Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярный равновесной

    Зависимость молекулярной равновесной адсорбции из раствора на твердом теле от концентрации адсорбтива характеризуется обычной изотермой адсорбции, и для достаточно разбавленных растворов в этом случае адсорбция хорошо описывается эмпирическим уравнением Фрейндлиха (IV, 2) или уравнением Ленгмюра XIV, 10). Конечно, для описания адсорбции из раствора на твердом [c.137]


    Зависимость молекулярной равновесной адсорбции из раствора на твердом теле от концентрации адсорбтива характеризуется изотермой адсорбции и для достаточно разбавленных растворов выражается уравнением Фрейндлиха или уравнением Ленгмюра. [c.270]

    В частности, определенному парциальному давлению молекулярного водорода р отвечает равновесная поверхностная концентрация атомов водорода Сн(р)- Вместо обычного уравнения для обратимого водородного электрода [c.408]

    Другой, имеющий общее значение метод разделения однородных азеотропов, заключается в уничтожении точки касания равновесных линий пара и жидкости путем прибавления третьего компонента. Влияние третьего компонента заключается в изменении молекулярной природы раствора, результатом чего является соответствующее изменение относительных летучестей его компонентов, позволяющее осуществить процесс разделения системы на ее практически чистые составляющие. Процесс разделения однородной в жидкой фазе постоянно кипящей системы с помощью прибавления к ней третьего компонента входит в группу процессов, называемых азеотропической перегонкой. [c.138]

    Теория, которую мы развили относительно кинетической природы неравновесных систем, имеет два существенных недостатка. Первый недостаток заключается в том, что нам пришлось использовать равновесные функции распределения для упрощения математических расчетов. Это затруднение было в значительной степени снято методом, развитым Чепменом, Энскогом и другими, в котором ряд последовательных приближений позволяет получить неравновесные функции распределения, более соответствующие физической системе. Второй более важный недостаток до сих пор удовлетворительно не устранен он заключается в использовании искусственных моделей для представления о молекулах. Строго говоря, весь процесс столкновения молекул определяется силовым полем, окружающим каждую молекулу. Представляя силовое поле молекул искусственной моделью, мы обходим непреодолимые математические трудности, возникающие при строгом рассмотрении. Однако в результате вводится целый ряд новых параметров молекул, которые оказываются неопределимыми, исходя из простых свойств молекул. В случае жесткой сферической модели мы ввели молекулярный [c.172]

    Для более сложных моделей молекул, например тех, которые предполагают наличие центральных сил, мы заменяем вышеуказанный ряд параметров новым рядом, определяющим силовое поле. Если добавить к тому же проблему сложных молекул (т. е. молекул, обладающих сложным внутренним строением), то потребуется еще дополнительный ряд параметров, определяющих взаимодействия между внутримолекулярными движениями и внешними силовыми полями. В случае жесткой сферической модели это потребовало бы введения дополнительных коэффициентов для описания эффективности передачи внутренней энергии между сталкивающимися молекулами. Несмотря на эти трудности, кинетическая теория в ее простом равновесном приближении и в ее более точном неравновесном представлении способна воспроизвести физическое поведение в форме, которая математически проста, качественно правильно представляет взаимозависимость физических переменных и дает количественное соответствие, более точное, чем только порядок величины. Как таковая, эта теория представляет ценное орудие прямого проникновения во взаимосвязь между молекулярными процессами и макроскопическими свойствами и, как мы увидим, способствует пониманию существа кинетики. [c.173]


    Молекулярная и весовая доли отгона, а также составы равновесных фаз при однократном испарении сложных углеводородных смесей определяются при помощи следующих формул. [c.87]

    Определяем по формуле (5) методом подбора молекулярную долю отгона е. Проверяем значение е = 0,19 (см. табл. 13), имея в виду, что согласно формуле (6) слагаемые левой части уравнения (5) характеризуют состав равновесных углеводородных паров. [c.88]

    Пример 6. Определить вес паров и состав равновесных фаз, образующихся в результате однократного испарения сырья солярового дистиллята (см. табл. 12) в присутствии водяного пара,, вводимого в поток сырья в количестве 927 кг/час (1,5% вес). Условия при входе в реактор I = 430 , п — 1400 мм рт. ст. Средний молекулярный вес сырья М = 300,3. [c.89]

