Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение химических ускорителей

    Изотопы находят широкое применение в научных исследованиях, где они используются как меченые атомы для выяснения механизма химических и, в частности, биохимических, процессов. Для этих целей необходимы значительные количества изотопов. Стабильные изотопы получают выделением из природных элементов, а радиоактивные в большинстве случаев с помощью ядерных реакций, которые осуществляются искусственно в результате действия на подходящие элементы нейтронного излучения ядерных реакторов или мощных потоков частиц с высокими энергиями, например дейтронов (ядер дейтерия й), создаваемых ускорителями. Один и тот же изотоп можно получить различными путями. Так, например, для получения радиоактивных изотопов водорода, углерода, фосфора и серы, наиболее широко используемых в практике биологических исследований, осуществляются следующие ядерные реакции  [c.26]


    Применяют также растворы, позволяющие объединить сенсибилизацию и активацию в одну технологическую операцию. Такие растворы называют совмещенными активаторами. Готовят их, как правило, путем приливания раствора хлорида палладия в солянокислый раствор хлорида олова(II). Вопрос о природе действия совмещенного активатора однозначно пока не решен. Установлено, что как при раздельной активации поверхности диэлектрика, так и в случае применения совмещенного активатора на поверхности диэлектрика образуются активные центры кристаллического палладия или его сплавов с оловом, инициирующие химическое восстановление металлов. Если после активирования поверхность не обладает достаточной каталитической активностью, то в качестве акселератора (ускорителя реакции восстановления металла) применяют повторно раствор активации или сильный восстановитель (чаще тот, который используют при химической металлизации). Для металлизации диэлектриков наиболее часто используют покрытия медью и никелем. [c.98]

    Механическая пластикация [991—995] с применением химических ускорителей в присутствии кислорода приводит к изменению пространственной структуры и разрыву молекул каучука. Изучалась пластикация каучука при действии п-толуолсульфиновой кислоты [992] и предложен свободно радикальный механизм распада кислоты при пластикации. Пластикацию можно осуществлять при низких и высоких температурах [996]. При высокой температуре пластикация проводится более эффективно. Каучук, пластицированный при высокой температуре, отличается от пластицированного при низкой температуре тем, что при хранении пластичность его падает быстрее, смеси более склонны к преждевременной вулканизации, модуль упругости выше, относительное удлинение меньше. Твердость и теплостойкость практически одинаковы. [c.661]

    Специальный подраздел справочника посвящен ускорителям пластикации каучуков и регенерации резин. Пластикация каучуков — один из наиболее энергоёмких процессов резинового производства. Применение химических ускорителей пластикации позволяет в несколько раз сократить продолжительность процесса. [c.266]

    Значение катализаторов не только в том, что они позволили увеличить производство основных химических продуктов и открыть возможность выпускать не известную прежде продукцию, но и в том, что они стимулировали развитие новых процессов химической промышленности. 1 1ош,ный толчок получила нефтепереработка и нефте-химня в связи с внедрением в промышленность в качестве катализаторов синтетических модификаций известных ранее цеолитов. При этом цеолитные катализаторы наиболее широко и эффективно зарекомендовали себя ири каталитическом крекинге. Цеолиты находят широкое применение в качестве катализаторов для многих химических реакций, а также как ускорители вулканизации, стабилизаторы синтетических полимеров и т. д. В некоторых реакциях цеолиты используются в качестве носителей. [c.98]


    Для целей радиационно-химической технологии используют изотопные установки и ускорители электронов. Излучателями в изотопных установках обычно служат искусственные радиоактивные изотопы с длительным периодом полураспада, в особенности кобальт-60 [5]. Большая проникающая способность гамма-излучения в сочетании с высокой удельной активностью применяемых источников излучения дает возможность достигать значительных мощностей дозы внутри радиационно-химических аппаратов разнообразного назначения. Для генерирования потоков электронов применяют ускорители электронов. Относительно малая проникающая способность электронов благоприятствует их применению для радиационных воздействий в объектах небольшой толщины, например полимерных пленках. Для осуществления энергоемких химических процессов целесообразно применять энергию осколков ядерного деления. [c.157]

    В последние годы в связи с организацией промышленного производства синтетических каучуков регулируемой пластичности применение химических ускорителей пластикации сокращается. [c.266]

