Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Введение в мембранные процессы

    Сахарный диабет. В регуляции гликолиза и глюконеогенеза большую роль играет инсулин. При недостаточности содержания инсулина возникает заболевание, которое носит название сахарный диабет повышается концентрация глюкозы в крови (гипергликемия), появляется глюкоза в моче (глюкозурия) и уменьшается содержание гликогена в печени. Мышечная ткань при этом утрачивает способность утилизировать глюкозу крови. В печени при общем снижении интенсивности биосинтетических процессов биосинтеза белков, синтеза жирных кислот из продуктов распада глюкозы—наблюдается усиленный синтез ферментов глюконеогенеза. При введении инсулина больным диабетом происходит коррекция метаболических сдвигов нормализуется проницаемость мембран мышечных клеток для глюкозы, восстанавливается соотношение между гликолизом и глюконеогенезом. Инсулин контролирует эти процессы на генетическом уровне как индуктор синтеза ключевых ферментов гликолиза гексокиназы, фосфофруктокиназы и пируваткиназы. Инсулин также индуцирует синтез гликогенсинтазы. Одновременно инсулин действует как репрессор синтеза ключевых ферментов глюконеогенеза. Следует отметить, что индукторами [c.359]


    Перспективной и быстро развивающейся областью использования стабилизации дисперсных систем различной природы являются процессы микрокапсулирования порошков и капель жидкости. Микро-капсулирование — это создание на поверхности малых капель или частиц защитных пленок, предотвращающих контакт защищаемого вещества с внешней средой. Такие пленки, образованные высокомолекулярными веществами, в некотором смысле близки по структуре и назначению к мембранам клеток. Основными путями микрокапсулирования являются адсорбция пленкообразующих высокомолекулярных веществ, либо выделение на поверхности частиц пленки новой жидкой фазы (коацервация) пленки подвергаются обработке (введение дубителей, изменение pH, температуры) с целью придания им твердообразных свойств. Для получения пленок используются различные природные н синтетические вещества белки (желатина, альбумин), полисахариды, производные целлюлозы, поливиниловый спирт, поли-винилацетат и др. [c.304]

    Книга разбита на восемь глав, каждая из которых посвящена той или другой теме. Глава I служит введением и дает некоторые необходимые определения и краткий исторический очерк. Глава П посвящена полимерам мембранного назначения и описывает свойства материалов, важные для использования их в качестве мембран. Обзор различных методов получения мембран дан в гл. П1. Большинство промышленно производимых мембран получают с помощью метода инверсии фаз, и ему уделено наибольшее внимание. В гл. IV описываются разнообразные методы испытаний и определения характеристик мембран, как пористых, так и непористых. Мембранный транспорт осуществляется под действием тех или иных движущих сил. Движущим силам разной природы и характеру их действия посвящена гл. V. В ней также рассмотрен механизм транспорта в мембранах, В гл. VI дается обзор разных промышленных мембранных процессов. Их клас- [c.10]

    Электрохимические производства по сравнению с химическими обладают тем преимуществом, что в них роль окислителя или восстановителя выполняет электрический ток и таким образом исключается необходимость введения дополнительных реагентов. С этой точки зрения электрохимические процессы могут быть с успехом использованы для создания малоотходных технологических процессов. Примером таких процессов может служить электролиз воды, получение хлора и щелочи диафрагмен-ным нли мембранным методами. Следует отметить, что проблема создания малоотходных производств стала особенно острой лишь в последние годы. Пока работы в этом направлении только развертываются, хотя и имеется возможность снизить отходы в уже действующих производствах за счет применения электрохимических методов. Так, например, в анилинокрасочной промышленности для восстановления ароматических нитросоединений используют насыпные железные стружки в соляной кислоте. В результате реакции образуются отходы хлорида железа, идущего в отвал. Применение электролиза позволит полностью исключить образование этого нежелательного отхода. [c.230]


    Введение в мембранные процессы [c.22]

    Перед обсуждением этих разнообразных процессов в качестве введения остановимся на осмотических явлениях, поскольку они чрезвычайно важны для мембранных процессов, особенно для процессов, осуществляющихся под давлением. [c.280]