    Исследователи отмечают [4, с. 23—32], что, начиная с нонана и выше, в равновесных смесях устанавливается очень близкое соотношение моно-и диметилзамещенных производных. В смысле термодинамической устойчивости существует оптимальное соотношение отдельных групп изомеров. Термодинамическое равновесие для высших парафиновых углеводородов в меньшей степени зависит от молекулярной массы. От- [c.111]

    В третьей и четвертой графах табл. И приведены молекулярные проценты метилциклопентана в равновесной смеси, полученной со стороны циклогексана и метилциклопентана в пятой графе — средний процент метилциклопентана и в шестой графе — константа равновесия реакции изомеризации [c.305]

    Из изложенного ясно, что все эти параметры не зависят от молекулярной массы, характеристичны для макромолекул данного строения и несколько различным образом описывают способность молекулярных цепей сворачиваться в пространстве — степень их свернутости. Обычно эти параметры определяют термином равновесная (термодинамическая) гибкость цепей. [c.31]

    В отличие от стеклования, которое в пределах доступного для наблюдения времени не является фазовым переходом, кристаллизация представляет собой фазовый переход I рода, признаками которого являются скачкообразные изменения удельного объема, энтальпии и энтропии системы. Термодинамической константой этого перехода является равновесная температура плавления кристаллов Гпл. Она представляет собой верхний температурный предел. выше которого существование кристаллической фазы невозможно. Кристаллизация развивается при Т <Тпл и состоит из двух элементарных процессов — образования зародышей, а также роста и формирования кристаллитов. Первичными кристаллическими образованиями в нерастянутых полимерах являются ламели, представляющие сложенные на себя молекулярные цепи. Из них затем формируются вторичные поликристаллические образования — сферолиты, дендриты и др. [c.46]

    Циклы с числом звеньев меньше пяти сильно напряжены вследствие высокого углового напряжения, а именно, больших искажений их валентных углов по сравнению с тетраэдрическим, поэтому циклизация трех- и четырехчленных колец маловероятна. Наименьшую напряженность имеют шестичленные циклы. Возможно также образование пяти- и семичленных циклов. Наличие циклов с большим, числом звеньев (более 12) ранее считалось практически маловероятным, ввиду того, что их напряженность примерно равна напряженности линейных полимеров [9, с. 75]. Однако в последнее время было показано, что в зависимости от условий проведения равновесной поликонденсации диэтиленгликоля и адипиновой кислоты в отсутствие катализатора наблюдается образование макроциклов, характеризующихся распределением по молекулярным массам, величина которых изменяется от 200 до 1000 [18]. [c.161]

    Так как для разных по геометрической или электронной структуре молекул значения констант Генри, по крайней мере при подходящей температуре, обязательно различаются (поскольку они связаны с энергией молекулярного взаимодействия, разной для разных молекул, см. стр. 487 сл.), то теория равновесной хроматографии в области изотермы распределения Генри приводит к выводу об обязательном газо-хроматографическом разделении любых компонентов. В действительности этому мешают, во-первых, как мы уже видели, отклонения изотермы распределения (адсорбции, растворения) от изотермы Генри и, во-вторых, как мы увидим в дальнейшем, диффузионные и кинетические факторы. Эти причины приводят к асимметричному искажению и размыванию хроматографической полосы, что ведет к наложению полос близких по свойствам веществ друг на друга и поэтому мешает четкому разделению компонентов. [c.557]

    В относительно холодной неизотермической плазме, например тлеющего разряда, в которой температура электронного газа более или менее значительно превышает температуру молекулярного газа, концентрации частиц, из которых некоторые могут быть химически активными, определяются не термодинамическим равновесием, а стационарным состоянием, возникаю-пщм в результате конкуренции различных процессов образования и расходования частиц, В зависимости от соотношения скоростей противоположно направленных процессов концентрации как первично активных частиц, так и конечных продуктов внутри самой плазмы могут значительно превышать термически равновесные. В этом случае уместно говорить о специфической электрической активации реакций, которая и будет рассмотрена в данном параграфе. [c.251]


