Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение мембранных методов полимеров

    Первое сообщение о возможности практического использования явления селективной проницаемости компонентов газовой смеси через полимерные или металлические перегородки — мембраны было сделано Грэхемом в середине XIX века. Однако от открытия явления до его промышленного применения прошло более столетия. Это объясняется, прежде всего тем, что в то время промышленность не была подготовлена к использованию этого явления. Внедрению мембранного метода разделения газов в промышленность способствовали результаты изучения явлений, связанных с селективным переносом молекул газов через сплошные (гомогенные) и микропористые мембраны, имеющие неорганическую или полимерную природу, успехи в синтезе полимеров с газоразделительными свойствами, разработка методов получения высокопроизводительных (асимметричных, композиционных, напыленных и т. д.) полимерных, металлических и керамических мембран, создание конструкций и методов расчета мембранных аппаратов и установок. [c.6]


    Раздел под общим заголовком Проницаемость, транспорт и ионная селективность посвящен очень важной и интересной проблеме изучения механизма диффузионного переноса водных растворов электролитов (и неэлектролитов) в полимерах различной структуры. Информация подобного рода чрезвычайно полезна, во-первых, для описания механизма гидролитической деструкции полимеров в диффузионной и диффузионно-кинетической областях, во-вторых, для научно обоснованного прогнозирования сроков защитного действия полимерных покрытий и мембран и, в-третьих, для более глубокого понимания сущности и закономерностей диффузионных процессов разделения и концентрирования с помощью мембранных методов. Последние находят в настоящее время все большее применение в химической, пищевой и медицинской отраслях промышленности. [c.6]

    Мембраны из кремнийорганических полимеров обеспечивают выделение гелия из природного газа с высоким выходом [8, с. 175]. Весьма эффективным является использование мембранного метода разделения газов в производстве аммиака, в частности отделение аммиака от водорода и азота, а также разделение водорода и азота. Перспективным является также применение мембран для разделения газообразных продуктов сгорания топлива. Большое значение имела бы разработка метода улавливания сернистого газа. В настоящее время в атмосферу выбрасывается огромное количество SO2, образующегося при сгорании торфа, сланца, угля. Будучи [c.116]

    НИР кафедры Синтез полимеров развиваются по теме Разработка научных основ создания новых функциональных полимеров. На кафедре накоплен опыт в разработке полимеров, содержащих в своей структуре химически активные функциональные группы, в исследовании их структуры, морфологии и показана перспективность их применения в ряде приоритетных областей развития науки и техники, таких как мембранная технология, микроэлектроника, биотехнология, экология. Основной целью работ является разработка методов направленного синтеза и модификации полимеров и материалов на их основе с заданной структурой (включая наноструктуру) и морфологией. [c.114]

    Более подробное описание хроматографических методов приведено в [20а). Ультрафильтрация через пористые мембраны основана на зависимости скорости диффузии от размера макромолекул и степени проницаемости мембран. Применение различных мембран позволяет разделить полимер на фракции с различной молекулярной массой. [c.26]


    В книге изложены физико-химические особенности методов разделения компонентов газовых смесей, жидкостей и коллоидных систем, основанных на использовании селективных (полупроницаемых) полимерных мембран. Описаны технология получения мембран из природных и синтетических полимеров и применяемое оборудование. Рассмотрены основные типы полимерных мембран, их характеристики, назначение и области применения. [c.2]

    Метод переработки размягченных (пластифицированных) полимеров нашел применение при изготовлении мембран в виде полых волокон [17, 18]. Формование проводят с достаточно высокими скоростям из сформованных мембран удаляют пластификатор. Формование мембран из пластифицированных полимеров без последующего удаления пластификатора пока не получило широкого распространения, хотя принципиальных возражений против этого метода не высказывалось. Более того, метод может представлять интерес в связи с тем, что позволяет, используя один и тот же полимер в комбинации с различными пластификаторами, направленно изменять проницаемость мембран для веществ разного химического состава. [c.80]