    Осмоление является результатом чрезмерного окисления каучука. При осмолении каучук покрывается липкой блестящей пленкой, пластичность его увеличивается. Поэтому при пластикации натурального каучука с применением химических ускорителей необходимо быстро охлаждать изготовленный пластикат холодной водой или водной дисперсией каолина. Наибольшая эффективность охлаждения достигается при пластикации каучука на червячном пластикаторе (типа Гордон) благодаря опрыскиванию образующихся гранул водно-каолиновой суспензией в головке машины. [c.171]

    ПРИМЕНЕНИЕ ХИМИЧЕСКИХ УСКОРИТЕЛЕЙ [c.31]

    Физико-химические свойства вулканизатов, получаемых с применением этих ускорителей, уже не отвечают современным требованиям, предъявляемым к высококачественным изделиям. Значения модуля, прочностные свойства недостаточно высоки характеристики старения (если не введен противостаритель) оставляют желать лучшего. [c.215]

    В промышленности СССР синтетические каучуки вытесняют натуральный каучук в изделиях массового назначения. Тем не менее в смесях для ряда изделий он все еще находит применение. Использование скоростных смесителей и введение в смесь химических ускорителей пластикации позволяют в значительной степени интенсифицировать и этот участок технологического процесса. [c.158]

    Пластикация натурального каучука является сложным механическим, термическим и химическим процессом, во время которого происходит разрушение глобулярной структуры каучука, механическая и окислительная деструкция его молекулярных цепей. При температурах 25—40°С наиболее интенсивно происходит механическое разрушение молекулярных цепей. Повышение температуры замедляет механическую деструкцию и ускоряет термическую дезагрегацию и окислительную деструкцию каучука. Применение повышенных температур и химических ускорителей пластикации значительно сокращает продолжительность обработки. [c.169]

    Методы защиты. Современные способы защиты от озонного растрескивания могут быть разделены на две группы. К первой группе относится применение восков, известное уже многие годы, а ко второй— использование химических антиозонантов, что представляет собой сравнительно новый метод защиты резины от растрескивания. Особенно эффективным в некоторых случаях оказалось совместное использование восков и антиозонантов. В последние годы людям, работающим в производстве каучука и резины, термин антиозонант стал столь же хорошо знаком, как термин ускоритель или антиокислитель . Однако необходимо уделять особое внимание тому, чтобы термины антиозонант и антиокислитель применялись правильно и не подменяли друг друга. [c.141]

    В качестве при.мера эффективности применения совмещенных двухстадийных режимов, даже при использовании стандартных смесителей, можно привести данные, полученные при изготовлении брекерной шинной смеси из НК. Суммарная продолжительность пластикации НК в смесителе без химических ускорителей и затем изготовление брекерной смеси составляла 2.1 мин. На приготовление маточной смеси из НК, вместе с [c.172]

    Фильтруемость различного сырья зависит от упаковки частиц твердого вещества на фильтре, определяющих пористость и проницаемость осадка. Улучшению структуры осадка на фильтре посвящен ряд работ [83, 84]. Принципиально новый метод — распыление расплавленного гача в охлаждающей среде воздуха или газа—позволяет получить крупку из твердых частиц правильной формы и заданных размеров. Для улучшения фильтрования к остаточному рафинату добавляли смесь петролатума, распыленного холодным растворителем. В этом случае гранулы петролатума (гача), увеличивая проницаемость осадка, играют роль ускорителя фильтрования. Осуществление такого процесса позволило бы уменьшить зависимость скорости фильтрования от химического состава перерабатываемого сырья. Процесс, однако, не получил широкого промышленного применения. [c.164]


    В резиновой промышленности применяются в качестве вулканизаторов и ускорителей для улучшения эластичности и повышения стойкости резины. Находят все расширяющееся применение в химической и фармацевтической промышленности для катализаторов окисления органических соединений, гидрирования и дегидрирования, галогенирования и т. п. Увеличивают стойкость смазочных масел против окисления. Входят в состав различных дезинфицирующих веществ, инсектицидов, фунгицидов и гербицидов, некоторых фармацевтических препаратов. Оксидихлорид селена — хороший растворитель и пластификатор. Селен применяется также для изготовления красителей, а теллур — специальных взрывателей [55]. [c.117]