    При изучении термодинамики электрохимических процессов достаточно знать, что изменение энергии электрохимического элемента полностью определяется химическими реакциями на электродах. Однако при изучении кинетических закономерностей необходимо также знать механизм электродных процессов. Изменения в строении двойного электрического слоя на электродах, которые не сказываются на равновесных значениях электродных потенциалов, влияют на скорости электрохимических реакций. Поэтому при изучении кинетики электродных процессов очень важно знать потенциалы нулевого заряда, а также молекулярное строение границы электрод — раствор. [c.536]

    Рекомбинационная теория. Длительное время наибольшим признанием пользовалась рекомбинационная теория перенапряжения, выдвинутая Тафелем еще в 1905 г. Согласно этой теории, наиболее медленной является стадия молизации адсорбированного водорода, поэтому в процессе электролиза концентрация атомного водорода на поверхности увеличивается по сравнению с равновесной с молекулярным водородом (газ), что и приводит к сдвигу потенциала электрода в отрицательную сторону. [c.622]

    При расчете равновесных составов изомеризации нафтенов возникает проблема выбора из всех возможных только реально образующихся изомеров. Так, в число изомеров с 9 углеродными атомами входит 54 циклопентановых и 21 циклогексановый углеводород, и рассматривать равновесный состав 75 индивидуальных углеводородов совершенно бессмысленно как для научных, так и для технических целей. Некоторые простые случаи охарактеризованы в табл. 16. На рис. 38 представлены результаты исследований равновесия между циклопентановыми и циклогексановыми структурами [13] с ростом молекулярной массы содержание циклопентановых углеводородов в равновесной смеси уменьшается. По мнению автора, для углеводородов с 10 или большим числом атомов углерода при 600 К равновесное содержание циклопентановых должно составлять 10—15% при понижении температуры их содержание будет уменьшаться. [c.129]

    Метод Групповых компонентов, как показано выше, позволяет проводить тепловые и кинетические расчеты для процессов с нефтяными фракциями. Естественно его использование и для расчета равновесных составов при превращениях нефтяных фракций. В таком случае термодинамические характеристики превращений смеси углеводородов рассчитывают, пользуясь стандартными термодинамическими величинами для индивидуальных углеводородов, представляющих исходную и конечную смеси. Индивидуальные углеводороды (их иногда называют псевдокомпонентами [14]) выбирают так, чтобы их молекулярные массы (или температуры кипения) совпадали с молекулярными массами (или средними температурами кипения) углеводородных смесей. Поскольку обычно не удается подобрать индивидуальный углеводород, у которого молекулярная масса равна требуемой, можно пользоваться следующей аппроксимирующей процедурой. [c.131]

    Рассмотрим теперь, от каких физических причин зависит смачивание или несмачивание поверхности. Для этого следует обратиться к анализу изотерм расклинивающего давления смачивающих пленок воды, показанных на рис. 13.3. Кривыми 1—3 здесь изображены зависимости толщины h водных пленок от расклинивающего давления, или, что то же, от капиллярного давления равновесного с пленкой мениска. Кривая 1 относится к пленкам воды на поверхности кварца. Точками показаны экспериментальные данные, сплошная кривая представляет собой рассчитанную теоретически изотерму, учитывающую действие в пленке трех составляющих расклинивающего давления молекулярной Пт, электростатической Пе и структурной Hs [47]. Ветви изотермы, где dU/dh<.0, отвечают устойчивым состояниям пленки. Пленки воды на кварце в области h между 60 и 10 нм (кривая 1) неустойчивы и не реализуются. При постепенном утончении водных пленок вначале возникает метастабильное состояние толстых (/г>100 нм) -пленок. Время их перехода в термодинамически устойчивое состояние тонких -пленок зависит от близости капиллярного давления к критическому Р и от площади -пленок. Чем площадь больше, тем выше вероятность образования в -пленке зародыша а-фазы. Существование толстых -пленок воды обусловлено силами электростатического отталкивания заряженных поверхностей пленки (Пе>0). Так как в этом случае По/го-ЬА>0, -пленки полностью смачиваются водой. Ниже для этого случая будут сопоставлены экспериментальные значения /г с теоретическими, рассчитанными по уравнению (13.9). [c.216]

