические свойства этого тела во многом зависят от того, каким образом оно было собрано из макромолекул и какие они при этом имели конформации. [c.13]


    Особенности физических свойств полимеров, находящихся в ориентированном состоянии, связаны с их специфической анизотропной структурой. При деформировании полимеров происходит изменение конформаций цепных макромолекул, их взаимного расположения, а также изменение различных форм надмолекулярной организации. Эти изменения структуры полимеров при их деформировании обусловлены тем, что ее элементы ориентируются в направлении действия сил. Вследствие наличия малых и больших структурных элементов возможны как ориентация макромолекул в целом, так и их частей. Чтобы ориентировать части цепных макромолекул, необходимо не только повернуть их, но и переместить, так как все они связаны в цепи, локально собранные в микроблоки, и могут поворачиваться только при одновременном перемещении других частей. Скорости этих двух процессов ориентации резко различны, поэтому при действии ориентирующих сил прежде всего развивается ориентация участков цепей, а затем и ориентация цепных макромолекул в целом. Однако в соответствии с правилом стрелки действия (см. рис. П. 2) можно, варьируя скорость и температуру растяжения, сделать доминирующим лишь один процесс ориентации, в частности добиться одноактного распрямления всех цепей [22]. [c.184]

    Физика и механика полимеров широко использует идеи и методы физики твердого тела, физики жидкого состояния, термодинамики и статистической физики. Так, например, и физику твердого тела, и физику полимеров интересует связь между физическими свойствами и строением веществ. Любые твердые тела, в том числе и полимеры, представляют собой сложные системы, из которых можно выделить ряд важнейших подсистем (решетка, атомы с соответствующими электрическими квадрупольными и магнитными моментами ядер, электроны и ядра с соответствующими спинами, фононы, атомные группы, сегменты, макромолекулы и др.). Хотя указанные подсистемы связаны между собой, различные силовые поля (механические, электрические и магнитные) воздействуют на них не одинаково. Этим определяется эффективность изучения взаимосвязи строения и физических свойств различных твердых тел методами электронного парамагнитного и ядерного магнитного резонансов (ЭПР и ЯМР), диэлектрическими и ультразвуковыми методами. [c.9]

    Известно, что свойства любого твердого тела определяются строением и взаимным расположением образующих его молекул. В течение ряда лет считали, что все физические свойства полимерных тел полностью определяются строением макромолекул (молекулярной массой, гибкостью цепей). Большая заслуга в объяснении механических свойств полимеров на структурной основе принадлежит советским ученым и в первую очередь академику В. А. Каргину, который установил, что одной из важнейших особенностей полимеров является многообразие их надмолекулярных структур. Если термин строение полимеров характеризует общие черты молекулярной упорядоченности (определенным образом расположенных друг относительно друга макромолекул), то термин структура полимеров характеризует более детальные отличия молекулярной упорядоченности в полимерах. [c.18]

    Важным преимуществом полимеров является возможность изменения их структуры, а следовательно, и физических свойств. Прежде всего это достигается созданием определенной молекулярной и надмолекулярной структуры полимера при соблюдении соответствующих условий синтеза. Успехи синтеза стереорегулярных полимеров позволили значительно расширить круг кристаллизующихся полимерных материалов. Далее для получения твердых полимеров с заданными свойствами необходимо обеспечить образование структуры уже готового полимерного материала, т. е. придать макромолекулам нужную форму и добиться их определенного взаимного расположения. [c.18]

    Все ценные физические свойства полимеров, определяющие их широкое применение в технике, обусловлены особенностями строения их макромолекул и надмолекулярных структур. [c.34]

    Полимерные цепи состоят из звеньев, которые благодаря наличию между ними простых углерод-углеродных или других химических связей способны к внутримолекулярному вращению, что приводит к набору различных конформаций. Важнейшим физическим свойством длинных цепных макромолекул является их гибкость, благодаря которой проявляется высокая эластичность полимеров. [c.34]

