Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия и законы физики и химии

    В предыдущих главах были детально рассмотрены эмпирические методы расчета геометрии молекул и свойств, связанных с геометрией энергии образования, конформационной энергии, барьеров внутреннего вращения, частот колебательных спектров и даже энергии активации некоторых реакций. Понятно, что все эти свойства в принципе могут быть рассчитаны на основании фундаментальных законов физики, и лишь трудности, связанные с непомерно большим объемом вычислений, заставляют прибегать к модельным методам. Тем не менее многие задачи конформационного анализа, благодаря большим успехам квантовой химии, стали теперь уже разрешимы. К ним, в частности, относятся задачи предсказания геометрии и барьеров внутреннего вращения простых органических молекул. [c.289]


    Закон распределения, записанный в виде уравнения (HI, 38), называется законом Максвелла — Больцмана и является одним из основных законов статистической физики, С его помощью можно решать многие задачи физической химии. Сам Максвелл использовал этот закон для выяснения распределения молекул по скоростям (закон Максвелла), а Больцман — для нахождения распределения молекул по энергиям. Значение закона Максвелла — Больцмана заключается также в возможности вычисления различных статистических средних свойств молекул — скоростей, энергий и т. д. [c.96]

    Методы химической технологии. Каков ход исследования при решении задачи создания нового химического производства Опираясь на законы физики, химии и конкретные данные о соответствующих реакциях, исследователь изучает их в лаборатории. Целью исследования на первом этапе является глубокое изучение свойств веществ, участвующих в реакциях, и самих реакций — равновесия и кинетики. С особым вниманием исследователь относится к изучению течения реакций при условиях, близких к намеченным для производства. Сначала проводятся опыты в обычной лабораторной аппаратуре, а затем, с целью приближения к промышленным условиям, в модельной аппаратуре. Модели — это аппараты, уменьшенные и упрощенные по сравнению с промышленными. Опыты на модельных аппаратах позволяют подойти к проектированию. Сначала проектируется и строится полупромышленная установка. На основе опыта ее работы уточняются условия ведения реакций, конструкции аппаратов, определяются показатели процесса (выход продукта, расход энергии, стойкость конструкционных материалов и другие). Если процесс сложен, то строится сначала опытная промышленная установка, снабженная всем необходимым для проведения испытаний, а затем уже сооружаются промышленные установки. Таков путь создания технологических процессов и их совершенствования. [c.10]

    Электрохимия — раздел физической химии, в котором изучаются законы взаимного превращения электрической и химической форм энергии и физико-химические свойства ионных систем. [c.454]

    Рассмотрим теперь, как же функционирует биологическая машина — живой организм. С точки зрения последовательного научного материализма к явлениям жизни полностью применимы все основные законы физики и химии. В частности, превращения энергии в организме должны строго подчиняться законам термодинамики. Однако очевидно, что процесс получения работы при сокращении мышц находится в кажущемся противоречии с выводами из теоремы Карно. Ведь в живом организме нет сколько-нибудь значительных перепадов температур  [c.67]


    Одним из первых химических явлений, с которым человечество познакомилось на заре своего существования, было горение. Вна-ч-але оно использовалось для варки пищи и обогрева жилища. Лишь через многие тысячелетия человек научился использовать его для превращения химической анергии горючих веществ в механическую, электрическую и другие формы энергии. Представления об этом явлении менялись у человека по мере накопления им все новых и новых фактов. Впервые правильное представление о процессе горения высказал гениальный русский ученый Михаил Васильевич Ломоносов (1711—1765 гг.), заложивший основы отечественной науки и установивший ряд важнейших законов современной химии и физики. Он провел большое количество опытов с прокаливанием свинца и олова в открытых и запаянных сосудах. Во всех опытах М. В. Ломоносов производил взвешивание вещества до прокаливания и после него. Он убедился, что металлы при прокаливании увеличиваются в весе за счет соединения их с воздухом (в то время кислород был неизвестен). В этих опытах он впервые установил основной закон химии — закон сохранения массы вещества. [c.5]