    На основе введенных безразмерных параметров уравнения переноса через мембрану могут быть представлены в форме, удобной для расчета процесса. Предварительно определяется безразмерная концентрация С, в виде  [c.224]

    Полупроницаемые мембраны разделяют на две группы пористые и непористые. Пористые полимерные мембраны получают обычно путем удаления растворителей или вымыванием предварительно введенных добавок из растворов полимеров при их формовании. Полученные таким способом мембраны имеют тонкий (0,25—0,5 мкм) поверхностный слой на микропористой подложке толщиной 100—200 мкм. Процесс мембранного разделения осуществляется в поверхностном активном слое, а подложка обеспечивает механическую прочность мембраны. [c.431]

    Книге предпослано очень обстоятельное введение, которое может служить прекрасным путеводителем в процессе чтения. Это делает излишним повторный комментарий в предисловии. Хотелось бы только заметить, что главы достаточно неоднородны по содержанию. Наряду с образцами строгости (гл. 5—7, 9—13) или разделами, посвященными устоявшимся вопросам линейной термодинамики необратимых процессов, читатель найдет немало других (гл. 14—16), носящих, скорее, характер эскиза будущей теории. Это относится в первую очередь к разделу о возбудимых мембранах и о пространственной диссипативной структуре в диффузионно-химических системах. [c.6]

    Практическое использование этого явления заключается в возможности переводить кремнезем в нерастворимую форму в мембранах из пористого стекла в процессе их работы при низких pH. Это достигается введением в рабочий раствор 0,3 г/л АЮЬ-бНгО или же обработкой мембраны через каждые 100 ч солью алюминия. Хлориды железа или цирконила оказались для этой цели неэффективными [186]. [c.84]

    Среди них присутствие в клетках клубеньков легоглобина — гем-содержащего белка, который встраивается в мембрану бактероида (увеличенная в размере бактериальная клетка, характеризующаяся наибольшей способностью к фиксации азота) и регулирует поступление кислорода. Легоглобин кодируется в геноме растительной клетки-хозяина, но его синтез начинается только после проникновения бактерий в эту клетку. У цианобактерий механизм защиты нитрогеназы от кислорода иной. Азотфиксация идет в гетероцистах, а фотосинтез — в обычных клетках. Поэтому кислород, вьщеляющийся в процессе фотосинтеза, не ингибирует фиксацию азота. Таким образом, введение только //-генов в какую-то растительную клетку не решает проблемы. Если нитрогеназа будет синтезироваться в этой клетке, в частности в клетках злаков, то она разрушится под действием кислорода, присутствующего в клетке. Кроме того, сама клетка, в которую переносят гены азотфиксации, может бьггь не приспособлена к синтезу и расходованию большого количества энергии, которое требуется для фиксации азота. [c.153]

    В ионообменных процессах могут быть использованы не только гранульные ионообменники, но также материалы в форме бумаги, тонких пластин или мембран. Ионообменную бумагу получают введением тонкодисперсных частиц смолы в бумажную пульпу или проведением синтеза неорганического ионообменного материала непосредственно в слое бумаги. Практические методы работы с ионообменными материалами в форме бумаги, тонких пластин и мембран аналогичны приемам, используемым в бумажной и тонкослойной хроматографии и в электрохимических методах разделения. [c.42]

    Для введения проб газа большого объема пользуются различного рода сосудами бюретками точно известного объема, отсекающимися петлями и т. п. Для отсечения нужного объема газа широко используют систему кранов и вращающихся шайб. После заполнения анализируемым газом через дозатор пропускают газ-носитель, который выталкивает пробу в колонку. Для ввода анализируемой пробы под давлением, при высокой температуре или радиоактивных веществ используют специальные дозаторы более сложной конструкции. В промышленных хроматографах осуществляется автоматический ввод газообразных и жидких проб при помощи вращающейся шайбы или движущегося штока. Широко распространены также пневматические дозаторы мембранного типа. Дозировка и введение пробы являются одной из важнейших операций хроматографии газов. Поэтому необходимо строгое соблюдение следующих условий химическая инертность материала дозатора по отношению к анализируемому газу и к газу-носителю полное отсутствие какого-либо мертвого пространства в калиброванном объеме соответствие температуры отсеченного газа в дозаторе температуре хроматографического процесса. При вводе анализируемой пробы в систему хроматографа не должен прерываться поток газа-носителя и вообще нарушаться каким-либо образом режим работы колонки. [c.320]


