Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Палладия галогениды

    Однако наиболее эффективными катализаторами являются соединения никеля, кобальта, железа, родия, рутения и палладия. Эти элементы вводятся в реакционную зону в виде карбонилов, галогенидов или комплексных солей. В ка- [c.270]

    Органические сульфиды образуют стабильные комплексные соединения с галогенами, органическими галоидпроизводными, галогенидами - тяжелых металлов и некоторыми другими веществами. Природа сил взаимодействия при комплексообразовании сульфидов с этими соединениями изучена недостаточно. Полагают [47], что донорно-акцепторная связь осуществляется за счет передачи неподеленной пары электронов атома серы на свободную валентную орбиталь атома металла (ртути, алюминия, олова, титана и др.). На структуру и свойства комплексных соединений влияют условия их образования, химическое строение сульфида и соединения, вступающего с ним в реакцию [48]. При взаимодействии сульфидов с бромом или иодом иногда образуются кристаллические комплексные соединения, а при взаимодействии с йодистыми алкилами и галогенированными жирными кислотами — кристаллические сульфониевые соли. Наиболее стабильны комплексные соединения сульфидов с галогенидами ртути, ацетатом ртути, солями платины, олова, титана, палладия, алюминия. В зависимости от химического строения и условий комплексообразования сульфиды могут присоединять различное число молекул одного и того же комплексообразователя (акцептора). [c.118]


    В 1867 г. Г. Дикон разработал получивший всемирную известность хлорный процесс—получение хлора окислением НС1 воздухом над медными соединениями. В 1867 г. А. Гофман получил впервые формальдегид окислением метилового спирта воздухом над платиной. В 1871 г. М. Г. Кучеров открыл замечательную реакцию гидратации ацетилена разбавленной серной кислотой в присутствии ртутных солей, которая лежит в основе многих каталитических превращений ацетилена, его гомологов и производных. В 1875 г. Кл. Винклер разрешил, наконец, проблему каталитического окисления SO, в SO3 воздухом в присутствии платинового катализатора, разработав промышленный способ контактного синтеза серной кислоты. Этот вопрос имеет многолетнюю интересную историю, начиная с работ И. Деберейнера и патента П. Филлипса в 1831 г., рекомендовавшего также платиновый катализатор, по потерпевшего неудачу из-за неумения проводить очистку сернистого газа от контактных ядов. В 1877 г. М. М. Зайцев опубликовал свои исследования по восстановлению различных органических соединений водородом в гетерогенной фазе над платиной или палладием, предвосхитив по существу методику гидрирования, разработанную гораздо позднее. В том же 1877 г. Н. А. Меншуткин начал свои классические исследования по приложению химической кинетики к органическим ссединениям в области изучения скоростей этерификации различных карбоновых кислот спиртами. В 1878 г. А. М. Бутлеров открыл реакцию уплотнения олефинов под действием серной кислоты, что явилось преддверием к синтезу высокомолекулярных соединений и процессов алкили-рования, имеющих сейчас огромное значение. Г. Г. Густавсон провел ряд исследований по каталитическому действию галогенидов алюминия на органические соединения, несколько опередив работы Ш. Фриделя и Дж. Крафтса. [c.15]

    Для получения катализаторов ионно-координационной полимеризации используют такие переходные металлы, как титан, ванадий, хром, марганец, железо, кобальт, никель, цирконий, ниобий, молибден, палладий, индий, олово, вольфрам. Для образования комплексов в основном с галогенидами этих металлов используют алкилпроизводные алюминия, цинка, магния, лития, бериллия. На этих катализаторах удалось осуществить промышленный синтез полипропилена, тогда как другие каталитические системы оказались неэффективными. Такие катализаторы широко используются для получения других полимеров (например, полиэтилена) строго стереорегулярной структуры, особенно цис-1,4-полибутадиена и цис-1,4-полиизопрена — синтетических каучуков высокого качества, полноценно заменяющих натуральный каучук, [c.48]