    Еще до построения термодинамики открытых систем Бауэр писал о неравновесных свойствах организмов. Основной закон биологии по Бауэру гласит ...живые системы никогда не бывают в равновесии и исполняют за счет своей свободной энергии постоянную работу против равновесия, требуемого законами физики и химии при существующих внешних условиях [4]. Идеи Бауэра остались непонятыми его современниками, как, впрочем, и некоторыми новейшими комментаторами (см., например, [5]). Бауэр приближался к современной биофизике, но сегодня его работы сохранили главным образом исторический интерес. Существенно то, что Бауэр доказывал возможность атомно-молекулярного истолкования жизни ...неравновесное состояние живой материи и, следовательно, ее постоянно сохраняющаяся работоспособность обусловливаются... молекулярной структурой живой материи, а источником работы, производимой живыми системами, служит в конечном счете свободная энергия, свойственная этой молекулярной структуре, этому состоянию молекул [4]. [c.14]

    Закон сохранения массы и э н е р г и и. Несмотря на то что еще в 1760 г. Ломоносов, по существу, сформулировал единый закон сохранения массы и энергии , до начала XX в. эти законы обычно рассматривались независимо друг от друга. Химия в основном имела дело с законом сохранения массы вещества, а физика — с законом сохранения энергии. В 1905 г. основоположник современной физики А. Эйнштейн показал, что между массой и энергией существует взаимосвязь, количественно выражаемая уравнением [c.9]

    Интересные направления в осмыслении живой природы наметил известный биолог Э. Бауэр Он считает, что работа живых систем направлена при всякой окружающей среде против равновесия, которое должно было бы наступить при данной окружающей среде и при данном первоначальном состоянии системы Бауэр сформулировал принцип устойчивого неравновесия биологических систем. Это ученым рассматривается как всеобщий биологическй закон. Живые системы никогда не бывают в равновесии и исполняют за счет своей свободной энергии постоянно работу против равновесия, требуемого законами физики и химии при существующих внешних условиях  [c.74]

    Вот почему Энгельс пишет, что если закон сохранения энергии в физике подорвал метафизическое учение о самостоятельных силах , то поразительно быстрое развитие химии со времени Лавуазье и особенно со времени Дальтона разрушало старые представления о природе еще и с другой стороны . [c.193]

    Клетки должны подчиняться законам физики и химии. Принципы механики и закон сохранения и превращения энергии можно применить к клетке точно так же. как и к паровой машине. Однако нельзя не признать, что клеткам присущ ряд особенностей, которые приводят нас в замешательство и на первый взгляд, казалось бы, ставят клетки в особое положение. Как показывает повседневная практика, все, что предоставлено самому себе, в конце концов приходит в неупорядоченное состояние здания разрушаются, мертвые организмы подвергаются гниению и т.д. Эта общая тенденция выражена во втором законе термодинамики, который гласит, что в любой изолированной системе степень неупорядоченности может только возрастать. [c.79]

    В основе процессов жизнедеятельности лежат различные сложные, сопряженные между собой, химические реакции, характеризующиеся строгой закономерностью сочетания и чередования. Эти реакции базируются на законах физики и химии, однако проявление их действия в живом организме имеет характерные отличия. С точки Зрения термодинамики живые организмы представляют с( й открытые системы, которые постоянно обмениваются с внеишей средой как веществом, так и энергией. В закрытых системах обмен ограничен энергией, а обмен веществом отсутсгаует. В изолированных системах обмен со внешней средой ни вэдеством, ни энергией ие происходит. Такие типы систем названы замкнутыми. [c.207]


    Согласно Бауэру, фундаментальное отличие живой материи от неживой характеризуется принципом устойчивого равновесия . Этот принцип гласит Все и только живые системы никогда не бывают в равновесии и исполняют за счет своей свободной энергии постоянно работу против равновесия, требуемого законами физики и химии при существующих внешних условиях . Затем Бауэр в качестве следствий из этого принципа выводит основные проявления жизни — обмен веществ, рост, размножение. Бауэр, по-видимому, был неправ, постулируя, что устойчивое неравновесие возникает вследствие особого напряженного состояния белковых молекул. Деформированное состояние белковых молекул не является основным их свойством. Однако принцип Бауэра верен в эволюционном смысле, а именно, в смысле постоянно возрастающей в ходе эволюции невероятности , а следовательно, и термодинамической неравновесности биологических макромолекул, невероятности , проявляющейся в уникальности чередования мономеров в полимерных цепях белков и нуклеиновых кислот. [c.15]