    Мембранные электроды можно использовать для измерения содержания растворенного кислорода без химической обработки пробы. Прибор для определения растворенного кислорода состоит из двух твердых металлических электродов, которые находятся в контакте с солевым раствором, отделенным от пробы воды селективной мембраной (рис. 2.17). Углубление, в которое входят металлические электроды, заполнено насыщенным раствором хлорида калия и отделено от остальной части полиэтиленовой или тефлоновой пленкой, удерживаемой резиновым кольцом. В приборе имеется также датчик для измерения температуры. Прибор, введенный в склянку (см. рис. 2.17), специально предназначен для измерения содержания растворенного кислорода без нарушения биологических процессов окисления этот же прибор может использоваться для исследования процесса потребления растворенного кислорода во времени между снятиями показаний колбу закрывают пробкой. Пробоотборник, используемый в полевых условиях, при измерении содержания раство- [c.42]

    Для решения вопроса о механизме действия изученных органических веществ на процесс катодного выделения водорода была определена концентрация трех веществ — кумарина, изатина и нингидрина в пробах раствора, взятых из ячейки с мембраной после длительного пропускания электрического тока с момента введения кумарина до момента отбора пробы [543]. [c.205]

    Идею использования электролиза для переноса ионов с образцов металлов и исследования раствора по окраске разработали самостоятельно X. Фриц [6] и А. Глазунов [7]. X. Фриц переносил малые количества растворенных металлов на фильтровальную бумагу при помощи электролиза в стандартных условиях. А. Глазунов применил электролитический перенос ионов металлов для выявления макроструктуры образцов этих металлов. Б сочетании эти приемы известны металлургам как электрографический анализ [13]. Минералы и породы впервые анализировали таким способом Г. Гутцейт и др. [10], а позже их работа была продолжена в направлении повышения точности Д. Вильямсом и Ф. М. Нахла [18]. До недавнего времени этим путем анализировались лишь образцы, ионизированные в электрическом ноле. С введением ионообменных прозрачных мембран процесс получения контактных отпечатков нашел широкое применение при анализе металлургических, геологических и биологических образцов [4]. [c.51]

    Установлено, что не только природа исходных мономеров определяет селективность полученных на их основе сорбентов, так как регулируя при синтезе пол-имера степень структурирования, используя мостикообразова-тели, которые способны изменять внутри- и межцепные взаимодействия, модифицируя структуру полимера введением инертного растворителя, можно получать селективные иониты с заданными свойствами. Точно так же, регулируя структуру координационного центра, можно получать металлсодержащие иониты с заданными кислотно-основными, сорбционными, окислительно-восстановительными, каталитическими свойствами. Исследования свойств комплекситов способствуют развитию науки в области изучения каталитических процессов, идущих в живом организме, поскольку селективные и закомплексованные сетчатые полимеры во многих случаях могут служить моделью клетки, а полученные на их основе ионоселективные мембраны позволяют моделировать мембранные процессы в живом организме. [c.8]

    Плохую (вследствие транспортирования и перекачек) термическую стабильность топлив, полученных гидрогенизационными процессами, можно улучшить не только введением антиокислителя, но и фильтрацией через мембранный фильтр с размером пор 0,8—1,0 мкм (см. табл. 2). Однако применительно к топливу Т-8, содержащему 0,00017о основного азота, этот метод не дает существенного эффекта. Обескислороживание такого топлива или введение в него антиокислителя позволяет существенно улучшить его термическую стабильность, при этом степень ее улучшения зависит от эффективности антиокислителя и его концентрации в топливе. В этом отношении ионол уступает по эффективности бисфенолу и пирокахетиновой фракции. [c.29]

