Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дыхательная цепь и АТР-синтетаза

    Наиболее привлекательной чертой хемиосмотической гипотезы для исследователей, занимающихся биоэнергетикой, было то, что она позволяла сразу предложить ряд экспериментов, в которых можно было бы проверить ее предсказания. В результате дальнейшее обсуждение проблемы велось по трем направлениям. Во-первых, верен ли главный постулат и является ли протонный электрохимический градиент необходимым и достаточным условием энергетического сопряжения Во-вторых, является ли протонный цикл делокализованным, происходит ли он во внешней водной фазе, согласно Митчеллу, или же существуют локальные протонные микроциклы между отдельными комплексами дыхательной цепи и АТР-синтетазы согласно Вильямсу В-третьих, какова роль векторной транслокации групп и конформационных изменений белков в молекулярном механизме переноса протонов  [c.25]


    Когда к клеткам добавляют разобщающий агент, например динитрофенол, поглощение кислорода митохондриями значительно возрастает, так как скорость переноса электронов увеличивается. Такое ускорение связано с существованием дыхательного контроля. Полагают, что этот контроль основан на прямом ингибирующем влиянии электрохимического протонного градиента на транспорт электронов. Когда в присутствии разобщителя электрохимический градиент исчезает, не контролируемый более транспорт электронов достигает максимальной скорости, возможной при данном количестве субстрата. Напротив, возрастание протонного градиента притормаживает электронный транспорт, и процесс замедляется. Более того, если в эксперименте искусственно создать на внутренней мембране необычно высокий электрохимический градиент, нормальный транспорт электронов прекратится совсем, а на некоторых участках дыхательной цепи можно будет обнаружить обратный поток электронов Это последнее наблюдение позволяет предполагать, что дыхательный контроль отражает просто баланс между величинами изменения свободной энергии для перекачивания протонов, сопряженного с транспортом электронов, и для самого транспорта электронов или, другими словами, что величина электрохимического протонного градиента влияет как на скорость, так и на направление переноса электронов в принципе таким же образом, как и на направление действия АТР-синтетазы (разд. 9.2.3). [c.33]

    За счет энергии электрохимического протонного градиента, поддерживаемого дыхательной цепью, другой ферментный трансмембранный комплекс, называемый АТР-синтетазой, синтезирует АТР. АТР-синтетаза-это обратимый сопрягающий комплекс, который в норме преобразует энергию потока протонов, направленного внутрь матрикса, в энергию фосфатных связей АТР, но способен также использовать энергию гидролиза АТР для перемещения протонов из матрикса наружу. Этот хемиосмотический механизм свойствен как митохондриям и хлоропластом, так и бактериям, что указывает на исключительную важность его для всех клеток. [c.35]

    Механизм окислительного фосфорилирования. Существует несколько теорий, объясняющих механизм тканевого дыхания (окисления) и его сопряжения с фосфорилированием. Наибольшее подтверждение получила теория, разработанная английским биохимиком П. Митчеллом (1961 — 1966). Согласно этой теории, получившей название хемиосмотическая , или протондвижущая , свободная энергия движущихся по дыхательной цепи электронов используется для перекачивания протонов (Н ) через внутреннюю мембрану митохондрий из матрикса во внутримембранное пространство. Это приводит к изменению числа протонов водорода на наружной и внутренней мембранах митохондрий, в результате чего возникает электрохимический градиент протонов водорода (ЛрН) на мембране (рис. 21). За счет протонного градиента ионы водорода возвращаются снова в митохондриальный матрикс через каналы, образованные специальным белком Рц и ферментом Н -АТФ-синтетазой. При этом энергия протонного потенциала используется для синтеза АТФ с участием Н -АТФ-синтетазной системы. Синтез АТФ возможен только при определенной величине протонного потенциала. Если его величина на мембране мала, то АТФ-синтетаза будет функционировать как АТФ-аза, т. е. катали- [c.58]


    АТР-синтетаза получила свое название в связи с тем, что в обычных условиях протонного градиента, поддерживаемого дыхательной цепью (см. рис. 7-20), синтезирует большую часть всего АТР клетки. Число протонов, необходимое для синтеза одной молекулы АТР, в точности не известно. Для упрощения приводимых ниже расчетов мы будем предполагать, что при прохождении через АТР-синтетазу каждых трех протонов синтезируется одна молекула АТР. [c.448]