    Перкутанный способ введения лекарства, т. е. назначение лекарств через неповрежденную кожу, используется только в крайних случаях из-за практической непроницаемости ее в отношении большинства лекарственных веществ. Однако имеется большая группа химических соединений и среди них весьма ядовитых, обладающих способностью, как правило, растворяться в кожной смазке и легко всасываться, вызывая тяжелые отравления. К таким соединениям относятся фосфор, фенол, салициловая кислота, ртуть, некоторые ее соли и т. д. Однако путем применения ускорителей всасывания — поверхностно-активных веществ — солюбилизаторов, а также специальных обработок кожи (горячие компрессы, припарки) нередко удается ввести через неповрежденную кожу достаточные для лечебного [c.44]

    Авторы указывают на перспективность применения электро-газовых разрядов в химической технологии топлива, приводя сравнительные затраты на генерирование эквивалентных количеств электронов — активаторов химических реакций различными методами (в относительных единицах) корона — 0,01—0,02 электронные ускорители — 0,35—0,65 и радиоактивные изотопы — 1,00—10,00. [c.59]

    Минеральные соли находят широкое применение в промышленности, сельском хозяйстве, медицине, быту. Крупнейший потребитель минеральных солей — химическая промышленность, где они используются в качестве сырья, вспомогательных материалов, катализаторов. Возрастает потребление различных солей в металлургической и металлообрабатывающей промышленности — для приготовления присадок и флюсов, сварки и пайки металлов, закалки инструментов, защиты от коррозии и т. д. В стекольной промышленности соли используют как основные компоненты шихты при производстве стекла, в нефтяной — при бурении скважин, в нефтеперерабатывающей — в качестве катализаторов, в горнодобывающей — в процессах флотации. Текстильная промышленность применяет соли для отбеливания и протравки тканей, резиновая — в качестве наполнителей и ускорителей процессов вулканизации. Расширяется использование солей в производстве пластмасс, взрывчатых веществ, в пищевой, фармацевтической и других отраслях промышленности. В сельском хозяйстве минеральные соли применяются в качестве удобрений и кормовых средств, стимуляторов и регуляторов роста растении, а также для защиты растений от вредителей. [c.330]

    Радиоактивные изотопы и излучения находят применение в химической промышленности не только как средство воздействия на ту или иную реакцию, но и для контроля и автоматизации промышленных процессов. Уже применяются приборы, действие которых основано на использовании изотопов или излучения для контроля толщины, плотности, концентрации, расхода, уровня, давления и других параметров технологических процессов в химической промышленности. Основными видами установок излучений в радиационной химии являются у- и рентгеновские установки, линейные ускорители и электростатические генераторы Ван-Граафа. [c.272]

    В химической патентной литературе органические катализаторы встречаются еще относительно редко. Только одна область составляет исключение число патентованных органических ускорителей вулканизации в соответствии с их техническим значением чрезвычайно велико. Существуют и другие возможности технического применения органических катализаторов, и в гл. VII мы попытаемся раскрыть те свойства органических катализаторов, благодаря которым использование этих катализаторов в технике может оказаться выгодным. [c.13]

    Радиационная химия помогает в химических процессах там, где обычная современная химия бессильна. Радиационное облучение (с помощью ускорителей частиц) сильно снижает температуру некоторых процессов (например, с 500 до 100° С), а главное, отпадает необходимость применения катализаторов и инициаторов. Облучение материалов производят для улучшения их качеств (повышения прочности, теплостойкости, морозоустойчивости и др.). В пищевой промышленности с помощью облучения стерилизуют консервы. [c.68]

    За последние несколько лет широкое распространение получило применение проникающих излучений для модификации и улучшения свойств пластических масс. В многочисленных статьях рассмотрены химические реакции, вызываемые радиоактивным облучением высокополимеров и происходящие при этом изменения их свойств приводятся практически используемые источники радиоактивного облучения (атомные реакторы, рентгеновские трубки, ускорители электронов) [649—679.  [c.241]

    Технологический процесс предварительной обработки натурального каучука в последнее время также усовершенствован (применение химических ускорителей шластикации и т. и). [c.9]

    Пластикация натурального каучука с применением химических ускорителей в скоростных смесителях в ряде случаев совмещается с процессом смешения. Изготовление смесей при этом может вестись в одну стадию, если температура смеси на вальцах или в резиносмесителе допускает введение серы, или в две стадии, если в смесителе развивается высокая температура. В этом случае первая стадия осуществляется в скоростном смесителе, где пластицируется натуральный каучук и изготовляется маточная резиновая смесь. Вторая стадия, на которой вводятся агенты вулканизации, проводится в стандартном смесителе или в смесителе со скоростью вращения роторов 30 об1мин. [c.172]