    Энергия и законы физики и химии [c.19]

    ЭНЕРГИЯ II ЗАКОНЫ ФИЗИКИ И ХИМИИ 2 1 [c.21]

    ЭНЕРГИЯ II ЗАКОНЫ ФИЗИКИ II ХИМИИ 23 [c.23]

    ЭНЕРГИЯ п ЗАКОНЫ ФИЗИКИ И ХИМИИ 25 [c.25]

    ЭНЕРГИЯ М ЗАКОНЫ ФИЗИКИ II ХИМИИ 29 [c.29]

    Исходя из закона Гесса, представлялось вполне вероятным, что закон сохранения энергии равно применим и к химическим, и к физическим процессам. И действительно, дальнейшие обобщения показали, что законы термодинамики, вероятнее всего, проявляются в химии точно так же, как и в физике. [c.109]

    Термодинамика как научная дисциплина сложилась в начале XIX в. на основании данных по изучению перехода теплоты в механическую работу (с греческого Легте и dynamis — теплота и движение). В настоящее время термодинамика как одна из дисциплин с наиболее общим подходом в характеристике физико-химических явлений, устанавливает взаимосвязь между различными видами энергии, изучает возможность, направленность и пределы самопроизвольно текущих процессов. Раздел этой науки, изучающий химические реакции, фазовые переходы (кристаллизация, растворение, испарение), адсорбцию, взаимосвязь химической и других видов энергии, а также переход энергии от одной части системы к другой в различных химических процессах называется химической термодинамикой. Изучение происходящих в природе явлений с позиций термодинамики не требует знания причин и механизмов идущих процессов, представлений о строении вещества и т. п. Теоретическо базой этого раздела физической химии являются основные законы — первое и второе начало термодинамики. Первое начало, характеризующее общий запас энергии в изолированной системе, носит всеобщий характер и является отражением закона сохранения энергии второй закон термодинамики устанавливает понятие энтропии и выполняется при определенных ограничениях. В настоящей главе представляется возможным только кратко остановиться на основных положениях. [c.10]

    Из элементарных курсов общей химии и физики известно, что вследствие сильно развитой межфазной поверхности гетерогенные дисперсные системы обладают большим избытком свободной поверхностной энергии и, следовательно, являются в принципе неустойчивыми. Позднее мы еще обсудим этот вопрос и покажем, что данное утверждение, которое во многих случаях не вызывает возражений, не настолько правильно, чтобы его абсолютизировать. Возникает вопрос, в какой мере законно применение термодинамических зависимостей к фазовым равновесиям в подобных системах. Гетерогенная дисперсная система может приобретать за счет замедляющих кинетику факторов известную устойчивость, позволяющую ей существовать в дисперсном состоянии достаточно долгое время. В течение этого времени вследствие молекулярного переноса (например, благодаря диффузии) устанавливается такое распределение ее компонентов в объеме и около межфазной поверхности, которое практически соответствует равновесию. Очевидно, что возникающее при этом состояние можно анализировать на основе соответствующих термодинамических представлений. В дальнейшем при рассмотрении вопроса об устойчивости лиофобных коллоидов мы увидим, что такая устойчивость действительно существует и именно этим объясняется широкое распространение подобных систем в природе и технике. Если какая-либо жидкость диспергирована в газе или п другой жидкости, то состояние относительного равновесия, о котором мы говорили выше, придает частицам термодинамически устойчивую форму — форму с наименьшей поверхностью, которая в простейшем случае является сферической. Не будем приводить других аргументов в пользу приложимости термодинамики равновесных систем к дисперсным гетерогенным системам и перейдем к рассмотрению самой термодинамики гетерогенных систем. [c.75]

    Учение о строении атома привело к открытию атомной энергии и использованию ее для нужд человека. Можно без преувеличения сказать, что периодический закон является первоисточником всех великих открытий химии и физики XX в. Он сыграл выдающуюся роль в развитии других, смежных с химией естественных нау с. [c.39]

    Во второй половине XIX в. новые открытия и достижения химии, физики, биологии, астрономии, открытие закона сохранения и превращения энергии позволяли значительно шире подойти к гипотезе о сложном строении атома и единства элементов, чем это делал В. Праут. [c.293]