    Вероятно, у разных компонентов дыхательной цепи существуют разные механизмы сопряжения транспорта электронов с перемещением протонов. Аллостерические изменения конформации белковой молекулы, связанные с транспортом электронов, могут в принципе сопровождаться перекачиванием протонов, подобно тому как перемещаются протоны при обращении действия АТР-синтетазы (разд. 7.2.3). Кроме того, как уже упоминалось, при переносе каждого электрона хинон захватывает из водной среды протон, который затем отдает при высвобождении электрона (см. рис. 7-30). Поскольк убихинон свободно передвигается в липидном бислое, он может принимать электроны вблизи внутренней поверхности мембраны и передавать их на комплекс b- i около ее наружной поверхности, перемещая при этом через бислой по одному на каждый перенесенный электрон. С помощью более сложных моделей можно объяснить и перемещение комплексом Ь-С двух протонов на каждый электрон, предположив, что убихинон повторно проходит через комплекс b- i в определенном направлении. [c.456]

    По мере прохождения высокоэнергетических электронов по дыхательной цепи протоны откачиваются из матрикса в каждом из трех ее участков, запасающих энергию. В результате этого между двумя сторонами внутренней мембраны возникает электрохимический протонный градиент, под действием которого протоны возвращаются обратно в матрикс через АТР-синтетазу - трансмембранный ферментный комплекс, использующий энергию протонного тока для синтеза АТР из ADP и Р . [c.20]

    АТР-синтетаза получила свое название в связи с тем, что в обычных условиях этот фермент, используя энергию электрохимического градиента, поддерживаемого дыхательной цепью (рис. 9-20), синтезирует большую часть всего АТР клетки. Считают, что при прохождении через АТР-синтетазу каждых двух-трех протонов образуется одна молекула АТР, хотя количественная сторона вопроса еще обсуждается. Для упрощения приводимых ниже расчетов мы будем предполагать, что число протонов равно трем. [c.26]

Рис. 9-36. Протонодвижущая сила, генерируемая на бактериальной плазматической мембране, обеспечивает перемещение в клетку питательных веществ и выведение наружу натрия. В присутствии кислорода (А) дыхательная цепь аэробных бактерий создает электрохимический протонный градиент, который используется АТР-синтетазой для синтеза АТР. В анаэробных условиях (Б) те же бактерии получают АТР в результате гликолиза. За счет гидролиза части этого АТР под действием АТР-синтетазы возникает трансмембранная протонодвижущая сила, осуществляющая транспортные процессы. (Как описано в тексте, существуют бактерии, у которых цепь переноса электронов откачивает протоны и при анаэробных условиях конечным акцептором электронов в этом случае служит не кислород, а другие молекулы.) Рис. 9-36. <a href="/info/510459">Протонодвижущая сила</a>, генерируемая на бактериальной плазматической мембране, обеспечивает перемещение в <a href="/info/1436008">клетку питательных веществ</a> и выведение наружу натрия. В <a href="/info/388777">присутствии кислорода</a> (А) <a href="/info/1897994">дыхательная цепь аэробных</a> бактерий создает <a href="/info/1339684">электрохимический протонный градиент</a>, <a href="/info/1768031">который используется</a> АТР-синтетазой для синтеза АТР. В <a href="/info/69500">анаэробных условиях</a> (Б) те же <a href="/info/1894719">бактерии получают</a> АТР в результате гликолиза. За счет гидролиза части этого АТР под действием АТР-синтетазы возникает трансмембранная <a href="/info/510459">протонодвижущая сила</a>, осуществляющая <a href="/info/829418">транспортные процессы</a>. (Как описано в тексте, существуют бактерии, у которых <a href="/info/511072">цепь переноса электронов</a> откачивает протоны и при <a href="/info/69500">анаэробных условиях</a> <a href="/info/765640">конечным акцептором электронов</a> в этом случае служит не кислород, а другие молекулы.)
    При разрушении митохондрий ультразвуком образуются вывернутые субмитохондриальные частицы (СМЧ) (рис. 1.4), которые называют также электронтранспортными частицами (ЭТЧ). Эти частицы имеют центры связывания субстратов дыхательной цепи и АТР-синтетазы на внешней поверхности й потому широко используются в экспериментах (Lee, 1979). [c.14]

    В случае митохондрий все протонные потоки, связанные с работой дыхательной цепи, АТР-синтетазы или с пассивной утечкой через мембрану, а также поток электронов в дыхательной цепи и поток синтеза АТР могут быть описаны сходными уравнениями. Во всех случаях поток равен произведению коэффициента пропорциональности на разность свободных энергий между начальным и конечным состояниями. [c.66]

