Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Печи — химические реакторы

    ПЕЧИ — ХИМИЧЕСКИЕ РЕАКТОРЫ [c.19]

    Тенденция строительства агрегатов большой единичной мощности ярко проявилась в сооружении трубчатых печей, используемых в качестве химических реакторов. Так, на современных пиролизных установках мощностью 300—450 тыс. т/год имеются печи производительностью 16—25 и даже 45 тыс. т/год этилена, что во много раз превышает мощность прежних печей. [c.18]


    Ванна печи представляет собой химический реактор, в котором протекают многочисленные химические реакции. В нее загружают шихту, находящуюся в различном физико-химическом состоянии (от твердых кусков до расплавленной массы), шлак, феррофосфор и печной газ, содержащий фосфор. Технологические процессы, протекающие в ванне, очень разнообразны. Одни протекают непрерывно, другие требуют полного проплавления загруженных материалов. Важнейшим параметром печи является электрическое сопротивление материалов. Оно зависит от большого числа факторов удельного сопротивления материалов, находящихся в ванной, геометрических размеров ванны, числа и размеров электродов, их расположения в ванне. Пронизываемая током большой силы, ванна находится в электромагнитном поле с высокой магнитной напряженностью, оказывающим влияние на распределение в ней мощности. Взаимная связь этих факторов с требованием технологии предопределяет электрический режим работы,печи. [c.120]

    Коксование — это сложный двухфазный эндотермический процесс, в котором протекают термофизические превращения коксуемого сырья и химические реакции с участием компонентов его органической части. Коксование проводят в коксовых печах, являющихся реакторами периодического действия с косвенным нагревом, в которых теплота передается к коксуемой угольной шихте через стенку реактора. Поэтому термофизические процессы при коксовании включает  [c.165]

    Оптимизируемые системы могут описываться алгебраическими, дифференциальными, логическими, статистическими и другими математическими соотношениями. В зависимости от характера и сложности математического описания объекта целесообразно применять тот или иной тип вычислительных машин. Например, при решении экономических задач часто встречаются сложные алгебраические выражения, в которых необходимо оптимальным образом подобрать совокупность коэффициентов. Для решения этих задач целесообразно использовать цифровые вычислительные машины. В то же время большое число задач из области управления, динамики непрерывных производственных процессов и т. д. описываются при помощи дифференциальных соотношений. В последнем случае для решения задач оптимизации широко используются вычислительные устройства непрерывного действия. Такова, например, задача выбора оптимального режима химического реактора, задача выбора оптимальной программы управления электродуговой сталеплавильной печью, задача настройки регулятора на максимальное быстродействие и т. д. [c.44]


    Вообще химический реактор нельзя рассматривать изолированно. Оптимальное проектирование реактора следует осуществлять комплексно в связи с сопряженными производствами,во всяком случае, совместно с З становками разделения продуктов реакции. При этом полученные при оптимальном проектировании трубчатой печи значения G, L, Р н функция Т 1) могут оказаться иными. [c.200]

    Совместный тепло- и массообмен имеет важное значение для пламен и процессов горения. Проводились интенсивные исследования свободноконвективных течений, вызванных или сопровождающихся процессами горения, ввиду их важности для ряда практических задач, связанных с печами, топками, химическими реакторами и двигателями. Большая часть имеющейся информации представлена в монографиях, посвященных исследованию пламен и горения [6, 29, 33, 108]. Ввиду важности вопросов техники безопасности в огневых установках и эффективного использования энергии в соответствующих системах были проведены обширные теоретические и экспериментальные исследования с целью достижения глубокого понимания механизмов переноса в свободноконвективных течениях, связанных с пламенами, топками и вообще процессами горения. Ввиду большого объема литературы по этому вопросу в данном [c.401]

    Большинство некаталитических процессов в системе Г — Т основано на химических реакциях и протекает при высоких температурах. Химические реакторы для осуществления такого рода процессов имеют общие характерные особенности и называются печами. [c.178]