    Изучение С. полимерами имеет большое практич. значение ввиду широкого применения полимеров в качестве упаковочных пленочных материалов, защитных, изоляционных и отделочных покрытий, ионитов и разделительных мембран для очистки воды и т. д. Химические, механические, электрические и др. свойства полимеров зависят от природы и количества сорбата, поглощенного полимером, а характер изменения этих свойств определяется скоростью С. Проницаемость полимеров по отношению к газам, парам и жидкостям определяется сорбционной способностью и коэфф. диффузии сорбата, к-рые м. б. рассчитаны по данным сорбционных измерений. Изучение С.— эффективный метод оценки пористости волокон, пленок и ионообменных смол. Исследование С. полимерами представляет и значительный теоретич. интерес, т. к. является источником информации о структуре полимера, плотности упаковки его макромолекул, их подвижности в различных условиях, свойствах бинарных систем полимер — сорбат и др. [c.231]

    Поскольку более широкие поры проявляются при более низких давлениях, результаты, получаемые этим методом, завышены. Этот недостаток, однако, может быть с успехом использован при качественном определении распределения пор по размерам. Значительное возрастание числа пор, проницаемых для воздуха, даже при небольшом увеличении давления свидетельствует об узком распределении размеров пор. С другой стороны, постепенное увеличение числа воздухопроницаемых пор свидетельствует о широком распределении их по размерам. Применение метода точки пузырька обосновано лишь в случае, когда поглощающая среда полностью смачивает мембрану и когда отношение диаметра поры к диаметру проникающего агента велико. По мере того как отношение уменьшается, корректность применения уравнения (2.1) снижается, особенно в том случае, когда имеется взаимодействие между пермеатом и мембраной. Кроме того, из-за высокого поверхностного натяжения в системе воздух—вода (73 дин/см) требуется относительно высокое давление, для того чтобы воздух начал проникать в узкие поры. Высокие давления, в свою очередь, вызывают пластическое течение полимера, которое приводит к изменению размеров пор во времени. [c.51]

    Для расширения границ применения ядерные мембраны можно модифицировать. Одним из методов является плазменное напыление на их поверхность ультратонких слоев полимеров, что приводит к равномерному сужению пор. Это позволяет направленно изменять степень смачиваемости поверхности пор, адсорбционные, структурные и селективные свойства трековых мембран. [c.305]

    В результате специфической модификации полиэтилена методом радиационной прививки на него других полимеров могут быть получены материалы с более высокой теплостойкостью, атмосферостойкостью, радиационной, химической и биологической стойкостью, механической прочностью, адгезионной активностью и с более низкой газопроницаемостью, горючестью, улучшенной окрашиваемостью и т. д. Специфической областью использования радиационно привитых материалов на основе облученного полиэтилена является применение их в качестве ионообменных мембран, сепараторов, адсорбентов, фильтров и др. Хотя большинство работ выполнено на мелкодисперсных и тонкослойных объектах, использование методов радиационной прививки возможно также и для производства блочных и толстостенных изделий любой формы и размеров. [c.232]

    Таким образом, применение метода осмометрии не требует соблюдения специальных условий. Однако при исследовании нефракционированных образцов, содержащих значительные количества полимера, способного диффундировать через мембрану, при измерении осмотического давления возникают некоторые затруднения. В настоящее время этим методом трудно получить истинные величины (М)п нефракционированных полимеров. [c.398]


    Успехи последних лет в области исследования окисления полимеров в условиях, осложненных диффузией кислорода, достигнуты благодаря применению метода ИК-спектроскопии для анализа поверхности срезов образцов [64]. Неиспользованные еще возможности для прямого исследования процессов поглощения кислорода в окисляемых пленках открывает метод измерения парциального давления кислорода, диффундирующего через полимерные (резиновые) мембраны различной толщины. В отсутствие химической реакции полимера с диффундирующим газом существует однозначное соотношение количеств проходящих через мембрану газов [65] (кислорода и азота)  [c.67]