    Надо заметить, что свойства серебра не являются промежуточными между свойствами меди и золота — это можно видеть уже при сопоставлении первого и второго потенциалов ионизации и температуры плавления металлов, их электрической проводимости, а также ряда химических свойств (низкая растворимость галогенидов серебра, окислительная активность неустойчивого оксида и др.). Серебро во многих отношениях похоже на палладий, т. е. на своего соседа по периоду. [c.204]

    Палладий на угле и гидразин для ароматических галогенидов [71]. [c.17]

    Индуцируемое палладием кросс-сочетание с виниловыми и ароматическими галогенидами в большей степени приложимо к реактивам Гриньяра, нежели к литийорганическим соединениям, но известны примеры с участием последних, и описана общая схема реакции [4]. [c.109]

    Палладий(О) проявляет в некоторой степени нуклеофильные свойства, поэтому электроноакцепторные заместители увеличивают активность арил-галогенидов в реакциях окислительного присоединения. Так, индуктивный эффект иминного фрагмента позволяет вступать в реакции окислительного присоединения Рс1(0) 2-хлорпиримидину (лишь немногим менее активен, чем [c.65]

    Реакция ведется в жидкой фазе в присутствии окислительновосстановительного катализатора, включающего окись селена или соли двухвалентного палладия, а также галогениды щелочных металлов, нитраты лития, меди и железа. Скорость реакции, катализируемой двухвалентным палладием и нитратом лития, описывается уравнением [84]  [c.311]

    Определению мешают палладий, ртуть(1) и (II), однако их можно связать прибавлением раствора комплексона III. Из анионов мешают галогениды, ацетат- и тиосульфат-ионы. [c.106]

    Образование я-комплексов. л-Комплексы — это координационные соединения, в которг. Х донором электронов является соединение (алкен или арен), имеющее легко поляризуемые я-электроны, а акцептором электронов — галогены, галогеново-дороды, сильные минеральные кислоты, кислоты Льюиса (например, галогениды алюминия), ионы меди(1), серебра, палладия (И), платины (И), комплексные соли гексахлороплатино-вой(1У) кислоты и даже такие обедненные электронной плотностью соединения, как тетранитрометан, тетрацианоэтилен, тринитробензол и пикриновая кислота. [c.316]

    Соединения переходных металлов, например галогениды платины (II), палладия (И), никеля (И), ртути (II), олова (II, IV), железа (III), ванадия (III), сурьмы (V), а также ионыметал-лов (Fe +, Сг +, и др.) способны образовывать комплексные сое- [c.348]

    Значительно раньше стала известна реакция сочетания алкилгалогенидов с реактивами Гриньяра (обзор см. [1020]). Реактивы Гриньяра обычно обладают тем преимуществом, что их легче приготовить, чем соответствующие Кг СиЫ, но реакция обладает значительно более узким диапазоном применимости. Реактивы Гриньяра вступают в реакцию сочетания только с реакционноспособными галогенидами — аллилгалоге-нидами (хотя в этом случае часто встречаются аллильные перегруппировки) и бензилгалогенидами. Реакция идет также и с третичными алкилгалогенидами, но выходы продуктов низки (от 30 до 50%). При использовании реактивов Гриньяра, содержащих ароматические группы, выходы продуктов значительно выше по сравнению с выходами алкилпроизводных. Кроме того, поскольку реактивы Гриньяра взаимодействуют с группами С = 0 (т. 3, реакции 16-30 и 16-33), их нельзя применять для сочетания с галогенидами, содержащими в молекуле кетонную, сложноэфирную или амидную функциональные группы, И хотя сочетание реактива Гриньяра с обычными алкилгалогенидами не находит, как правило, применения в синтезах, небольшие количества симметричных продуктов сочетания часто получаются при приготовлении самого реактива. Высоких выходов при сочетании реактива Гриньяра с алкилгалогенидами (см. обзор [1021]) можно добиться при использовании катализаторов, таких, как соли меди(1), которые позволяют проводить сочетание реактивов Гриньяра с первичными алкилгалогенидами с высокими выходами [1022] (возможно, интермедиатами здесь являются медьорганические соли), комплексы железа(П1) [1023] или палладия [1024], а также соли меди(II) [1025], под дейст- [c.190]