    Природа гибкости макромолекул 4.2. Физические свойства макромолекул [c.83]

    ФИЗИЧЕСКИЕ СВОЙСТВА МАКРОМОЛЕКУЛ [c.85]

    Релаксационные физические свойства полимеров зависят не только от их молекулярного строения, они во многом определяются и надмолекулярными структурами, которые, в свою очередь, зависят как от своих собственных характеристик (вид и размеры надмолекулярных образований, связи между различными элементами структуры), так и от характеристик макромолекул или про- [c.138]


    Высокомолекулярные соединения (ВМС) — как природные, составляющие основу -всей живой материи, так и синтетические — вещества, образованные из цепных макромолекул с молекулярны.м весом от нескольких тысяч до нескольких миллионов. Они построены пз небольших групп (звеньев) атомов, соединенных химическими связями. Разнообразие физических свойств аморфных и кристаллических ВМС определяется химическим составом макромолекул (от него зависит способ их укладки для образования конечных структур) и температурой. Макромолекулы образуют цепи разнообразных равновероятных геометрических форм — конформаций, которые возникают благодаря свободному вращению звеньев [c.284]

    Химические и физические свойства полимеров зависят от их химического состава (углеводород, сложный эфир, галогенид, лактам и т. д.), а также от мольной массы и строения макромолекул полимера. Различают линейные и разветвленные гомо-(I), со-(II) или тройные (III) полимеры, блок-сополи-меры (IV), привитые сополимеры (V) и сополимеры сетчатой структуры (VI). [c.413]

    Физические свойства. Чистый селен существует в виде нескольких модификаций от аморфной бордового цвета — до наиболее устойчивой кристаллической (гексагональной) серого цвета. Серый селен построен из цепных макромолекул (см. рис. 32, в) и проявляет полупроводниковые свойства (А =1,8 эВ). Под действием света он резко повышает электрическую проводимость, на чем и основано действие селеновых фотоэлементов, отличающихся от цезиевых тем, что цезий при действии света испускает электроны, создавая внешнюю электрическую проводимость. [c.249]

    Полиэтилен низкого давления характеризуется большой степенью линейности строения макромолекулы. По физическим свойствам он отличается от полиэтилена высокого давления более высокой плотностью, а также более высокой температурой размягчения, большим пределом прочности на разрыв, лучшей обрабатываемостью резанием. Основные требования к качеству полиэтилена приведены в табл. 27. [c.138]

    До настоящего времени природные неорганические высокомолекулярные соединения не удалось получить в молекулярно-дисперсном состоянии и определить их молекулярную массу. Поэтому нет возможности рассматривать их химические и физические свойства в связи с размерами, формой и строением макромолекул. Однако успехи химии органических высокомолекулярных соединений в области установления связи между механическими свойствами материалов (прочность, эластичность, твердость, текучесть, вязкость расплавов) и строением их макромолекул, а также успехи в области синтеза неорганических высокомолекулярных соединений способствуют развитию химии неорганических высокомолекулярных соединений. Первым шагом на этом пути явился синтез и изучение элементоорганических высокомолекулярных соединений, которые занимают промежуточное положение между органическими и неорганическими высокомолекулярными соединениями. [c.15]

    При этом макромолекулы полиакриловой кислоты теряют свою кинетическую самостоятельность, полимер приобретает пространственное строение, в результате чего резко изменяются физические свойства системы. [c.46]

    Сетчатые полимеры резко отличаются по свойствам от линейных и разветвленных полимеров. Они не плавятся без разложения и не могут быть переведены в раствор, они только набухают в растворителях. Это связано с тем, что в сетчатых полимерах преобладают прочные химические связи между макромолекулами. Физические и физико-механические свойства этих полимеров зависят от числа межмолекулярных химических связей и от регулярности их расположения. С увеличением числа межмолекулярных связей твердость вещества увеличивается, повышается модуль упругости и уменьшается относительная деформация, т. е. свойства сетчатого (пространственного) полимера приближаются к свойствам кристалла (примером кристаллического полимера с правильной пространственной решеткой является алмаз). [c.48]