    Стехиометрические соотношения переноса протонов в дыхательной цепи и при синтезе АТР — это вполне определенные величины, даже если их истинные значения остаются предметом дискуссий. В то же время общая стехиометрия синтеза АТР по отношению к уровню дыхания может варьировать от теоретического максимума (около одной молекулы АТР на 2е , перенесенных через пункт сопряжения) до нуля в зависимости от величины протонной утечки, идущей в обход АТР-синтетазы (рис. 4.1). Всякое воздействие, повышающее проводимость мембраны, будет понижать долю протонов, переносимых с помощью АТР-синтетазы. При повышении СмН+ снижается величина [c.94]

    АТР-синтетаза способна работать обратимо, и постоянный синтез АТР поддерживается лишь благодаря постоянному поддержанию уровня АЦН+ и использованию АТР клеткой. Если дыхательная цепь ингибирована и к митохондриям добавлен АТР, [c.95]


    Митохондриальная дыхательная цепь и АТР-синтетаза дискуссия о локальном протонном цикле и делокализованном [c.99]

    Ферменты могут работать согласованно, не будучи связанными друг с другом, например ферменты гликолиза иногда образуются ферментные комплексы, в которых ферменты ассоциированы и работают взаимозависимо. Так, в синтетазе жирных кислот семь ферментов объединены в один активный комплекс, при распаде его активность исчезает. К надмолекулярным активным комплексам относятся также мембранные ферменты (транспортные ферменты, ферменты дыхательной цепи), которые иногда называют мультиферментами или ферментами с несколькими активными центрами. [c.36]

    Сравним для примера роль АТФ и протонного потенциала в энергетике клетки млекопитающего животного. Здесь есть четыре ферментные системы, образующие АТФ (главная среди них — протонная АТФ-синтетаза митохондрий) и три системы, генерирующие протонный потенциал (цитохромоксидаза и другие белки — генераторы, включенные в дыхательную цепь). [c.166]

    I у Дыхательная цепь и АТР-синтетаза (МБК 7.2) [c.77]

    Б. С первого взгляда кажется странным, что нормальные бактериальные клетки могут двигаться при полном отсутствии кислорода. В таких условиях поток электронов в дыхательной цепи отсутствует, и, следовательно, нет связанной с этим потоком транслокации протонов через мембрану. В таком случае, каков источник протонов для приведения в действие жгутикового мотора в анаэробных условиях Анализ мутантного штамма дает возможность ответить на этот вопрос. Лишенные АТР-синтетазы бактерии не могут активно двигаться. Это предполагает, что АТР-синтетаза каким-то образом генерирует протонный градиент. У нормальных бактерий в отсутствие кислорода образующийся анаэробно АТР используется для обращения действия АТР-син-тетазы, т.е. для обеспечения выхода протонов из клетки. Возникающий электрохимический протонный градиент направляет протоны обратно через жгутиковый мотор , обеспечивая дви- [c.346]

    Основным ферментом, который участвует в образовании АТФ, является Н -зависимая АТФ-синтетаза. Она пронизывает внутреннюю мем-оану митохондрий в тех местах дыхательной цепи, где происходит зна- [c.57]