    Относительно применения осмометрического метода для определения полидисперсных смесей, таких, как нефракциониро-ванные органические полимеры, следует сделать одно предостережение. Можно ожидать, что образцы таких полимеров будут содержать молекулы, которые состоят из небольшого числа мономерных единиц. Эти молекулы, в противоположность остальным полимерным молекулам, могут проникать сквозь мембрану осмометра, и, таким образом, их присутствие не будет сказываться на величине измеряемого осмотического давления. Следовательно, молекулярный вес Л4 , определенный в этом случае из данных по осмотическому давлению, характеризует только ту часть молекул, которые не проникают сквозь мембрану, в результате чего можно ожидать, что величина будет зависеть от природы используемой мембраны. Это предположение подтверждается данными ряда исследователей, изучавших один и тот же нефракционированный образец полистирола . Так, в одном случае при применении мембраны из поливинилового спирта (эта мембрана способна удерживать молекулы с молекулярным весом 2000 или даже меньше) Мп для полистирола оказался равным 270 ООО. Средняя величина Мп по данным семи других лабораторий равна 480 ООО. [c.254]

    Процессы экстракции в фармацевтической промышленности на растительных и животных веществах, например алкалоидах, гормонах, наркотиках и т. д., часто осложняются цветными веществами, водорастворимыми полимерами и другими примесями, которые, если их не удалить, придают цвет продуктам или затрудняют их кристаллизацию. Во многих случаях простая ультрафильтрация акстракта через мембрану, проницаемую для продукта, но не проницаемую для загрязнений, дает чистый, бесцветный раствор, из которого легко получить высокочистый кристаллический продукт. При получении ферментных препаратов из культур микроорганизмов неотъемлемой стадией технологического процесса является концентрирование ферментных растворов с применением таких методов, как вакуум-выпаривание, сублимационная сушка, сушка распылением, вымораживание, охлаждение органическими растворителями или солями и др. В этих методах концентрирование раствора связано либо с действием температур, либо с глубокими изменениями физико-химических свойств ферментного раствора. [c.17]

    Рахмашш Ю.А., Рожнов Г.И. Гигиенические рекомендации по про--изводству и применению полимеров, предназначенных дпя мембранных методов опреснения воды // Мембранные методы разделения смесей Тез. докл. III Всесоюз. конф. - Владимир, 1981. - Ч. II. - С. 268-270. [c.202]

    За последние годы наблюдается существенный прогресс в синтезе селективно проницаемых полимеров для изготовления мембран [116], тем не менее достигнутые коэффициенты разделения в пределах одного порядка недостаточны для аналитического применения, где задачи разделения газообразных соединений в микромасштабах легко решаются методами газовой хроматографии. Практически единственным исключением селективно проницаемых газодиффузионных мембран, применяемых в аналитических целях, являются металлические мембраны на основе палладга и его сплавов. Проницаемость таких мембран по отношению к водороду, на несколько порядков превышающая проницаемость по отношению к остальным газам, позволяет получать водород более чистый, чем при электролитическом способе. Соответственно, подобные мембраны используются в препаративных целях в лабораторных генераторах водорода. [c.216]

    При разработке более проницаемых мембран придется в некоторой степени полагаться на метод проб и ошибок, поскольку влияние состава мембраны и ее строения на механизм проникания изучено недостаточно хорошо. Создание специализированных мембран для определенных газорааделительных процессов поха недоступно. Однако прогресс в этом отноше1 ик уже наметился, о чем свидетельствует синтез высокоэффективных мембран иа фторированных полимеров для извлечешш гелия /71/. Исследованы также различные методы изготовления очень тонких разделительных мембран, с успехом примененных для обессоливания морской воды методом обратного осмоса. Наконец, достигнут значительный успех во всех инженерных аспектах газоразделения. [c.364]