    Изучались реакции сочетания алкилгалогенидов с другими металлоорганическими соединениями [1031]. Натрий- и калий-органические соединения более реакционноспособны, чем реактивы Гриньяра, и поэтому вступают в реакции даже с менее активными галогенидами. Сложность заключается в их приготовлении и достаточно долгом сохранении, чтобы успеть прибавить алкилгалогенид. Алкены можно синтезировать сочетанием виниллитиевых соединений с первичными галогенидами [1032] или винилгалогеиидов с алкиллитиевыми соединениями в присутствии палладия или рутения в качестве катализатора [1033]. При обработке медьорганическими соединениями п кислотами Льюиса (например, н-ВиСи-ВРз) аллилгалогениды вступают в реакцию замещения с практически полной аллильной перегруппировкой независимо от степени разветвления обоих концов аллильной системы [1034]. [c.191]


    Обзор, посвященный реакциям сочетания органических галогенидов с олово-, ртуть- и медьорганическими соединениями, катализируемым комплексами палладия, см. Beletskaya, J. Organomet. hem., 250, 551 — 564 (1983). [c.289]

    Комплексные соединения, отвечающие степени окисления +2, наиболее характерны для палладия и платины при к. ч. 4. Широко распространены комплексные галогениды [Рс1Г412+, [Р1Г41 , чрезвычайно устойчивые амминокомплексы [Э(МНз)4]2+. Так, для [Р1(ЫНз)4] + рА нест 38, а для [Рс1(КНз)4]2+ Р- нест 30. Комплексные галогениды платины и палладия типа Нг[ЭГ4] являются сильными кислотами и характеризуются высокой устойчивостью внутренней сферы, причем устойчивость комплексов растет в ряду С1 ->Вг"- 1 и для платины выше, чем для палладия  [c.424]

    Степень окисления +3 в комплексных соединениях наиболее типична для Ни, Оз, КЬ и 1г. Для платины и палладия такие производные неизвестны. Среди этих соединений распространены галогениды МезОГв], причем галогенидные комплексы рутения и родия кристаллизуются с одной молекулой воды (Мез[ЭГ,] НаО), а осмия [c.424]

    Тризамещенные фураны 49Ь можно получить с хорошими выходами катализируемой палладием реакцией 2-пропаргилзамещенных 1,3-дикарбониль-ных соединений с винил- или арилтрифлатами и галогенидами в присутствии поташа [29] (схема 26). [c.87]

    Невозможно указать общие способы для реакций этого тина, так как они в большей степени зависят от свойств реагирующих веществ, чем от условий реакций расщепления. Реакции с участием солей карбонилов щелочных металлов и фосфинов обычно проводят в тетрагидрофуране в безводных условиях, и отщепление галогенидов щелочных металлов часто происходит быстро уже при комнатной температуре. Однако замыкание цикла с выделением окиси углерода не всегда происходит до конца, и тогда для окончания реакции требуется повышение температуры. Если необходимо, тетрагидрофуран можно заменить другим растворителем с более высокой температурой кипения, например толуолом. Реакции тиолов или их натриевых солей с хлоро-комплексами палладия или платины также происходят при очень мягких условиях эти реакции обычно проводят в ацетоне или этаноле при температурах от 0° до комнатной. Реакции карбонилов с выделением НС1 или СНзЗН часто проводят при комнатной или близкой к комнатной температуре в отсутствие растворителя. [c.281]

    Разработанная недавно методика испарения металлов позволя- Ст осуществить удобные прямые методы металлирования, ведущие к некоторым металлорганическим соединениям [65]. Для проведения этих реакций пары металла конденсируют в вакууме при низких температурах с алкил-, арил- или ацилгалогенидами [66]. В некоторых случаях образующиеся металлорганические галогениды нестабильны, но могут быть перехвачены другими лигандами (схема 36). Перфторалкил- и перфторарилгалогениды дают стабильные аддукты с атомами никеля, палладия и платины (схемы 37— 39), однако незамещенные алкил- и арилгалогениды обычно таких продуктов не образуют [67, 68]. [c.256]