    Антиокислитель, введенный в топлива, полученные гидрогенизационными процессами, предохраняет их от окисления. Поэтому продукты окисления не образуются и. как следствие, фильтр при нагреве топлива не забивается при этом смолистые продукты на фильтрующем элементе не обнаруживаются. Аналогичный эффект достигается в результате обескисло-)ожнвания топлива, а также при отсутствии его нагрева. Терепад давления на фильтре при определении термической стабильности топлива Т-8, содержащего 0,00001% основного азота, отсутствует и при фильтрации этого топлива через мембранный фильтр с размером пор 0,8—1,0 мкм, хотя на фильтрующем элементе при этом обнаруживаются смолистые соединения. То, что фильтрация не отражается на термической стабильности топлива Т-8, содержащего 0,0001% основного азота, свидетельствует о существенном влиянии азотистых оснований на термическую стабильность реактивных топлив. При относительно высоком содержании азотистых оснований 0,0001% в данном образце топлива, учитывая примерно десятикратное превышение молекулярной массы азотистых оснований по отношению к атомной массе азота, они, окисляясь, образуют такое количество продуктов окисления, которое достаточно, чтобы за короткий срок полностью забить небольшую поверхность фильтрующего элемента (S=l см ) даже при отсутствии в топливе механических примесей с размером частиц< 1 мкм. В этом случае необходимо ввести в топливо достаточное количество ионола. [c.30]

    Легко показать, что только введение двух мембран, разделяющих электродиализатор на три части, дает принципиальную возможность очистки коллоидного раствора, находящегося в средней камере. Так, на рис. 94,а схематично представлен процесс электролиза раствора сернокислого натрия, причем образующиеся у электродов кислота и щелочь могут свободно диффундировать вглубь, образуя вновь раствор Ыа2304. Введение одной мембраны, проницаемой для ионов Ыа и 504, будет затруднять диффузию продуктов электролиза и приведет к разложению раствора Ыа2504 на кислоту и щелочь (рис. 94,6). [c.223]

    Электрохимическая активность живых тканей представляет значительный интерес в связи с переносом ионов в организме как под действием внешних полей, так и в процессах обмена веществ, изменения проницаемости тканей, их возбуждения, проведения нервных импульсов и др., связанных с биопотенциалами. Так, числа переноса ионов в коже определяют эффективность ионофореза — метода введения лекарственных веществ в организм человека через кожу постоянным током, широко применяемого в медицинской практике. Коллоидно-химическое исследование ионофореза в работах Цыгир и Фридрихсберга позволило установить основы дозировки и повысить эффективность процесса путем применения ионообменных мембран.  [c.239]

    Интересные результаты получены при изучении ионного транспорта через подобные мембраны и электропроводности элементарных пленок обратных эмульсий, стабилизированных природными и синтетическими ПАВ различной природы. Выяснилось, в частности, что электропроводность таких мембран резко возрастает при добавлении некоторых биологически-активных ПАВ. Например, введенне во внешнюю водную среду липидной мембраны ничтожных количеств антибиотика валиномицина приводит к увеличению электропроводности мембраны на пять порядков величины вместе с тем мембрана становится проницаемой для ионов калия и водорода, но не пропускает через себя ионы натрия. Резкое понижение электрического сопротивления искусственных мембран может наблюдаться и при введении в их состав молекул белков, а та,кже ферментов с добавкой в систему соответствующего субстрата. Изучение свойств таких мембран позволяет моделировать ряд важных биологических процессов, например прохождение нервного импульса, образование фоточувствительной ячейки и др. [c.291]

    Целый ряд экспериментальных данных подтверждает существование химической основы памяти. Например, введение животным небольших доз стрихнина облегчает обучение [131]. Другие вещества, например пуромицин (рис. 15-18), оказывают противоположное действие [129, 132]. Процесс обучения у животных связан с увеличением синтеза в нейронах мРНК и белков. Существенно важно, что синтез полипептидов и нуклеиновых кислот протекает в основном в теле нервной клетки, а не в окончаниях аксонов или в дендритах. Тело нервных клеток покрыто обычно синаптическими пуговками, и вполне вероятно, что-кменно стимуляция поверхности мембран тела клетки индуцирует синтез макромолекул. [c.351]