    Общие соображения. Сульфофенолы легко конденсируются с формальдегидом, образуя полиэлектролиты. Наиболее обычный случай — конденсирование п-фенолсульфокислоты с формальдегидом. Этот процесс был использован для получения ионообменных смол [ВР4] и ионитовых мембран ЦР26, К43]. Эти вещества при конденсации дают сразу сшитый, нерастворимый материал, так как в результате отщепления серной кислоты от части фенолсульфокислоты образуется фенольное ядро. Такая конденсация не может быть использована для получения ионитовых мембран из целлюлозного материала, так как она сильно замедляется при высоких температурах в кислой среде. С другой стороны, в результате конденсации в щелочной среде солей щелочных металлов п-фенолсульфокислоты или п-крезол-ш-сульфокислоты в отсутствие свободного фенола или какого-либо другого фенола, не замещенного в 2-, 4-, 6-положениях, получаются линейные полимеры. При использовании системы последнего типа для получения катионитовых мембран из пергаментной бумаги или другого материала на основе целлюлозы основной целью было найти метод применения, например, фенолсульфоната натрия или формальдегида вместе с пергаментной бумагой, чтобы можно было провести конденсацию в условиях, предотвращающих улетучивание воды из системы. [c.168]

    Анализируемый раствор отделен от ячейки мембраной, изготовленной из полимера, которая проницаема только для газов. Исследованы различные пленки из полимерного материала на проницаемость кислорода. Найдено, что при одинаковой толщине пленки поток кислорода увеличивается в ряду сополимеры, тетрафторэтилен и эти-ленполипропилен — полистирол — полиэтилен. Наиболее воспроизводимые результаты получены на пленке Ф-4МБ-2, изготовленной отливкой. Увеличение предельного диффузионного тока достигается увеличением поверхности мембраны. Диапазон измеряемых концентраций кислорода составлял 0,01—0,4 мг/л. Относительная ошибка определения не превышала 5%. Метод применен для определения кислорода, растворенного в растворах солей. Рис. 2, библ. 7 назв. [c.238]

    Метод получения каустической соды с применением ионообменных мембран интенсивно разрабатывается фирмами "Асахи Кемикл "Асахи Гласс", "Марудзэн Ойл", "Токуяма Сода" и "Сева Дэнка" в Японии и фирмами "Дюпон", "Хукер", "Даймонд в США. Принци- пиальная схема электролиза с ионообменной мембраной показана на рис. 5. Очищенный рассол подают в анодное пространство, воду - в катодное. В результате электролиза ионы натрия селективно проходят через ионообменную мембрану в катодное пространство, образуя там с гидроксильными ионами каустическую соду. Мембрана в отличие от диафрагмы препятствует прохождению ионов хлора в катоднсе пространство и, наоборот, ионам гидроксила в анодное. Мембрану, изготовленную из полимера на основе перфторсульфокисло- [c.24]

    Несмотря на то что применение природных полимеров (таких как целлюлоза) в качестве материалов для фильтрации было известно давно, историю синтетических полимерных мембран следует начать с получения Щенбейном [8] в 1846 г. нитрата целлюлозы, первого синтетического (в действительности, полусинтетического) полимера. В течение первого столетия после получения нитрата целлюлозы преимущественно применялись целлюлозные мембраны. В 1855 г. Фик [9] использовал нитратцеллюлозные мембраны для проведения своих исследований по диффузии, ставших впоследствии всемирно известными. В том же году Лермит [10] впервые сформулировал основы транспорта раствора через мембрану, а именно проницаемость является результатом взаимодействия пермеата с мембраной. Он показал, что теория растворения и теория пор (капиллярная теория) не исключают друг друга, а взаимно, без особых отклонений, дополняют одна другую. В 1860 г. Шумахер [11] разработал мембраны из нитрата целлюлозы в форме трубки (опытные образцы просто погружались в коллоидные растворы), которые используются и в настоящее время. В 1872 г. Баранецкий [12] получил первые плоские мембраны. Изменяя концентрацию нитрата целлюлозы, Бехгольд [13] в 1906 г. изготовил первые партии микрофильтрационных мембран с порами одинакового размера. Он также первым установил соотношение между точкой пузырька, поверхностным натяжением и радиусом поры. Представление о распределении пор по размерам было развито Карплусом [14], совместившим технические приемы для определения точки пузырька и измерения проницаемости по методу Хагена — Пуазейля. [c.15]