    Аналитическая химия основана на ряде физико-химических законов, важнейшие из которых — периодический закон Д. И. Менделеева, закон действия масс, закон сохранения массы и энергии. Студенты должны научиться применять эти законы в решении конкретных практических задач определения состава вещества. [c.3]

    На основе периодического закона и периодической системы Д. И. Менделеева быстро развивалось учение о строении атома. Оно вскрыло физический смысл периодического закона и объяснило расположение элементов в периодической системе. Правильность учения о строении атома всегда проверялась периодическим законом. В свою очередь учение о строении атома привело к открытию атомной энергии и использованию ее для нужд человека. Можно без преувеличения сказать, что периодический закон является первоисточником всех великих открытий химии и физики XX в. [c.194]

    При подготовке пятого издания в него внесены дополнения и изменения и сделаны некоторые сокращения. Введены два новых раздела "Классы неорганических соединений" и "Периодический закон и свойства соединений". Раздел 5 назван "Термохимия и химическое равновесие", в нем собраны задачи и упражнения по расчету изменения энтальпии, энтропии, свободной энергии Гиббса, по их применению для описания химических реакций и по расчету концентраций в равновесных системах. Главы "Равновесие в растворах электролитов" и "Направление обменных химических реакций в растворах электролитов" объединены в один раздел "Ионные реакции в растворах". Этот раздел существенно переработан. В раздел, посвященный химии отдельных элементов, включены упражнения по составлению уравнений реакций, отражающих важнейшие свойства их соединений. Несколько сокращена глава "Физико-химические свойства разбавленных растворов" и ей дано другое, более конкретное, название "Коллигативные свойства растворов", отражающее то, что в данном разделе рассматриваются свойства растворов, зависящие от концентрации частиц. Исключена глава "Радиоактивность. Ядерные реакции", так как обсуждаемые в ней вопросы фактически являются содержанием физики. Все изменения имели своей целью приблизить содержание задач и упражнений к химической практике. При переработке пособия мы стремились сохранить содержание, поэтому задачи и упражнения, имевшиеся в четвертом [c.3]

    Современная биология широко использует физическую химию. Все процессы в живом организме связаны с превращением вещества и энергии, а именно эти превращения изучает физическая химия. Основоположник отечественной физиологии И. М. Сеченов писал Физиолог — это физико-химик, имеющий дело с явлениями в животных организмах . Ту же мысль высказал позднее другой выдающийся физиолог — И. П. Павлов ...клетка в некотором отношении похожа на физико-химичес-кую лабораторию. Понятно, что там надо ждать и всех тех явлений, которые бывают при физико-химических процессах . Для иллюстрации справедливости этих высказываний достаточно перечислить некоторые актуальные проблемы современной биологии, решение которых основано на применении законов физической химии термодинамика и энергетика биопроцессов, осмотические явления и мембранные равновесия, окислительно-восстановительные процессы и редокс-потенциалы в физиологических средах, кинетика биологических процессов, ферментативный катализ и т. д. [c.8]

    Перед демонстрацией исключительных возможностей собственного подхода Меклер и Идлис "констатируют", что "сегодня молекулярная биология, исходя из аминокислотной последовательности даже такого маленького полипептида, ничего не может сказать ни о его трехмерной структуре вообще, ни о положении его S-S-связей в частности. Ибо огромное число степеней свободы этой полипептидной цепи исключает возможность рассчитать ее конформацию согласно законам физики и химии, например, исходя из величин энергий взаимодействий ее атомов. Согласно теории, которую мы разработали, трехмерная структура любого полипептида определяется биологически - совокупностью А-А-связей, образующихся между его аминокислотными остатками" [352. С. 47]. Эта цитата примечательна двумя высказанными в ней положениями. Первое свидетельствует о незнании авторами литературы, посвященной теоретическому конформационному анализу пептидов и белков, становление которого произошло в 1963 г. с появлением основополагающей работы Г. Рамачандрана и соавт. [356]. Прямым опровержением такого заявления Меклера и Идлис о неспособности физики и химии рассматривать подобные проблемы служат, во-первых, результаты расшифровки генетического кода трансляции, которые были получены как раз с помощью физики и химии, и, во-вторых, материал этой книги и ее библиография, насчитывающая многие сотни ссылок на теоретические конформационные исследования пептидов и белков. Второе положение касается не чисто научных, а в большей мере мировоззренческих вопросов. Оно возвращает читателя к казалось бы давно ушедшим временам, когда в материалистической философии серьезно обсуждалось существование механической, физической, химической и биологической особых форм движения материи, находящихся в субординационных отношениях. [c.540]

