Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексные соединения кристаллические

    Метод молекулярных орбиталей дает самый общий подход к описанию свойств комплексных соединений, объединяя идеи как метода валентных связей, так и теории кристаллического поля. Так, из рис. 78 следует, что шести а -орбиталям окта- [c.125]

    У 3. Описание комплексных соединений с позиций теории кристаллического поля [c.504]

    Метод валентных связей не позволяет объяснить состав, строение и свойства всего многообразия комплексных соединений. Значительно шире используются теории кристаллического поля и молекулярных орбиталей. [c.76]


    Данная глава представляет собой краткое введение в обширную область химии, которая посвящена комплексным соединениям переходных металлов. Многообразие и трудность интерпретации химических свойств этих соединений обусловлены наличием у них тесно расположенных энергетических уровней, связанных с -орбиталями металла. Путь к пониманию химии переходных металлов заключается в объяснении того, каким образом лиганды возмущают эти энергетические уровни металла. Теория валентных связей и теория кристаллического поля частично объясняют этот эффект, но в настоящее время наиболее плодотворной является теория поля лигандов. [c.246]

    В книге кратко описаны методы расчета некоторых параметров фазовых переходов, наиболее существенных для термодинамики химических реакций, в частности процессов перехода из жидкого или кристаллического состояний в состояние идеального газа и обратно при равновесных или при стандартных условиях. Однако автор не затрагивал свойств растворов и методов их расчета, а также специфических особенностей расчетов для области высоких давлений, так как это потребовало бы значительного увеличения объема книги. По тем же причинам не рассмотрены реакции образования комплексных соединений и методы статистической термодинамики, но описаны некоторые методы практического расчета термодинамических функций, основанные на выводах статистической термодинамики. [c.7]

    Органические сульфиды образуют стабильные комплексные соединения с галогенами, органическими галоидпроизводными, галогенидами - тяжелых металлов и некоторыми другими веществами. Природа сил взаимодействия при комплексообразовании сульфидов с этими соединениями изучена недостаточно. Полагают [47], что донорно-акцепторная связь осуществляется за счет передачи неподеленной пары электронов атома серы на свободную валентную орбиталь атома металла (ртути, алюминия, олова, титана и др.). На структуру и свойства комплексных соединений влияют условия их образования, химическое строение сульфида и соединения, вступающего с ним в реакцию [48]. При взаимодействии сульфидов с бромом или иодом иногда образуются кристаллические комплексные соединения, а при взаимодействии с йодистыми алкилами и галогенированными жирными кислотами — кристаллические сульфониевые соли. Наиболее стабильны комплексные соединения сульфидов с галогенидами ртути, ацетатом ртути, солями платины, олова, титана, палладия, алюминия. В зависимости от химического строения и условий комплексообразования сульфиды могут присоединять различное число молекул одного и того же комплексообразователя (акцептора). [c.118]


    Хотя теория кристаллического поля оказалась плодотворной в трактовке магнитных, оптических и некоторых других свойств комплексных соединений, она не смогла объяснить положения лигандов в спектрохнмическом ряду, а также са.м факт образования некоторых ком плексов, например, так называемых сэндвичевых соединений — дибензолхрома Сг(СбНб)2, ферроцена Fe ( 51 5)2 и их аналогов. Дело в том, что теория кристаллического поля, учитывая влияние лигандов на центральный ион, не принимает во внимание участия электронов лигандов в образовании химических связей с центральным ионом. Поэтому применение теории кристаллического поля ограничено, главным образом, комплексными соединениями с преимущественно ионным характером связи между центральным атомом и лигандами. [c.598]

    СО, ю -Дихлор-и-ксилол и уротропин растворяют в хлороформе или метиленхлориде — через 24 ч выделяется основная масса комплексного соединения. Кристаллический осадок отфильтровывают и высушивают на воздухе. Выход после 40 ч стояния 95—96%. [c.135]

    Разделение при помощи комплексных соединений и соединений включения. Процессы разделения соединениями включения проводятся в гетерогенной системе газ —твердая фаза или жидкость— твердая фаза с непременным образованием в каждом случае твердого кристаллического соединения, в которое включен компонент, выделяемый впоследствии. Это свойство, общее для всех процессов с использованием соединений включения, определяет технологию, которая аналогична технологии ад- [c.75]

    Комплексными соединениями называются определенные химические соединения, образованные сочетанием отдельных компонентов и представляющие собой сложные ионы или молекулы, способные к существованию как в кристаллическом, так и в растворенном состоянии. [c.196]

    Эти дестиллаты при обработке спиртовым раствором сулемы давали кристаллические соединения, которые после многократной перекристаллизации в бензине были подвергнуты анализам это были комплексные соединения сернистые алкилы — хлористая ртуть [(С Н2 г)з8 Н су.- [c.167]

    Теория кристаллического поля является весьма грубым приближением к действительности, так как рассматривает лиганды бес-структурно, как источники точечных отрицательных зарядов. Для более точных расчетов следует применять метод молекулярных орбиталей (МО), который в применении к комплексным соединениям называется теорией поля лигандов. В этой теории учитывается строение молекулярных орбиталей как адсорбированных атомов и молекул, так и атомов катализатора. Таким образом, становится возможным оценивать адсорбционную и каталитическую активность вещества и реакционную способность адсорбированных молекул в связи с их химическим строением. [c.459]