    Химический реактор - понятие обобщенное, относится к реакторам, колоннам, башням, автоклавам, камерам, печам, контактным аппаратам, полимеризаторам, дожигателям, гидрогенизаторам, окислителям и другим аппаратам, названия которых происходят из-за их назначения или даже внешнего вида. Общий вид реактора и схемы некоторых из них приведены на рис. 4.1. [c.84]

    Металлические материалы широко применяют в аппарато- и машиностроении, катализе, электротехнике, радио- и электронной промышленности. Действительно, чтобы осуществить любой процесс, например химико-технологический, необходимо располагать соответствующей аппаратурой. Использование представлений макрокинетики, теории химических реакторов, а также методов математического и физического моделирования в принципе позволяет найти оптимальную для данного процесса конструкцию и размеры аппарата. Но тогда возникает вопрос, из каких материалов следует делать эту аппаратуру, чтобы она была способна противостоять разнообразным агрессивным воздействиям, в том числе химическим, механическим, термическим, электрическим, а в ряде случаев также радиационным и биологическим. Выбор конструкционных материалов осложняется, когда перечисленные воздействия сопутствуют друг другу. Кроме того, в последнее время требования к материалам, используемым только в химической технологии, повысились по двум причинам. Во-первых, значительно шире стали применять экстремальные воздействия, такие, как сверхвысокие и сверхнизкие температуры и давления, ударные и взрывные волны, ионизирующие излучения, биологические ферменты. Во-вторых, переход к аппаратам большой единичной мощности по производству основных химических продуктов создает исключительно сложные проблемы в изготовлении, транспортировке, монтаже и эксплуатации подобных установок. Например, на современном химическом предприятии можно видеть контактные печи для производства серной кислоты диаметром 5 м, содержащие до 5000 различных труб, реакторы синтеза аммиака и ректификационные колонны высотой более 60 м. Сочетание механических свойств, таких, как прочность, вязкость, пластичность, упругость и твердость, с технологическими свойствами (возможность использования приемов ковки, сварки, обработки режущими инструментами) делает металлические материалы незаменимыми для построения химических реакторов самой разнообразной формы и размеров. [c.135]

    На практике, исходя из назначения или даже внешнего вида, используют много различных названий химических реакторов -реактор, колонна, башня, автоклав, камера, печь, контактный аппарат, полимеризатор, дожигатель, гидрогенизатор, окислитель и другие. Общие схемы некоторых из них приведены на рис. 2.1. [c.25]

    Высокотемпературные химические реакторы печи и плазмохимические реакторы) [c.59]

    С гидродинамической точки зрения печи (так же как и остальные химические реакторы) можно классифицировать на агрегаты с идеальным вытеснением (камерные и туннельные печи, струйные плазмохимические реакторы, вращающиеся печи и т. д.), с идеальным перемешиванием (плазмохимические реакторы объемного типа, дуговые печи для получения белого электрокорунда) и реакторы промежуточного типа (дуговые печи для производства фосфора, карбида кальция). Подробнее применительно к каждому виду печей эта проблема рассмотрена в разделе 22. [c.61]


    В общей химической технологии рассматриваются печи, предназначенные для осуществления химико-технологических процессов. С этой точки зрения наиболее удобно относить печи к тому или иному типу по принципу устройства и работы. Такая классификация приведена в табл. 5, причем она не охватывает всех существующих конструкций печей (например, циклонные печи, ядерные реакторы и т. д.). [c.150]

    Руднотермическая печь как химический реактор [c.230]

    Второе направление исходит из рассмотрения печи как химического реактора [ 2 J. Однако и в этом случае процессы в проектируемой печи должны протекать аналогично процессу в [c.230]

    Современные циклонные печи для огневого обезвреживания производственных отходов по характеру осуществляемых в них процессов могут быть отнесены к категории химических реакторов, поэтому в дальнейшем циклонные печи будут называться циклонными реакторами. [c.14]