    Приведенные вын1е реакции можно рассматривать как эффективный метод замены винильного атома водорода на другие группы с использованием нуклеофильного замещения и последующего гидридного перемещения. Аналогичные реакции, приводящие кот-щепле щю галогенид-иона от винилгалогенидов и ацетат-иона от енолацетатов, легко протекают под влиянием палладия, В этих реакциях, по-видимому, также происходит атака внешнего нуклеофила на комплекс палладия с алкеном, поскольку процесс протекает с инверсией конфигурации [145] (схема 598). Реакции этого типа широко распространены, однако даже достаточно близкие процессы могут сильно различаться по механизму. Так, например, катализируемое родием(1) окисление терминальных олефинов в метилкетоны, в противоположность аналогичной реакции палладия, протекает, по-видимому, с участием комплекса с кислородом [624]. [c.400]

    Гетарилцинковые производные нашли широкое применение в катализируемых палладием реакциях сочетания, поскольку в случае использования таких металлоорганических соединений многие функциональные группы остаются незатронутыми. Цинкорганические соединения можно получить реакцией обмена между галогенидами цинка и гетариллитиевыми соединениями [ 123], однако такой метод получения органических соединений цинка значительно ограничивает возможность их использования. Другой эффективный подход к синтезу таких соединений связан со взаимодействием галогенопроизводных гетероциклических ароматических соединений либо с активированным цинком (цинк Рике [124]) или коммерчески доступной цинковой пылью [125], причем этот подход применим как к электроноизбыточным, так и электронодефицитным гетероциклическим системам. [c.61]

    Обычно реакция Хека включает взаимодействие арил галогенида с алкеном, чаще всего с эфирами акриловой кислоты, в присутствии палладиевого катализатора (обычно используют менее 1 мол. %), приводящее к образованию стирола (эфира коричной кислоты). Процесс включает (а) стадию окислительного присоединения арилгалогенида к Pd (0), (б) 1,2-внедрение палладийорганического соединения в алкен и последующее, вращение вокруг связи углерод — углерод для образования такой конформации, в которой р-атом водорода смнрасположен относительно палладия, и (в) р-гидридное элиминирование, приводящее к образованию стирола и регенерированию катализатора Pd(0). Катализатор, образовавшийся на заключительной стадии процесса, вновь вступает в стадию окислительного присоединения и, тем самым, включается в еновый каталитический цикл [c.68]

    Литийпроизводные могут быть использованы для дальнейшего взаимодействия с элекгрофилами например, с и-толуолсульфонилцианидом образуются 2-цианопроизводные [41]. 2-Триал кил оловобензофураны [42] й бензофуран-2- [43] и бензотиофен-2-борные кислоты [44] могут вступать в катализируемые палладием реакции сочетания с ароматическими галогенидами, в последнем случае с трифлатом морфина. [c.483]

    Алкилирование Х(1Нонов. Никеля карбонил. л-Аллилникеля галогениды, бис- (Циклооктадиен-1.5) -никель (0). л-Аллилпалладия комплексы. Палладий хлористый. Палладия(П) аиетат. Аллильное окисление. Марганца(И1) ацетат. Ртути(П) ацетат. Селена двуокись, [c.662]

    Если желательно алкилирование этих типов галогенидов , предпочтительнее использовать медьорганические соединения (которые можно приготовить in situ из литийорганических) [2, 3]. Индуцируемое палладием кросс-сочетание с виниловыми и ароматическими галогенидами в большей степени приложимо к реактивам Гриньяра, нежели к литийорганическим соединениям, но известны примеры с участием последних, и описана общая схема реакции [4]. [c.109]


Смотреть страницы где упоминается термин Палладия галогениды: [c.285]    [c.156]    [c.192]    [c.195]    [c.223]    [c.460]    [c.216]    [c.498]    [c.499]    [c.20]    [c.83]    [c.93]    [c.284]    [c.407]    [c.231]    [c.156]    [c.85]    [c.275]    [c.360]    [c.403]    [c.65]    [c.362]    [c.22]   
Неорганическая химия (1989) -- [ c.422 ]




ПОИСК





Смотрите так же термины и статьи:

Гидролиз комплексных галогенидов бромидов палладия

Гидролиз комплексных галогенидов хлоридов палладия

Палладий

Палладий палладий



© 2024 chem21.info Реклама на сайте