    СТАТИСТИЧЕСКАЯ ТЕРМОДИНАМИКА, раздел статистич. физики, посвященный обоснованию законов термодинамики на основе законов взаимод. и движения составляющих систему частиц. Для систем в равновесном состоянии С. т. позволяет вытаслять термодинамические потенциалы, записывать уравнения состояния, условия фазовых и хим. равновесий. Неравновесная С. т, дает обоснование соотношений термодинамики необратимых процессов (ур-ний переноса энергии, импульса, массы и их граничиых условий) и позволяет вычислять входящие в ур-ния переноса кинетич. коэффициенты. С. т. устанавливает количеств, связь- между микро- и макросвойствами физ. и хим. систем. Расчетные методы С.т. используются во всех направлениях совр, теоретич. химии. [c.416]

    Это уравнение является одним из наиболее важных законов физики и называется законом Больцмана. Закон Больцмана применим только в случае отсутствия взаимодействия между частицами. Как мы увидим далее, коллоиднь1е частицы (как и молекулы, и ионы в растворе), взаимодействуют между собой, но в ряде случаев энергия этого взаимодействия много меньше энергии внешнего поля, что позволяет широко применять закон Больцмана в коллоидной химии. [c.33]

    Три открытия натолкнули на идею, что законы физики и химии, действующие в неорганическом мире, распространяются и на живые структуры установление А. Лавуазье и П. Лапласом того факта, что закон сохранения энергии действует в организмах животных знаменитый синтез Ф. Вёлера (мочевины — 1828) и приготовление Э. Бухнером (1897) дрожжевого экстракта, способного ферментировать (сбраживать) сахар, несмотря на отсутствие живых клеток. Именно этот процесс виталисты связывали с жизнедеятельностью особых микроорганизмов. [c.91]

    Таким образом, удалось показать неравновесность характера экосистемы Черного моря по сравнению с Мировым океаном. Поскольку человеческая популяция частично вписывается в черноморскую зону, не исключено, что термодинамическая неустойчивость экосистемьг Черного моря является причиной социальных и природных катаклизмов в Кавказско-Черноморском регионе. Вопрос о степени неравновесности плазмохимических систем является сложной задачей статистической физики. В связи с этим, по степени отклонения равновесного распределения КФС продуктов плазмохимического пиролиза (по свободной энергии) от нормального закона распределения можно судить о степени неравновесности процессов, протекание которых сопровождается огромным числом химических реакций. Поэтому анализ устойчивости и равновенсности таких систем, в зависимости от температуры и других параметров, представляет сложнейшую задачу физики и химии. [c.58]

    Во многих разделах физики и физической химии используется закон, описывающий распределение молекул по энергиям в равновесной молекулярной системе. Часто использование этого закона бывает полезным, даже если система неравновесна, но не слишком отличается от равновесной. Так, например, теории химической кинетики в ряде случаев используют представление об образовании некоторого промежуточного продукта (или состояния), который сравнительно мед- [c.193]

    Молекулы представляют собой частицы вещества, состоящие из атомов, соединенных друг с другом химическими связями. Представление о молекулах впервые было введено в химии в связи с необходимостью отличать молекулу как наименьшее количество вещества, вступающее в химические реакции, от атома как наименьшего количества данного элемента, входящего в состав молекулы. В физике предположение о существовании молекул было введено для объяснения термодинамических и кинетических свойств жидкостей и газов. Оформление молекулярных воззрений в научную теорию принадлежит М. В. Ломоносову. Развивая атомистические идеи, основанные на понятии о молекуле как частице вещества, являющейся носителем eroi физических и химических свойств, он открыл закон сохранения материи и количества движения, вскрыл природу теплоты, установил, что теплота связана с движением молекул и является одной из форм обмена энергией между телами, доказал, что давление газа на стенки возникает в результате удара отдельных молекул, предсказал существование нуля Кельвина температуры, положил начало развитию атомистической химии и молекулярно-кинетической теории в физике, поставил вопрос о познании строения молекул. [c.113]