    В последнее время Шульц разработал криоскопические и эбулиоскопические методы определения молекулярного веса, дающие возможность определить молекулярный вес относительно низкомолекулярных продуктов. Эти методы хорошо известны для низкомолекулярных веществ. При их использовании предъявляют большие требования к чистоте исследуемых веществ и растворителей, так как все низкомолекулярные примеси измеряются вместе с полимером. Источник ошибок в этих методах тот же, что и при применении слишком плотных мембран при определении молекулярного веса осмотическим методом. Ошибка тем меньше, чем ниже молекулярный вес исследуемого вещества. Эти методы могут быть использованы для полимеров с молекулярным весом ниже 10 ООО. Однако поскольку для таких полимеров другие физические методы прямого определения молекулярного веса неприменимы, то кри-оскопический и эбулиоскопический методы являются ценным дополнением к описанным ранее способам. Для некоторых полимерных веществ, например для растворов ацетата целлюлозы в ледяной уксусной кислоте, ацетата крахмала в феноле или диоксане, криоскопический метод дал совершенно неправильные значения молекулярного веса, в отдельных случаях даже ниже, чем молекулярный вес элементарного звена. Эти результаты дали ранее повод для неправильных выводов. Поэтому необходимо предварительно убедиться в надежности значений молекулярного веса, определенных криоскопически для этого надо сравнить эти значения со значениями молекулярного веса, полученными другими [c.152]

    В последнее время особенно важное значение приобретает применение пленочных мембран из ионообменных полимеров в технике и медицине. Появление ионитов в виде мембран вызвало значительный интерес к их использованию в технике — в процессах очистки растворов от электролитов, концентрирования ионов и отделения катионов от анионов. Экономичность этого метода с использованием пленочных диафрагм определяется высокой избирательной иононроницаемостью их и малым электрическим сопротивлением [30]. Подобного рода пленочные диафрагмы явятся незаменимыми деталями искусственной почки , над разработкой которой усиленно работают в настоящее время многие лаборатории мира. [c.41]

    В качестве движущейся подложки для нанесения эмульсий применяют барабаны с антиадгезионной поверхностью, полимерные пленки и металлические бесконечные ленты. На рис. 2.3 изображена схема барабанной машины. Такие машины нашли широкое применение в производстве полимерных пленок, мембран и микрофильтров методом сухого формования [103]. Барабанная машина представляет собой вращающийся полый металлический цилиндр диаметром более 3 м, прверхность которого отшлифована и покрыта слоем серебра или другого материала, обеспечивающего коррозионную стойкость к компонентам эмульсии и низкую адгезию к пленкообразующему полимеру., В верхней части цилиндра на поверхность барабана наносят раствор или дисперсию капсулируемого вещества из фильеры, тип которой выбирается в зависимости от вязкости раствора. Цилиндр [c.102]


Смотреть страницы где упоминается термин Применение мембранных методов полимеров: [c.216]    [c.604]    [c.604]    [c.47]    [c.23]    [c.404]    [c.92]    [c.224]    [c.218]    [c.36]    [c.409]    [c.12]    [c.154]    [c.154]    [c.16]    [c.359]    [c.153]    [c.236]   
Мембранные процессы разделения жидких смесей (1975) -- [ c.16 ]




ПОИСК





Смотрите так же термины и статьи:

Мембранные

Полимеры методом ГПХ



© 2025 chem21.info Реклама на сайте