    Однако механизм возникновения катионной функции у мембран с нейтральными переносчиками до конца не выяснен. Заметим также, что такие электроды в большей степени подвержены воздействию посторонних веществ, чем электроды с кристаллическими мембранами, поскольку липофильные анионы из анализируемого раствора могут экстрагироваться в объем мембраны. Этот процесс протекает медленнее, чем межфазный, и приводит к изменениям в составе мембраны. Соответственно может замедлиться установление равновесия и будет наблюдаться дрейф потенциала электрода. Кроме того, липофильные анионы вносят свой вклад в межфазный потенциал и создают помехи при измерениях. Их влияние нейтрализуют введением в состав мембран солей, содержащих липофильные анионы, которые компенсируют заряд комплексных катионов с нейтральными переносчиками, например тет-ракис-( -хлорфенил)борат-ионы. Такие соли называют анионоподавляющими реагентами. [c.208]

    Впервые уменьшение потока диффундирующего через железную мембрану водорода при введении в коррозионную среду (1%-ная лимонная кислота) желатины (5 г/л) и свекловичного сахара (10 г/л) наблюдал Т. Моррис [96]. С. А. Балезин и Д. Я- Соловей [97, 98], исследуя влияние ряда ингибиторов кислотной коррозии металлов на растворение стали и диффузию выделяющегося при этом водорода, нашли, что ингибиторы замедляют эти два процесса не в одинаковой степени. Присадки ПБ-6 и ЧМ уменьшают долю водорода, диффундирующего в сталь. Тиомочевина же, хорошо защищая сталь от растворения [c.167]

    В 1959 г. было установлено, что животные, в пище которых нехватает хрома, плохо растут и живут недолго. Для таких животных характерна также пониженная толерантность к глюкозе , выражающаяся в том, что глюкоза, вводимая в кровь, выделяется в два раза медленнее, чем в норме . Это состояние по существу не отличается от состояния, вы.званного нехваткой инсулина. При фракционировании дрожжей удается выделить хромсодержащий фактор толерантности к глюкозе, который представляет собой комплекс, содержащий ионы Сг +, никотиновую кислоту и аминокислотьГ. Есть основания считать, что хром, содержащийся в факторе толерантности к глюко.зе, реагирует с инсулином и каким-то образом усиливает его действие - . В соответствии с этим предположением находится тот факт, что обычное содержание хрома в сыворотке крови, которое составляет приблизительно 0,03 мМ, резко снижается при введении в кровь глюкозы. Это свидетельствует о том, что хром активно используется в процессе углеводного метаболизма, осуществляя, по-видимому, связывание инсулина с рецепторами клеточных мембран. Уменьшение содержания хрома в сыворотке крови при острых инфекциях (несмотря на увеличение содержания инсулина) указывает на то, что метаболизм хрома у человека заслуживает пристального внимания. [c.506]

    Технология получения гетерогенных мембран (рис. 11.2) основана на введении измельченного ионита в расплавленный термопласт. Из вальцованной заготовки при прессовании формуется мембрана, которая в зависимости от назначения армируется синтетическими тканями или волокнами. Процесс состоит из следующих стадий отмывки ионита от примесей, его сушки, измельчения, приготовления смеси с гранулированным полиэтиленом, вальцевания смеси, калан-дрования пленки и армирования, получения заготовки ленты и прессования мембраны. [c.139]

    Образование нерастворимого осадка, состоящего из 7п(ОН)2 и 2п5 и замедляющего диффузионные процессы, наблюдал Мура-ками [73] в модельных опытах при диффузии Н2504 и 2п504 через целлофановую мембрану в щелочь. Другие исследователи [74, 75] допускают возможность образования гидроксида цинка и цин-ката натрия. Правда, при предварительном введении цинката натрия в вискозу не достигается тот эффект, который наблюдается, если ионы цинка находятся в осадительной ванне. [c.196]

    Трудно говорить об образовании мембран de novo, поскольку существование клетки предполагает существование ее мембран. Одиако можно считать установленным, что процесс формирования клеточной мембраны идет непрерывно, путем введения в иее новых составных частей, обновления компонентов, прежде всего липидов, белков и т. п. В частности, полупериод жизни мембранных компонентов клеток печени, в течение которого обновляется половина их исходного содержания, составляет для белков микросом, ядерной мембраны и цитоплазматической мембраны 2—3 дня, белков внешней митохондриальной мембраны — 5—6 дней, внутренней митохондриальной мембраны — 8—10 дней, для липидов микросом — [c.586]