    На рис. 12-5, а показаны кривые потенциальной энергии для связывающей и разрыхляющей орбиталей. Чем ближе друг к другу ядра молекулы Н2 в разрыхляющем состоянии, тем большая расталкивающая сила действует на них со стороны электронных облаков и тем выше энергия молекулы. При любом расстоянии между ядрами энергия молекулы больше, чем энергия двух изолированных атомов. На рис. 12-5,6 показаны энергии связывающей и разрыхляющей молекулярных орбиталей при равновесном межъядерном расстоянии (равновесной длине связи) и они сопоставлены с энергией электронов на 1х-орбиталях изолированных атомов. [c.514]

    Что называется равновесным давлением паров жидкости Как температура кипения жидкости связана с давлением ее пара Что это означает с учетом молекулярного поведения кипящей жидкости  [c.150]

    В области потенциалов, лежащих иа участке 1 вблизи участка 2 при наложении катодного толчка тока, возможен разряд ионов водорода с образованием адсорбированн1з1х атомов водорода. Появление молекулярного водорода и выделение его в газообразной форме исключены, так как потенциалы здесь более положительны, чем равновесный потенциал водородного электрода в данном растворе. [c.415]

    При температурах до 200° С глубина равновесного распада в значительной степени определяется природой диалкилсульфидов. Например для диметилсульфида при температуре 127° С глубина распада с образованием одной молекулы олефина составляет 53,02%, а для метилизопропилсу.тьфидов — 74,4% 109]. Таким образом, вполне очевидно, что с повышением молекулярного веса сульфидов их термическая стабильность понижается. [c.30]

    Пентаны. С увеличением молекулярного веса увеличивается легкость изомеризации парафинов, но вместе с тем увеличивается и размер реакции перераспределения. Можно создать условия, при которых будет проходить изомеризация только бутана (селективная изомеризация), но для нентанов и более высоких углеводородов создать такие условия трудно. При 27° С над А1Вгз равновесная смень и-пентанов и изопентанов содержит 70 и более процентов изомеров с разветвленными цепочками при 0° С — около 90% [423]. В побочных реакциях даже при 0° С образуются также и более высоко- или низкокипящие углеводороды (гексаны, гентаны и изобутап). С увеличением температуры количество побочных реакций увеличивается [423, 397]. Несмотря на то, что термодинамические условия благоприятны, неопентан не показывает и признака изомеризации даже после 1000 часов обработки при комнатной температуре нет нигде сообщений о его присутствии в продуктах какой-либо изомеризации пептана. н-Пентан изомеризуется нри более мягких условиях, чем н-бутан. Изомеризация низкооктанового легкого сырья каталитического риформинга, содержащего к-нентан и гексаны, на практике осуществляется нри помощи хлористого алюминия [431]. [c.118]

    Переменный молекулярный вес показывает, что промежуточная фракция состоит из двух или более компонентов или их смесей. Кроме того, по крайней мере один из этих компонентов может участвовать в последовательной реакции. В то же время другой компонент не участвует в ней, поскольку в ходе реакции количество вещества I после достижения максимума уменьшается до некоторого постоянного значения. Последнеё можно объяснить протеканием равновесной реакции, в которой участвует один или более компонентов I. [c.27]

    Иной подход к стеклованию основан на широко распространенной концепции свободного объема, важной для понимания молекулярной по движности в веществе. Эта концепция исходит из представления о наличии в жидкостях, в том числе полимерных, некоторой доли незанятого объема, который можно представить как дырки порядка размеров мономерного звена или пустоты меньшей величины, обусловленные нерегулярной упаковкой цепей. Этот объем является значительным только при Т > Т , именно поэтому возможны молекулярные перегруппировки и связанная с ними сегментальная подвижность. При понижении температуры доля свободного объема резко сокращается, пока не достигнет при Г = Гс некоторой минимальной величины, практически одинаковой для всех полимеров и неизменяющейся при дальнейшем понижении температуры. Этой величины свободного объема, однако, недостаточно для перескока сегментов из одного равновесного положения в другое. [c.43]

    При равновесной анионной полимеризации температура не влияет на молекулярную массу образующегося полимера [42] и мало влияет на его выход [9]. При неравновесной же полимеризации слишком высокая температура для данной системы цикло-трисилоксан—катализатор может привести к переходу процесса в равновесный и к деструкции полимера. На практике температуру и катализатор выбирают с учетом природы исходного циклосилоксана так, чтобы обеспечить приемлемую скорость процесса. Обычно полимеризацию проводят при атмосферном давлении, за [c.480]