    В Московском институте топкой химической технологии разработаны производные триазинтионов, которые могут найти широкое применение как ускорители вулканизации. [c.7]

    При рассмотрении особенностей вулканизации каучука в латексе необходи.мо различать ряд стадий, через которые проходит этот процесс а) соударение глобул каучука с частицами серы и окиси цинка (имеется в виду применение водорастворимого ускорителя, молекулы которого находятся в водной среде) б) диффузия частиц вулканизующей системы через защитные оболочки для непосредственного контакта реагирующих веществ в) химические реакции, протекающие в глобулах каучука. [c.401]

    Следует заметить, что на практике часто бывает нелегко установить монотропный характер превращения и отличить его от энантиотроппого процесса. В некоторых случаях это удается лишь при добавлении в расплавы плавней в качестве ускорителей превращений. При этом с целью исключения возможности изменения температуры превращения используют только плавни, не образующие твердых растворов с исследуемым веществом. Некоторые превращения вообще могут быть осуществлены лишь при помощи минерализаторов. Вопрос о применении подходящих плавней играет важную роль в физико-химических исследованиях силикатов и требует большого опыта. [c.116]

    Обязательным компонентом. всякой резиновой омеси на основе ХСПЭ, как и, на оонове любого другого эластомера, является. вулканизующий агент. Сщивание ХСПЭ обусловлено, главным образом, реакциями хлорсульфоновых групп, активных атомов хлора и водорода. Еще в 1953 г. Басс и Смук [1] выявили около 10 классов химических соединений, желатинирующих растворы ХСПЭ с такой скоростью, которая позволяет использовать эти соединения для вулканизации ХСПЭ. В настоящее время наиболее щирокое применение находит так называемая металлоксидная вулканизация, основанная на применении оксида поливалентного металла или его соли (10—50 масс, ч.), органической кислоты (2—10 масс, ч.) и ускорителя серной вулканизации (0,5—10 масс, ч.) [2—17]. [c.134]

    Продолжаются работы с традиционными ускорителями, в частности тиазолами, для применения их в шинной промышленности [187]. Предлагаемый тиазол ДН не является таким же универсальным ускорителем как сульфенамиды Ц и М. Эффективность его зависит от наличия других химически активных компонентов резиновой смеси и при их отсутствии невозможно получить резиновые смеси и вулканизаты с необходимыми характеристиками. Тиазол ДН проявляет удовлетворительную вулканизационную активность преимущественно в резинах на основе 1,4-цис-полиизопрена. Для получения шинных резин с высоким значением напряжения при 300 % удлинении и условной прочностью при растяжении необходимо использовать тиазол ДН вместе с активными добавками, либо со вторичным ускорителем. К ним относятся такие соединения как моноалконаты на основе синтетических жирных кислот и капролактама.При этом значительно растет скорость и степень сшивания, а смеси имеют вулканизационные характеристики, аналогичные тем, которые получаются при использовании сульфенамида М. [c.182]

    Приведенные выше данные показывают, что применение бинарных и сложных смесей ингредиентов (например, ускорителей серной вулканизации [34] и антиоксидантов [217]) способствует достижению эффекта синергизма Кс1К в резиновых смесях, так и в резинах и полимерах. Синергический эффект, проявляемый такими системами в резиновых смесях, резинах и полимерах, может иметь как физическую природу, так и химическую [218]. Очевидно, что комбинирование двух и более кристаллических ускорителей серных вулканизующих систем является одним ш способов модификации ингредиентов, приводящее к проявлению синергизма их действия в процессах приготовления и вулканизации резиновых смесей на основе непредельных каучуков общего и специального назначения. [c.31]

    Однако наиболее эффективное применение серных вулканизующих систем в виде эвтектических смесей и твердых растворов возможно липхь при осуществлении взаимодействия ускорителей, серы и активаторов методами физической и физико-химической модификсщий до их введения в резиновые смеси. Получаемые при этом эвтектические смеси и молекулярные комплексы характеризуются высокой степенью дефектности кристаллов, низкой температурой плавления и избыточной свободной энергией, обуславливгоощие повышение степени распределения и диспергирования компонентов в резиновой смеси и их функциональной активности в процессах вулканизации. [c.49]