    В этой главе показано практическое значение принципов обратного осмоса, описанных в гл. 7. Кроме того, приводятся типичные характеристики работы мембран для обратного осмоса, а также указываются некоторые их недостатки и отрицательные стороны процесса в целом. Рассмотрены ультрафильтрация и ультрафильтрацион-ные мембраны, однако менее детально. Эта глава является как бы введением в обсуждение инженерных и экономических аспектов и ряда областей практического применения обоих процессов (гп. 9-13). Рассмотрение ограничивается водными фазами и использованием гидростатического давления как движущей силы, хотя некоторые мембраны, пригодные для обратного осмоса, можно использовать также для разделения газов (гл. 13). [c.131]

    Формула (37) описывает условия, при которых концентрация раствора в непосредственной близости к мембране равна нулю. Правая часть выражения (37) содержит два компонента, определяемых гидродинамикой процесса и, следовательно, зависящих от конструктивных и технологических условий, — коэффициент диффузии и толщину диффузионного слоя 8 р. В целях упрощения полагаем коэффициент диффузии в пределах диффузионного слоя постоянным и равным коэффициенту молекулярной диффузии. Необходимость введения этого допущения возникает в связи с представлениями о структуре вязкого подслоя, носящего квазиламинарный характер [20, 21]. [c.36]

    Гормональный контроль созревания яйцеклетки и овуляции особенно хорошо изучен у морских звезд и амфибий. У этих животных гонадотропные гормоны стимулируют определенные клетки яичника, побуждая их выделять вторичный медиатор, который в свою очередь воздействует на ооциты и индуцирует процесс их созревания. У морских звезд таким медиатором служит 1-метиладенш, а у амфибий-стероидный гормон прогестерон. Вторичный медиатор связывается рецепторами клеточной поверхности на плазматической мембране ооцита и стимулирует созревание последнего, возможно, путем повышения концентрации свободных ионов Са в ооците в результате освобождения их из внутриклеточного хранилища . О такой роли Са в созревании яйцеклетки свидетельствуют следующие эксперименты 1) введение ионов Са в цитозоль яйцеклетки индуцирует ее созревание в отсутствие гормонов, тогда как введение связывающих кальций соединений (например, ЭГТА) предотвращает созревание даже в присутствии гормонов 2) если в яйцо морской звезды или амфибии ввести связывающий Са белок экво-рин (который излучает свет при связывании нонов кальция), то присоединение медиатора, индуцирующего созревание, к поверхностным рецепторам яйца будет сопровождаться кратковременной вспышкой света. [c.32]

    Цель модификации полимерных пленок — улучшение их механических или физических свойств, адаптация к определенным приложениям и условиям эксплуатации. Этого можно достичь, подвергая пленки механической или химической обработке. Поверхностная обработка модифицирует кристаллическую морфологию и поверхностную топографию, увеличивает поверхностную энергию и удаляет вредные примеси. Для хорошей адгезии поверхности необходимо удаление загрязнений. Реализация других способов дополнительной обработки, таких как печать, внешняя отделка и ламинирование, облегчается благодаря введению поверхностно-активных веществ (ПАВ), которые изменяют поверхностное натяжение наносимых на полимер материалов. Кроме того, присутствие полярных азотсодержащих мономеров на поверхности полимерной пленки позволяет получать иономеры — такие пленки можно использовать в качестве ани-онобменных мембран в процессах электродиализа, для опреснения воды [1], в качестве носителя для иммобилизации медицинских препаратов [2] или разделителя в щелочных аккумуляторах [В] и топливных ячейках и т.д. [c.209]


Смотреть страницы где упоминается термин Введение в мембранные процессы: [c.382]    [c.392]    [c.392]    [c.351]    [c.392]    [c.31]    [c.547]    [c.213]    [c.67]    [c.178]    [c.67]    [c.162]    [c.22]    [c.30]    [c.65]    [c.213]   
Смотреть главы в:

Введение в мембранную технологию -> Введение в мембранные процессы




ПОИСК





Смотрите так же термины и статьи:

Мембранные



© 2025 chem21.info Реклама на сайте