    Независимо от метода получения и от природы катализатора силоксановые каучуки имеют, как правило, широкое ММР с коэффициентом полидисперсности MjMn от 3 до 8. При равновесной анионной полимеризации Д4 в присутствии регуляторов молекулярной массы MjMn у ПДМС снижается до 2,6—3,0 [52], а полимеры с более узким ММР получены полимеризацией циклосилоксанов литийорганическими соединениями [55]. [c.484]

    Молекулярно-массовое распределение жидких тиоколов определяется реакциями межцепного обмена. Процесс получения жидких полимеров с концевыми 5Н-группами, осуществляемый химической деструкцией 5—5-связей и протекающий по статистическому закону, должен привести к равновесному распределению по молекулярным массам, а для линейных полимеров — к наиболее вероятному распределению Флори. Однако, в связи с тем, что этот процесс осуществляется на границе раздела фаз, распределение может быть случайным и равновесное распределение достигается лищь в результате реакций межцепного обмена, присущих этому классу полимеров [10, с. 477]. [c.560]

    Действие добавок, возвращающих реакцию к мопомоле-кулярной, с помощью схемы Линдемана объясняется тем, что молекулы добавленного вещества, сталкиваясь с возбужденными молекулами реагирующего вещества, дезактивируют последние, возвращая их в исходное нереакционноспособное состояние, а сталкиваясь с невозбужденными молекулами, они их, наоборот, активируют. Интересно, что молекулы добавляем мых газов увеличивают скорость мономолекулярной реакции до величины, характерной для высокого давления, но не дают возможности превысить эту величину. Следовательно, роль их неспецифична и заключается лишь в поддержании равновесной, по максвелл-больцмановскому распределению, концентрации активных молекул реагирующего вещества. Доля участия молекулы в переносе энергии при мономолекулярном распаде зависит от ее химической природы и в общем возрастает с ростом молекулярного веса и числа атомов в молекуле. Ниже приведена относительная эффективность (т]эф.) дей  [c.166]

    Химические реакции, протекающие при постоянном давлении и достаточно высокой температуре, как известно, сопровождаются убылью изобарного потенциала (О) и идут до со-стояни5[ равновесия, характеризуемого минимальным значением С. Для достижения степени диссоциации молекулярного водорода на атомы, равной 0,5 при давлении 0,001 атм, водород цебходимо нагреть примерно до 2600 К. При температуре 800° К равновесная смесь содержит всего около 10 8% атомов. [c.241]

    Эта реакция характерна для водородного электрода. Равновесию между ионами НзО (при а+=1) и мoлeкyляpны газообразным водородом (р=1 атм) соответствует вполне определенный потенциал, условно принимаемый равным нулю. При этом потенциале имеется равновесие динамического характера, т. е. на границе электрод — раствор одновременно протекают как процесс разряда ионов гидроксония, так и процесс ионизации адсорбированного водорода, а на границе электрод газ — процессы адсорбции и десорбции водорода. При этом скорссти про-тизоположных процессов равны. Если поляризовать водородный электрод катодно, т. е. подводить к нему з ектроны, то равновесие нарушится и преимущественно будет происходить разряд ионов гидроксония. Отсюда ясно, что разряд ионов гид )оксония и выделение молекулярного водорода будут наблюдаться лишь по достижении равновесного потенциала водородного электрода, соответствующего активности иока гидроксония в растворе и давлению выделяющегося Нг, (при отсутствии перенапряжения). Этим и определяется предельное значение пол5 ризации катода при электролизе с выделением водорода. [c.613]

    Определение равновесных молекулярных концентраций смеси гептана и ундекана прп внешнем давленпн я = 760 мм рт. ст. по формулам (8.26) п (8.27) [c.150]


Смотреть страницы где упоминается термин Молекулярный равновесной: [c.221]    [c.330]    [c.417]    [c.46]    [c.226]    [c.585]    [c.87]    [c.113]    [c.481]    [c.540]    [c.174]    [c.251]    [c.131]    [c.24]    [c.615]   
Основы химии полимеров (1974) -- [ c.447 , c.449 ]




ПОИСК







© 2025 chem21.info Реклама на сайте