    Справочник посвящен процессам и аппаратам химических технологий. Во второй части тома рассматриваются процессы и аппараты, которые являются традиционными для химических и смежных с ними производств. Это механические процессы — классификация твердых частиц по размерам и извлечение их из потоков жидкости и газа тепло- и массообменные процессы — выпаривание, сушка, адсорбция, экстракция из жидкости и твердого тела, кристаллизация реакционные процессы, происходящие в различных химических реакторах и печах мембранные процессы разделения жидкостей и газов. Новым для справочной литературы является раздел, посвященный надежности аппаратов и технологических установок и качеству получаемых продуктов. [c.2]

    Химическая коррозия характеризуется разрушением металла вследствие его непосредственной реакции со средой— неэлектролитом. Примерами коррозии такого рода служат разрушение лопаток и других элементов турбин, находящихся в контакте с горячими топливными газами, коррозия греющих элементов электрических печей, коррозия резервуаров, коммуникаций и химических реакторов, вызванная действием таких газов, как На, СО, СО2, С1г, ЫНз, перегретый водяной пар, или жидких неэлектролитов, например нефти и продуктов ее переработки, расплавленной серы, органических соединений. Среди многих случаев химической коррозии наибольшее значение с точки зрения наносимого экономике ущерба имеет газовая коррозия, т. е. окисление металлов в атмосфере сухих газов при высокой температуре. [c.12]

    Через несколько лет Монд и Лангер построили металлургический завод нового типа, где пышущие жаром металлургические печи впервые были заменены химическими реакторами. [c.63]

    Эмалью ВН-30 (ТУ 84-725—78) покрывают оборудование, аппаратуру, газоходы, наружные поверхности которых в процессе эксплуатации нагреваются до 100— ЗО0°С и подвергаются постоянному воздействию атмосферы, содержащей различные агрессивные примеси сернистый газ, оксиды азота, туман серной кислоты, аммиака, различных растворителей, пары соляной и уксусной кислот. Ими защищают печи, газоходы, реакторы, аппараты для производства многих химических продуктов. [c.155]

    В тех случаях, когда твердая фаза допускает ее переработку в плотных слоях, находят применение в качестве химических реакторов аппараты шахтного типа. Примером аппарата этого типа может служить шахтная печь для производства кальцинированной соды (рис. 206). Печь представляет собой цилиндрической формы шахту 4 [c.272]

    Вертикальное расположение колонных аппаратов, обусловившее их название (колонны), диктуется экономией производственных площадей, простотой внутри- и межагрегатных коммуникаций, а также рациональной организацией взаимодействующих потоков в самих аппаратах (движение тяжелой фазы вниз, легкой — вверх). Значительно реже применяются горизонтальные тепло- и массообменные аппараты, особенно секционированные. Областью их преимущественного использования являются процессы высушивания и обжига (барабанные сушилки, обжиговые печи). В отдельных производствах встречаются также барабанные кристаллизаторы, абсорберы, экстракторы, ректификаторы и химические реакторы. [c.14]

    Технологические функции футеровки в печах химических производств особенно важны, так как в большинстве случаев, печь представляет собой высокотемпературный реактор, де проводятся различные химико-технологические процессы при высоких давлениях на которые оказывает химическое воздействие материал футеровки. Химические реакции, протекающие в печах при высокой температуре и давлении, являются основными чертами, по которым печв химической промышленности отличаются от других печей. [c.281]