    Основной составной частью пшеничного теста, определяющей ЕГО структурно-механические свойства, является нерастворимый белок, который с водой дает упругую, пластичную, способную растягиваться массу — клейковину. Для улучшения физических свойств теста в него иногда вводят при замесе в небольшом количестве неионогенные пищевые ПАВ. Адсорбируясь на пачках белковых макромолекул, молекулы ПАВ ослабляют межмолекулярные связи в клейковине и увеличивают пластичность теста, В данном случае добавляемое к тесту ПАВ служит пластификатором. [c.247]

    Такие смеси молекул называют смесями полимергомологов. Их можно разделить при помощи фракционирования на более однородные по величине макромолекул части, однако выделение совершенно однородного продукта практически невозможно, так как с уменьшением разницы в длине цепи различия в физических свойствах становятся слишком незначительными. [c.180]

    Химические и физические свойства полимеров определяются химическим составом отдельных звеньев макромолекулы, ее формой, величиной среднего молекулярного веса полимера и степенью полидисперсности его (но величине молекулярного веса). [c.763]

    Структура н физические свойства каучука. Макромолекулы Б имеют линейное строение распределение звеньев изопрена, присоединенных преим. в положениях 1,4, носит статистич. характер. Мол масса каучука (200-700)-10 (по Флори) Б не содержит геля, раств. в алифатич и ароматич углеводородах, кристаллизуется только при больших растяжениях ( > 500%). Оси физ. характеристики каучука приведены ниже. [c.335]

    В ч 2 рассмотрены хроматографические способы изучения состава макромолекул, методы анализа структуры полимеров и ряда их физических свойств [c.4]

    Термин макромолекулы обычно применяется к молекулам с молекулярными весами более 10 000. Такие макромолекулы, как белки, полинуклеотиды и полисахариды, необходимы для жизни, их структуры осуществляют сложные функции. Макромолекулы типа синтетических высокополимеров являются основой многих синтетических волокон, пластиков и синтетического каучука. Соотнощение между физическими свойствами этих материалов и их молекулярным строением имеет огромнейшее значение. В этой главе будут рассмотрены белки и синтетические высокополимеры. Изучая такие свойства, как вязкость, ультрацентрифугирование, диффузия осмотическое давление и рассеяние света, можно получить информацию об их молекулярном весе, о распределении и форме распределения молекулярных весов. [c.601]

    Результаты многочисленных исследовательских работ показали, что ароматические поликарбонаты по физическим свойствам, морфологии и способности к кристаллизации значительно отличаются от других термопластичных полимеров. Присутствие чередующихся ароматических циклов с четвертичным углеродным атомом между ними, соединенных связью —О—СО—О—, обусловило необычную жесткость макромолекул поликарбоната в сочетании с эластичностью поликарбонатных цепей. [c.5]

    Каждому температурному интервалу соответствуют свое релаксационное состояние и определенный комплекс физических свойств данного полимера. В этот комплекс входят плотность, деформируемость, скорость процессов перехода макромолекул и элементов надмолекулярной структуры в состояние равновесия и др. [c.148]

    Приводятся сведения о строении и физических свойствах макромолекул и структуре полимеров, термодинамике последних и их растворов, статистической физике макромолекул и полимерных сеток, релаксационных явлениях (механическая, электрическая и магнитная релаксация). Рассматриваются такие состояния полимера, как высокоэластическое, ориентированное и жидкокристаллическое. Отличительная особенность книги — математическое описание теории процессов и явлений, свойственных полимерным системам. [c.2]

    МАКРОМОЛЕКУЛЫ И ИХ ФИЗИЧЕСКИЕ СВОЙСТВА [c.33]