Рис. 4.14. Использование кислородного электрода для изучения процессов превращения энергии в митохондриях. На схеме показаны шесть различных способов воздействия на пути превращения энергии в митохондриях. Схематические кривые показаний кислородного электрода иллюстрируют, как с его помощью можно изучать эти воздействия. Среда инкубации должна иметь соответствующую осмолярность, буферную емкость и содержать Рь а — ингибирование транспорта субстрата й — ингибирование дегидрогеназы субстрата с — ингибирование дыхательной цепи — ингибирование транслоказы адениновых нуклеотидов е — ингибирование АТР-синтетазы f — добавка протонофора. Рис. 4.14. <a href="/info/918885">Использование кислородного</a> электрода для изучения <a href="/info/1465265">процессов превращения энергии</a> в митохондриях. На схеме показаны <a href="/info/1055425">шесть различных</a> <a href="/info/1802305">способов воздействия</a> на <a href="/info/284780">пути превращения</a> энергии в митохондриях. Схематические кривые показаний <a href="/info/3597">кислородного электрода</a> иллюстрируют, как с его <a href="/info/1482094">помощью можно</a> изучать эти воздействия. Среда инкубации должна иметь соответствующую осмолярность, <a href="/info/5981">буферную емкость</a> и содержать Рь а — <a href="/info/97244">ингибирование транспорта</a> субстрата й — ингибирование <a href="/info/1896310">дегидрогеназы субстрата</a> с — ингибирование <a href="/info/99457">дыхательной цепи</a> — ингибирование <a href="/info/1402897">транслоказы адениновых нуклеотидов</a> е — ингибирование АТР-синтетазы f — добавка протонофора.
    В работах лабораторий Либермана п Скулачева расположение дыхательной цепи определялось по ее способности образовывать мембранный потенциал. В среду вводились различные доноры и акцепторы электронов, не проникающие сквозь мембрану. Оказалось, что эти вещества взаимодействуют лишь с цитохромом с в митохондриях. Установлено, что транспорт протонов и (или) электронов по дыхательной цепи действительно происходит. В других экспериментах определена локализация компонентов в мембране митохондрий. На рис. 13.10 показано вероятное расположение цепн. Согласно хемиосмотической гипотезе, любая сопрягающая система должна создавать электрохимический потенциал понов Н ". Действительно, опыты с проникающими синтетическими ионами показали возникновение А1 5 в митохондриях, СМЧ, хлоропластах (см. гл. 14) и мембранах бактерий. В то же время теория Митчелла встречается с трудностями и вызывает возражения. Блюменфельд приводит аргументы, показывающие невозможность построения машины Митчелла в конденсированной фазе. В такой машине АТФ-синтетаза использует разность концентраций протонов в водной фазе по обе стороны мембраны для выполнения внешней работы. Это — энтропийная машина, получающая энергию из термостата в форме кинетической знергип протонов. Нротоны движутся преимущественно по градиенту концентраций и передают свои импульсы подвижным частям машины разность потенциалов А1 5 расходуется на создание [c.437]

    В результате этих реакций образуются две молекулы NADH, которые служат донорами восстановительных эквивалентов для дыхательной цепи митохондрий. В ходе последующего переноса электронов к кислороду из ADP и Р образуется 2(3) = 6 молекул АТР. Образовавщийся из этанола ацетат далее активируется в печени короткоцепочечной ацил-СоА-синтетазой, в результате чего образуется ацетил-СоА. [c.822]

    Сопряжение окисления с фосфорилированием в дыхательной цепи. Н+-АТФ-синтетаза. Дыхательный контроль. Разобщение дыхания и окислительного фосфорилирования. Гипоэнергетические состояния. [c.142]

    Если АТР-синтетаза в норме не транспортирует П из матрикса, то дыхательная цепь, находящаяся во внутренней митохондриальной мембране, при нормальных условиях переносит через эту мембрану протоны, создавая гаким образом электрохимический протонный градиент, доставляющий энергию для синтеза АТР. При определенных условиях можно экспериментально продемонстрировать способность дыхательной цепи откачивать протоны из матрикса. Можно, например, обеспечить взвесь изолированных митохондрий подходящим субстратом для окисления, а поток протонов через АТР-синтетазу блокировать В анаэробных условиях небольшая добавка кислорода к такому препарату вызовет вспышку дыхательной активности, которая будет длиться одну-две секунды - пока весь кислород не израсходуется Во время такой вспышки дыхания с помощью чувствительного рП-электрода можно зарегистрировать внезапное подкислепие среды в результате выталкивания ионов П из матрикса митохондрий. [c.450]

    Ддро реакционного центра в фотосистеме ТТ гомологично только что онисаппому бактериальному реакционному центру и точно так же генерирует сильные доноры электронов в форме восстановленных молекул хинона в мембране. Эти молекулы передают электроны на комплекс Ъв -f, сходный с бактериальным комплексом Ъ-с и комплексом Ь - i в дыхательной цепи митохондрий. Как и в митохондриях, комплекс Ъв - f перекачивает протоны через тилакоидную мембрану в тилакоидное пространство (в хлоропластах) или из цитозоля через впячивапия плазматической мембраны (у цианобактерий), и создающийся при этом электрохимический градиент доставляет энергию для синтеза АТР АТР-синтетазой (рис. 7-52 и 7-53). Конечным акцептором в этой цепи переноса электронов служит вторая фотосистема (фотосистема Т), принимающая электроны в дырки , образовавшиеся под действием света в хлорофилле ее реакционного центра. В то время как электроны, активированные фотосистемой ТТ, имеют слишком низкую энергию. [c.472]