    Такой характер коксоотложений можно объяснить следуюхцим образом. Закоксовывание нижней половины труб потолочного экрана обусловливалось, очевидно, низкой агрегативной устойчивостью и расслоением коксуемого сырья. В последуюише годы на Ново-Уфимс-ком НПЗ и других НПЗ с прямогонными остатками стали смешивать ароматизированные добавки, такие как экстракты селективной очистки масел, тяжелые газойли каталитического крекинга и другие, что существенно повысило агрегативную устойчивость сырья коксования, удлинило безостановочный пробег печей. Снижение интенсивности закоксовывания труб на участке непосредственно после ретурбенда объясняется интенсивной турбулизацией парожидкостной реакционной смеси, а в концевых трубах - увеличением доли паровой фазы в результате протекания реакций крекинга с образованием низкомолекулярных продуктов (газа, бензина), т.е. за счет химического кипения реакционной смеси. Были разработаны и внедрены рекомендации, направленные на улучшение структуры парожидкостного потока в змеевике печи и регулирование паросодержания в потоке путем увеличения диаметра трансферной линии от печи до реакторов от 100 до 150 мм, осуществлена реконструкция схемы обвязки распределительного устройства на потоке коксуемого сырья, которая заключалась в замене двух четырехходовых кранов пятиходовым краном. Изменено место подачи турбулизатора. По проектной схеме турбули-затор подавался в трубу, соединяющую подовый и потолочный экраны. Путем поиска оптимального места ввода турбулизатора было установлено, что значительно уменьшить коксоотложение можно при его подаче в первую трубу на входе вторичного сырья в печь. В результате заметно понизилось давление в трубах на входе в потолочные экраны (с 2,4 до 2,1 МПа) и на выходе из печи (с 1,1-1,2 до 0,7-0,8 МПа), повысилась доля паровой фазы, улучшилась гидродинамическая структура и уменьшилось время пребывания сырьевого потока как следствие, значительно снизилась интенсивность коксоотложения в трубах и удлинился межремонтный пробег установки. [c.71]

    Широко применяются также в промышленности получаемые в этих печах фосфор (удобрения), карбид кальция (производство ацетилена, некоторых сортов удобрений), никелевый штейн (получение металлического никеля). Более ограниченный характер носит производство в руднотермических печах других материалов, таких, как малоуглеродистые ферросплавы и чистые кремний, марганец, хром (применяются для получения некоторых высоколегированных сталей), алунд и карборунд (абразивные материалы), электрографит (графитовые электроды для ДСП) и др. Иногда в руднотерми-ческих печах проводится лишь расплавление материалов без проведения восстановительных реакций, например плавка муллита (футеровка стеклоплавильных печей), базальта, диабаза (каменное литье изделий для химических реакторов). [c.211]

    Одним из основных элементов любой химико-технологической системы (ХТС) является химический реактор. Химическим реактором называется аппарат, в котором осуществляются химические процессы, сочетающие химические реакции с массо- и теплопере-носом. Типичные реакторы— промышленные печи, контактные аппараты, реакторы с механическим, пневматическим и струйным перемешиванием, варочные котлы, гидрататоры и т. п. [c.77]

    Наиоольшее распространение получили многоканальные перистальтические насосы с рабочим давлением не более 0,1 МПа. Они могут обеспечить различную скорость в различных каналах системы за счет использования трубок с разным внутренним диаметром, они недороги и удобны в эксплуатащш. Насосы обычно располагаются перед инжектором, иногда — после детектора. Для выполнения различных операций подготовки пробы непосредственно в потоке потокорасттределительной системы включают смесительные (реакционные) спирали, химические реакторы различных типов (колонки с восстановителями ипи окислителями), иммобилизованными реагентами, в том числе ферментами, устройства для осуществления диализа, жидкостной экстрактщи, сорбционного разделения и концентрирования и прочих методов. Для интенсификации процессов и химических реакций используют водяные бани, устройства для УФ-облучения и микроволновые печи. [c.417]

    Высокотемпературные реакторы стоят несколько особняком среди основной массы химических реакторов. Высокотемпературными процессами принято называть процессы химического взаимодействия и фазовые переходы, происходящие 1фи температурах, когда энергообмен целевого продукта химико-технологической системы с окружающей средой протекает с возрастающим участием электромагнитных колебаний (в частности, светового излучения) и корпускулярного излучения. Граница между низкотемпературными и высокотемпературными процессами лежит в интервале 500-700 °С, В промышленности печи используются как для проведения химических реакций, так и для получения продуктов в результате высокотемпературных фазовых переходов (плавления, спекания, возгонки). Чаще всего в печи параллельно протекают все эти процессы, а конструкцию печи 01феделяет целевой процесс. [c.60]