    Объемные взаимодействия остаются и в реальной макромолекуле, но теперь на них накладываются значительно более сильные, практически вечные линейные взаимодействия — ковалентные связи между последовательными звеньями цепи. В отличие от осмотической модели с таким же числом элементов, ковалентная цепочка обладает физическим свойством линейной памяти (это — та же конфигурационная информация), ибо все звенья имеют неизменный порядковый номер (началом отсчета, конечно, может быть любой конец цепи) и сохраняют его, как бы ни изменялась конформация. [c.57]

    В результате ориентационной вытяжки линейных аморфных полимеров возникает анизотропия их физических свойств вдоль и поперек направления вытяжки. При этом для различных свойств подобная анизотропия выражена по-разному. Например, для двойного лучепреломления и механической прочности анизотропия довольно значительна, а для модуля упругости — гораздо слабее, если только полимер не доведен до сверхориентиро-ванного состояния, когда начинается фибриллизация. Впрочем, фибриллизация чаще наблюдается у некристаллизующихся полу-жестких полимеров и всегда — у кристаллизующихся. Кроме того, анизотропия свойств зависит от типа полимера- По сравнению с кристаллическими аморфные полимеры при вытяжке ориентируются плохо даже при больших степенях вытяжки остается довольно большой разброс направлений ориентации сегментов макромолекул. [c.193]

    Для характеристики особенностей строения макромолекул полимеров и их взаимодействия чаще всего проводятся исследования физических свойств разбавленных полимерных растворов разной концентрации. Вязкость, измеряГемая в обычных условиях, относится к почти предельно разрушенным пространственным структурам, обладающим в таких разбавленных растворах полимеров весьма малой прочностью. Случаю, когда практически отсутствует пространственная структура в системе, соответствует так называемая удельная вязкость (по терминологии Штаудингера). Исследования вязкоупругих свойств растворов полимеров в условиях [c.154]

    Пожалуй, наиболее перспективным и важным направлением исследований неорганических веществ на структурном уровне является изучение закономерностей, обусловливающих специфику химических связей в монокристалле при различных способах заполнения и уплотнения узлов кристаллической решетки. Значение этих исследований в конечном счете определяется необходимостью получения твердых тел, свойства которых были бы обусловлены не столько характером связей между монокристаллами в поликристаллите, сколько химическим строением гигантского монолита — монокристалла с любым заданным заполнением и уплотнением узлов кристаллической решетки вплоть до идеального кристалла как единой замкнутой квантово-механической системы с минимумом свободных валентностей на поверхности. Идеал — всегда есть цель, к которой приближается реальность. И ничего нет фантастического в том, что касается создания макромолекул, полностью идентичных обычным молекулам с полным внутренним взаимным насыщением валентностей. Но это — только одна задача она диктуется требованиями создания тел с особой механической, жаро- и противокоррозионной прочностью. Сотни других задач связаны с получением тел с заданным числом и характером дефектов решетки решение этих задач позволит получать твердые тела с нужными химическими и физическими свойствами. [c.274]

    Для полной хар Гктеристики отдельных полисахаридов необходимо определить химический состав макромолекул, их структуру, а также физические и физико-химические свойства. Все эти этапы исследования находятся в тесной взаимосвязи. Так, определение структуры требует предварительных сведений о химическом составе макромолекул физико-химические и физические свойства тесно связаны с составом и строением молекул и изучение этих свойств способствует выяснению деталей структуры полисахаридов. [c.55]

    Увеличение числа последовательно чередующихся звеньев в макромолекулах при полимеризации или поликонденсации приводит к постепенному изменению свойств полимера. Однако по достижении больших значений молекулярной массы показатели этих свойств стремятся к постоянному значению. Это относится к прочности, теплостойкости, твердости и ряду других физических свойств полимеров. Температура стеклования полимера также является функцией его молекулярной массы С увеличением молекулярной массы температура стеклования вначале быстро повышается, а затем стремится к постоянному значению, которое зависит от кинетической гибкости цепи полимера. В полимерах с гибкими цепями температура стеклования приобретает постоянное значение , начиная с молекулярной массы порядка 1000—5000. В полимерах о жесткими цепями температуры стеклования становятся постоянными при молекулярных массах порядка 10 000—20 000 1 Биверс определил зависимость температуры стеклования Тс полиакрилонитрила от среднечислового значения молекулярной массы Мп в интервале от 8240 до 3 260 ООО. [c.83]