    В. Реньо, Г. Гесс. Они своими трудами обогатили одновременно и химию, и физику. После открытия в 1842 г. закона сохранения и превращения энергии (Р. Майер, Д. Джоуль) физико-химические исследования приобретают прочную теоретическую базу и их уделызьн вес начинает все больше возрастать. [c.300]

    Закон сохранения массы и энергии, В 1760 г, Ломоносов, по существу, сформулировал единый закон сохранения массы и энергии "Все перемены, в натуре случающиеся, такого с5ть состояния, что сколько чего у одного тела отнимается, столько же присовокупится к другому. Так, ежели где убудет несколько материи, то умножится в другом месте... Сей всеобщий естественный закон распространяется и в самые правила движения, ибо тело, движущее своею силою другое, столько же оныя у себя теряет, сколько сообщает другому, которое от пего движение получает". Однако до начала XX в. эти законы обычно рассматривались независимо друг от друга. Химия в основном имела дело с законом сохранения массы вещества, а физика — с законом сохранения энергии, В 190Г) г. основоположник современной физики А.Эйнштейн показал, что между массой и энергией существует взаимосвязь, выражаемая уравнением [c.8]

    Первые исследования взаимосвязи электрич. и хим. явлений относятся ко 2-й пол. 18 в. Однако эти исследования носили случайный характер из-за отсутствия постоянного и достаточно мощного источника электрич. энергии. Такой источник появился шшь на рубеже 18-19 вв. в результате работ Л. Гальвани и А. Вольта, с именами к-рых обычно и связывают становление Э. В дальнейшем были разработаны более совершенные хим. источники тока, полувдвшие назв. гальванических элементов. С их помощью было сделано много открытий в области физики, установлен ряд осн. законов электричества и магнетизма. После изобретения динамомашины в бО-х гг. 19 в. гальванич. элементы как источники тока потеряли свое значение новый подъем интереса к ним начался с середины 20 в. в связи с развитием полупроводниковой радиотехники, микроэлектроники, космич. техники. В настоящее время роль автономных химических источников тока вновь значительно возросла. [c.465]

    Антуан Лоран Лавуазье (1734-1794) получил хорошее образование по математике и физике, но посвятил себя из-учейию химии. Написанный им в 1789 г. Элементарный курс химии представляет собой сочинение, достойное сравнения со знаменитыми Началами Ньютона. Оба эти труда являются важными вехами в истории развития химии и физики в эпоху их становления. Подобно тому как Ньютон сформулировал законы механического движения и сохранения механической энергии, Лавуазье внес ясность в представление о химических элементах, заложил основы номенклатуры химичес сих соединений, создал правильную теорию горения и сформулировал закон сохранения материи при химических превращениях. В наще время представления, развитые этими двумя гениальными учеными, кажутся вполне естественными, но не следует забывать, что эти представления лежат в основе фундамента современной науки, создание которого потребовало значительных усилий человеческого разума. [c.40]

    В физической химии применяется несколько теоретических методов Квантово механический метод использует представле ния о дискретности энергии и других величин, относящихся к элементарным частицам С его помощью определяют свойства молекул и природу химическои связи на основе свойств частиц входящих в состав молекул Термодинамический (феноменологи ческий) метод базируется на нескольких законах являющихся обобщением опытных данных Он позволяет на их основе выяснить свойства системы не используя сведения о строении молекул или механизме процессов Статистический метод объяс няет свойства веществ на основе свойств составляющих эти ее щества молекул Физико химический анализ состоит в исследова НИИ экспериментальных зависимостей свойств систем от их соста ва и внешних условии Кинетический метод позволяет устано вить механизм и создать теорию химических процессов путем изучения зависимости скорости их протекания от различных фак торов [c.5]


Смотреть страницы где упоминается термин Энергия и законы физики и химии: [c.272]    [c.272]    [c.183]    [c.39]   
Смотреть главы в:

Фотосинтез С3- и С4- растений Механизмы и регуляция -> Энергия и законы физики и химии




ПОИСК





Смотрите так же термины и статьи:

Закон энергии



© 2024 chem21.info Реклама на сайте