    Выбор материала, например, может зависеть от мощности имеющегося прокатного оборудования, размера печей для термообработки и наличия соответствующих приспособлений для закалки. Важное значение могут также иметь ограничения, связанные с транспортными средствами. Так, в Западной Европе максимальная масса изделий, которые можно перевозить на далекие расстояния, меньше, чем в США. Следовательно, в Западной Европе по сравнению с США имеется больше оснований для применения в толстостенных сосудах давления высокопрочных матери-алов. Например, обечайки химических реакторов для крупных установок по производству аммиака в Западной Европе изготовляют из высокопрочной легированной стали, а в США из спокойной, раскисленной кремнием углеродистой стали А515, сорт 70 по стандарту ASTM. Расчетная температура для таких конвертеров обычно ниже 350° С, и в этих условиях сталь А515 является [c.227]

    Фосфорная печь является химическим реактором со сложным температурным полем. Исходные компоненты поступают в печь с температурой 0-20 °С, продукты реакции (расплавы и газы) покидают печь с температурой 1400-1500 и 500 С соответственно. В зоне контакта торца электрода с расплавом возможны темнературы более 2000 °С. Такой щирокий интервал температур определяет неоднородность пространства печи. В верхних уровнях, куда поступает холодная исходная шихта— фосфорит, кварцит и кокс, химические реагенты твердые. Далее, по мере опускания шихты вниз, температура повышается. Легкоплавкие компоненты шихты плавятся, появляется жидкая фаза. Область максимальных температур находится у торца электрода. Здесь в твердом состоянии остается только кокс, остальные элементы шихты расплавлены. Выделение тепловой энергии осуществляется не только через твердый материал — шихту и жидкий расплав, но и через электрическую дугу, которая всегда присутствует на той или иной стадии процесса. Особенности преобразования электрической энергии в тешювую сказьшаются, прежде всего, на характере реакций, протекающих в печи. Все эю делает задачу количественного определения распределения энергии в зависимости от параметров [c.638]

    Химические реакторы, в которых одна из фаз находится в твердом состоянии, используют в промышленности значительно реже, чем реакторы других типов. Кусковой или зернистый твердый материал имеет ограниченную поверхность контакта с газообразной или жидкой фазой, слои из таких материалов плохо проводят тепло, пергме-шивание очень затруднено. Все это вызывает необходимость использования специальных устройств для перемешивания частиц или кусков твердого материала внутри реактора. Наиболее удачно эта задача решается при использовании аппаратов с псевдоожиженным слоем дисперсного материала. Типичным химическим реактором с твердой фазой, находящейся в псевдоожиженном слое, является печь обжига колчедана типа КС. [c.269]

    Химические реакторы с твердой фазой часто выполняют в виде вращающихся печей, конструктивнс схожих [c.271]

    Для производства фосфора используют трехкомпонентную шихту, состоящую из фосфорита, флюса (кремнезема) и восстановителя (кокса). Эту шихту перерабатывают в электрических руднотермических печах. Фосфорная печь является химическим реактором, в котором идут процессы плавления и химического взаимодействия. Реакционное пространство печи по высоте условно можно разделить на четыре зоны верхняя — зона нагрева шихты и твердофазных реакций ниже — зона плавления минералов, растворения твердых, высокоплавких компонентов в расплаве и образования фосфатно-кремнистой жидкой фазы еще ниже — углеродистая зона, где осуществляется основная химическая реакция восстановления фосфата кальция в присутствии SiOj и в самом низу — зона шлака и феррофосфора. [c.132]


Смотреть страницы где упоминается термин Печи — химические реакторы: [c.185]    [c.165]    [c.59]    [c.165]    [c.272]   
Смотреть главы в:

Трубчатые печи _1977 -> Печи — химические реакторы




ПОИСК





Смотрите так же термины и статьи:

Реактор химический



© 2025 chem21.info Реклама на сайте