    АТФ не нуждается в услугах дыхательной цепи, хотя она и локализована в той же плазматической мембране, но причинно связан с электрохимическим градиентом водородных ионов и низкой проницаемостью для них мембранных структур. Синтез АТФ осуществляется ферментативно, с помощью мембранной протонной АТФ-азы (АТФ-синтетаза), по-видимому, за счет энергии электрохимического потенциала. Это означает, в свою очередь, что генерация АТФ осуществляется в соответствии со схемой Митчела. Согласно некоторым данным, при рН<6,5 основной вклад в фосфорилирование вносит градиент водородных ионов, а при рН>6,5—мембранный потенциал. [c.118]

    Если АТР-синтетаза в норме не транспортирует из матрикса, то дыхательная цепь, находящаяся во внутренней митохондриальной мембране, при нормальных условиях переносит протоны через эту мембрану, создавая таким образом электрохимический протонный градиент, который в свою очередь приводит в действие АТР-синтетазу. При определенных условиях можно экспериментально продемонстрировать способность дыхательной цепи откачивать протоны из матрикса. Можно, например, обеспечить взвесь изолированных митохондрий подходящим субстратом для окисления, а поток протонов через АТР-синтетазу блокировать соответствующим ингибитором. В анаэробных условиях небольшая добавка кислорода к такому препарату вызовет вспышку дыхательной активности, которая будет длиться одну-две секунды-пока весь кислород не израсходуется. Во время такой вспьппки дыхания с помощью чувствительного рН-электрода можно зарегистрировать внезапное подкисление среды в результате выталкивания ионов из матрикса митохондрий. Через одну-две минуты pH вернется к первоначальному уровню, так как протоны проходят через мембрану обратно по различным медленным каналам (рис. 9-29). [c.28]

    В процессе окислительного фосфорилирования при окислении одной молекулы NADH (т.е. при прохождении двух электронов через все три ферментных комплекса дыхательной цепи) образуется не более трех молекул АТР. Если предположить, что обратное прохождение трех протонов через АТР-синтетазу обеспечивает синтез одной молекулы АТР, можно заключить, что в среднем перенос одного электрона каждым комплексом сопровождается перемещением полутора протонов (иными словами, при транспорте одного электрона некоторые комплексы перекачивают один протон, а другие-два протона). [c.32]

    В светозависимых реакциях лучистая энергия возбуждает электроны в молекулах хлорофилла, что делает возможным перенос этих электронов по окислительной цепи в тилакоидной мембране, подобно тому как электроны транспортируются по дыхательной цепи в мембране митохондрий. Энергия, освобождающаяся при таком переносе электронов, используется для перекачивания протонов через тилакоидную мембрану, а возникающая в результате протонодвижущая сила приводит в действие АТР-синтетазу, образующую АТР. В ходе описанного процесса высокоэнергетические электроны в конечном итоге восстанавливают КАВР до КАВРН. Источником электронов. [c.38]

    Ферменты не распределены равномерно по всей клетке, а большинстве случаев связаны с определенными ее структурами. Это показали уже самые первые опыты по суперцентрифугированию клеточных гомогенатов. При этом нижний слой гомогената, содержащий митохондрии, показал в аппарате Варбурга поглощение кислорода, измеряемое 2500 условными единицами, средний, слой, содержащий рибосомы — 60 единицами, а у не содержащего-субклеточных структур верхнего слоя поглощение кислорода отсутствовало полностью. Такой прозрачный цитоплазматический слой обычно содержит только гидролитические ферменты и большую часть ферментов путей гликолиза, тогда как ферменты цикла Кребса, дыхательной цепи и большинство синтетаз содержатся в митохондриях, микросомах, рибосомах, мембранах и в ядрах клеток. Гидролитических ферментов может оказаться больше, чем клетке, в окружающей среде, куда они интенсивно выделяются. [c.144]

    Сопрягающие мембраны имеют целый ряд отличительных черт. Каждая такая мембрана содержит белковые ансамбли двух типов. Один из них обычно называют АТРазой, хотя более правильным было бы название АТР-синтетаза, так как он катализирует энергозависимый синтез АТР из ADP и Pi. Этот комплекс присутствует во всех сопрягающих мембранах. Природа второго белкового ансамбля зависит от первичного источника энергии, используемого в данной мембране. В случае митохондрий и дышащих бактерий — это дыхательная цепь, катализирующая перенос электронов от субстратов к конечным акцепторам, таким, как Ог. В хлоропластах и фотосинтезирующих бактериях сходная система обеспечивает использование энергии поглощенного кванта видимого света (рис. 1.1). [c.9]