    Между атомами в молекулах низкомоле1сулярных органических соединений, в звеньях полимеров и между звеньями в цепях существуют химические (ковалентные) связи, относимые к сильному взаимодействию. Между молекулами низкомолекулярных соединений, между макромолекулами полимеров и между участками одной и той же цепи существует нехимическое взаимодействие (соответственно межмолекулярное и внутримолекулярное), не приводящее к образованию новых химических связей, - слабое взаимодействие. Это взаимодействие зависит от химического строения молекул, расстояния между молекулами и от их взаимного расположения. Нехимическое взаимодействие подразделяют на межмоле-кулярные силы и водородные связи. Оно определяет агрегатное и фазовое состояния и физические свойства вещества. [c.126]

    Существенное влияние на физические свойства полимеров оказывают четыре фактора, характеризующие структуру макромолекул (полимерных цепей). Один из факторов - средняя длина цепи, к другим трем факторам относятся сила взаилюдействия между полимерными цепями, регулярность упаковки цепей и жесткость отдельных цепей, a юe сильное меж-молекулярное взаимодействие возникает, когда цепи имеют поперечные. мостики, т.е, образуют друг с другом хи.мические связи. Этот процесс называют сшиванием, он часто происходит при нагревании, Образование поперечных связей замыкает полимерные цепи в трехмерную сетку, поэтому таким поли.мерам при нагреве уже нельзя придать новую форму. Жесткие полимеры такого типа называют термоактивными К ним относятся полиэфирные, эпоксидные, алкидные и другие с.мольг Трехмерная (сшитая) структура позволяет эластомерам (напри.мер, каучук) долго вьщерживать достаточно высокие те.мпературы и циклические нагрузки без остаточной деформации. Многие перспективные полимеры, напротив, термопластичны и размягчаются при нагреве (например, полиолефины, полистирол и др ). [c.48]

    Используем введенное одним из авторов понятие конфигурационной информации [9, т. 2, с. 100], являющейся своего рода мостом от химической структуры к физическим свойствам макромолекул и образуемых ими тел, но перед этим условимся о терминологии, применяемой в дальнейшем. В основном— это термины и понятия, приведенные в [9, т. 2, с. 100], но несколько модифицированные уже упоминавщимися регламентированными ИЮПАК терминами [8]. [c.33]

    Структура полимеров в разных фазовых и агрегатных состояниях была достаточно подробно рассмотрена в части первой и гл. IV. Ее существенная особенность — разнообразие возможных конформаций макромолекул при упаковке цепей в разных конформациях получаются различные типы морфоз, образующих структурную иерархию, заканчивающуюся объ-емно-конденсированной системой или раствором — в обоих случаях большой одно- или мультикомпонентной системой, физические свойства или области переходов которой предопределены структурой самих макромолекул (конфигурационной информацией) и характером разных уровней надмолекулярной структурной организации. Физические свойства полимеров в разных состояниях не только предопределяют конкретные возможности их рациональных применений, но и — как вообще в физике — определяют выбор методов исследования, так как всегда существует более или менее сложные, прямые или непрямые, корреляции между структурой и всеми физическими свойствами. [c.317]


Смотреть страницы где упоминается термин Макромолекулы и их физические свойства: [c.352]    [c.188]    [c.361]    [c.208]   
Смотреть главы в:

Физика полимеров -> Макромолекулы и их физические свойства




ПОИСК







© 2024 chem21.info Реклама на сайте