    Такой подход к рассмотрению физико-химического взаимодействия компонентов серных вулканизующих систем позволяет учитывать влияние кристаллохимических свойств на взаимоактивацию компонентов и прогнозировать образование промежуточных комплексов с применением результатов квантов о-химических расчетов молекул ускорителей, представленных в работах [295, 297], а также проведением квантово-химических расчетов на более современном уровне с применением полуэмпирических и неэмпирических методов, разработанных в последние годы. [c.185]

    Следует также отметить, что химическая модификация Ы,М -дифенилгуанидина производными фосфористой, дитиофосфорной и метилфосфоновой кислот обладает определенными преимуществами перед другими направлениями. В принципе, такая модификация позволяет получать ФСП с применением не только ДФГ, но и других ускорителей основного характера, например, Ы-циклогексил-2-бензотиазолил-сульфенамида [411]. Однако тгисая реакция еще практически [c.267]

    Дальнейшие пути развития радиоактивационного анализа заключаются в повышении чувствительности, экспрессности и точности определения. Повышение чувствительности возможно путем использования более интенсивных потоков в ядерных реакторах большой мощности до 10 яе /пр/сж -сек,, использования работы реакторов в импульсном режиме с потоками до 10 — 10 нейт.р см сек в импульсе для определения по короткоживущим изотопам, создания ускорителей заряженных частиц с большой силой тока (порядка нескольких миллиампер) для целей активационного анализа, электронных ускорителей сэнергией до30Мэвя мощностью 10 рентг/м-мин для определения кислорода, азота и углерода. Повышения чувствительности и быстроты анализа можно достичь также путем разработки экспрессных химических методов разделения с почти количественным химическим выходом носителей. Чувствительность, быстрота и точность анализа зависят также от совершенства измерительной аппаратуры, в частности от создания полупроводниковых детекторов излучения с высокой разрешающей способностью и многоканальных спектрометров с вычитанием комптонов-ского фона. Большую роль в повышении точности определения должно сыграть применение методов статистической обработки результатов определений, а также разработка быстродействующих анализаторов с элементами электронно-вычислительной техники, позволяющих полностью автоматизировать обработку спектров и результатов измерений [36]. [c.14]

    К пигментам, применяемым в линолеумной промышленности, предъявляется ряд специфичных требований. Ввиду длительности срока службы линолеумного покрытия находя щийся в линолеуме пигмент в первую оче редь должен иметь высокую светостойкость. Это му требованию в общем удов ле-творяют земляные краски. В процессах изготовления линолеума, вапр имер при каландровании, молсет происходить значительное повышение температуры, поэтому применяемые пигменты должны быть достаточно теплостойки и не давать изменений оттенка до 130°. При подвеаке линолеумных полотен в больших количествах образуются органические кислоты, как-то уксусная, муравьиная и т. д., поэтому пигменты должны быть стойки к действию органических кислот. Пигменты, кроме того, не должны быть ускорителями окисления. . Линолеум во время хранения и применения -должен сохранять свою зластичнос ть, необходимо поэтому учитывать, что некоторые пигменты вследствие содержащихся в них окисей могут действовать ускоряющим образом еа процесс окисления и тем самыМ способствовать отв е рждению линолеумной массы. Следовательно, пигменты не должны содержать окисей цинка, кальция, бария и магния, соединений марганца, свинца. Коричневую умбру, содержащую окись марганца, поэтому следует применять лишь с большой осторожностью. Свинец, с одержащийся в желтых пигментах, химически связан и яе может действовать каталитически в (качестве ускорителя окисления. Каталитически действуют лишь растворимые в масле соединения свинца и окиси свинца, как, например, свинцовый глет, свинцовый сурик. Наконец, пигментА не должны содержать солей железа, способных давать че > ное окрашивание с дубящими веществами пробки. [c.290]


Смотреть страницы где упоминается термин Применение химических ускорителей: [c.116]    [c.21]    [c.355]    [c.73]    [c.491]    [c.382]    [c.382]    [c.142]    [c.254]    [c.2]    [c.53]    [c.350]    [c.350]   
Смотреть главы в:

Катализ -> Применение химических ускорителей




ПОИСК





Смотрите так же термины и статьи:

Ускорители



© 2024 chem21.info Реклама на сайте