    Хемносмотическая гипотеза в том виде, как она была предложена и развивалась Митчеллом, оставалась тесно связанной с концепцией векторной транслокации групп. Белкам дыхательной цепи отводилась пассивная роль они содержали простетические группы и формировали векторные пути переноса. В 1965 г. Бойер впервые сформулировал идею о том, что при окислительно-восстановительных переходах в белках происходят конформационные изменения, в частности такие изменения происходят в АТР-синтетазе. В конформационной теории , в ее первоначальном виде, предполагалось, что конформационные изменения, возникающие в дыхательной цепи, могут прямо передаваться близко расположенной АТР-синтетазе и вызывать в ней напряжение , энергия которого используется для синтеза АТР. В этой модели не было места протонному градиенту. Хотя гипотеза прямого конформационного сопряжения и не выдержала испытания временем (Boyer et al., 1977), но идея о важной роли конформационных переходов в механизме переноса протонов получила широкую поддержку как альтернатива гипотезе векторной транслокации групп (разд. 5.4). [c.25]

    Ацн+ может служить единственным источником энергии для синтеза АТР. Они, однако, не позволяют отличить модели энергетического сопряжения, в которых Ацн+ является единственным фактором, обеспечивающим связь между дыханием и синтезом АТР, от моделей, в которых протонные помпы являются побочными системами, находящимися в равновесии с альтернативным высокоэнергетическим интермедиатом (рис. 1.11). Для этого необходимо было очистить АТР-синтетазу от всех компонентов, общих с дыхательной цепью, встроить ее в искусственную мембрану (разд. 1.3) и создать на ней искусственный Ацн+- Все это было сделано с высокоочищенной АТР-синтетазой из термофильной бактерии (Sone et al., 1977). [c.98]

    АТР-синтетаза является универсальным компонентом сопрягающих мембран. Она присутствует в митохондриях, в хлоропластах, в аэробных и фотосинтезирующих организмах и даже в тех бактериях, которые лишены функциональной дыхательной цепи и существуют за счет гликолиза (разд. 4.7). АТР-синтетаз-ный комплекс имеет сходное строение во всех мембранах и сильно отличается от других АТР-зависимых ионных помп, таких, как Na+, К+-АТРаза из плазматической мембраны эукариотических клеток или Са -АТРаза, отвечающая за накопление Са + в цистернах саркоплазматического ретикулума. АТР-синтетаза сопрягающих мембран использует энергию Ацн+ для поддержания концентрации АТР, отличающейся от равновесной по крайней мере на семь порядков величины. В случае анаэробных [c.149]

    Такое протекание суммарного процесса приводит к важным термодинамическим последствиям. Во-первых, треть свободной энергии, накапливаемой в цитоплазматическом пуле ATP/ADP-fPi, поступает не от собственно АТР-синтетазы, а в результате протекания последующих транспортных процессов. Во-вторых, поскольку для синтеза цитоплазматического АТР используются три протона, а для АТР в матриксе лишь два, AGp в цитоплазме в состоянии 4 (разд. 3.2) может превышать на 50% AGp, поддерживаемый в матриксе или при работе вывернутых субмитохондриальных частиц. Действительно, было установлено, что в изолированных митохондриях AGp достигает 64 кДж-моль- (Slater et al., 1973), а в случае субмитохондриальных частиц не превышает 50 кДж-моль-. Тот факт, что для синтеза АТР используются три протона, необходимо учитывать при рассмотрении гипотетических механизмов переноса протонов в дыхательной цепи (разд. 4.3). [c.161]


Смотреть страницы где упоминается термин Дыхательная цепь и АТР-синтетаза: [c.399]    [c.318]    [c.459]    [c.11]    [c.16]    [c.43]    [c.23]    [c.42]    [c.95]    [c.116]    [c.318]   
Смотреть главы в:

Молекулярная биология клетки Сборник задач -> Дыхательная цепь и АТР-синтетаза




ПОИСК





Смотрите так же термины и статьи:

АТФ-синтетаза Ыа АТФ-синтетаза

Дыхательные яды



© 2025 chem21.info Реклама на сайте