    V Сопоставление теорий МО, ВС и КП. Теория молекулярных орбиталей дает самый общий подход к описанию свойств комплексных соединений, объединяя идеи как теории валентных связей, так и теории кристаллического поля. Шести сг = -орбиталям октаэдрического комплекса в рамках теории валентных связей отвечают шесть а-связей, возникающих за счет донорно-акцепторного взаимодействия psp -гибридных орбиталей комплексообразователь и электронных пар шести лигандов (рис. 215). Что же касается молекулярных л - и [c.513]

    Выделение углеводородов с помощью клатратных соединений основано на проникании выделяемого вещества в каналы или полости кристаллической решетки комплексного соединения. Селективность выделения, но-видимому, связана с размером и формой молекулы углеводорода. [c.129]

    Рентгеноструктурным методом. Координационная формула комплексного соединения, находящегося в кристаллическом состоянии, может быть непосредственно установлена путем определения взаимного положения атомов и молекул в кристалле рентгеноструктурным методом. Однако для этого требуется вырастить достаточно крупный и неискаженный кристалл комплексного соединения, что не всегда возможно. [c.356]

    Для выделения сульфидов можно использовать соли сульфония — иодметилаты (комплексные соединения сульфидов с иодистым метилом), представляющие собой кристаллические вещества [55]. Раствор сульфидов в абсолютном эфире добавляют к десятикратному избытку иодистого метила также в растворе абсолютного эфира смесь встряхивают. Реакция комплексообразования заканчивается для низкомолекулярных тиофанов через [c.121]

    И ИХ свойств. Развитие представлений о химической связи в комплексных соединениях переходных металлов прошло четыре стадии. Оно началось с простейшей электростатической теории, которую сменила теория валентных связей, или локализованных молекулярных орбиталей в дальнейшем появилась теория кристаллического поля и, наконец, теория поля лигандов, или делокализованных молекулярных орбиталей. Каждая из этих теорий стала развитием предьщушей. Их последовательное рассмотрение является хорошим способом проследить за развитием представлений о химической связи и дает возможность показать, что одни и те же физические факты можно объяснить в рамках различных и на первый взгляд противоположных предположений. [c.223]


    Схема энергетических уровней комплексного иона металла изображена на рис. 1.14. При образовании комплекса электроны неподеленных пар лигандов заполняют наиболее низкие уровни <21 , / и и е . Происходит смещение электронной плотности от лигандов к центральному иону и связь приобретает ковалентный характер. Электроны металла переходят на уровни и вполне соответствующие аналогичным уровням в теории кристаллического поля. Поэтому все заключения этой теории, касающиеся влияния энергии расщепления А на свойства комплексных соединений, остаются в силе. [c.47]

    Не следует думать, что теории и теоретические методы, используемые в физической химии, являются соверщенно законченными и неизменными. Наоборот, они развиваются и совершенствуются. Так, на смену теории кристаллического поля, позволившей объяснить некоторые свойства комплексных соединений, но не учитывающей структуру лигандов, пришла теория поля лигандов вслед за классической термодинамикой получила свое развитие статистическая термодинамика вместо кинетической теории активных столкновений развилась теория активного комплекса и т. д. Процесс углубления теорий, их взаимопроникновения продолжается, возникают новые разделы и науки — термодинамика неравновесных процессов, электрохимия полупроводников, газовая электрохимия и т. п. [c.365]

    При совместном нли раздельном растворении в аммиачной воде аммиачной селитры, кальциевой селитры, карбамида и некоторых других компонентов получаются растворы, называемые аммиакатами (твердые аммиакаты образуются при взаимодействии некоторых твердых солей с газообразным или жидким аммиаком и представляют собой комплексные соединения кристаллического строения). Аммиакаты как правило светлые жидкости (допускается также желтоватая окраска), плотность которых зависит от их состава и колеблется в пределах 0,9—1,25 т/м . Давление паров иад аммиакатами значительно ииже давления паров над жидким аммиаком. Состав аммиакатов, полученных иа основе аммиачной селитры, соответствует формуле МН4КОз--NHз nH20 аммиакаты на основе кальциевой селитры и аммиачной селитры [c.239]

    Магнитные свойства комплексных соединений хорошо описываются с позиций теории кристаллического поля. Эта теория основана на предположеиии, что между комплексообразователем и лигандами осуществляется чисто электростатическое взаимодействие. Однако, в отличие от классических электростатических представлений, в теории кристаллического поля учитывается пространственное распределение электронной плотности -орбиталей комплексообразователя. [c.205]

    Комплексное соединение пентакарбонила железа [Ре ( 0)5]з X X (СдН1б)5 обладает более высокой стабильностью, чем ПКЖ, но примерно такой же эффективностью. Ферроцен (СаН5)2ре — металлоорганическое соединение так называемого сэндвичевого строения. Э о легко возгоняющийся кристаллический порошок с температурой плавления 174 С. Ферроцен обладает большей эффективностью, чем ДИБ—ПКЖ и ПКЖ, он повышает октановое число бензинов как с ТЭС, так и без ТЭС. На пути внедрения ферроцена стоит то же препятствие, что и для всех соединений железа — отсутствие эффективных выносителей для окиси железа.  [c.128]

    Первоначальное понятие о комплексных соединениях, образованных центральным атомом или ионом металла и совокупностью ( luster) ионов или молекул, именуемых лигандами (число которых называют координационным числом), в последнее время было расширено, и теперь оно охватывает большую часть неорганических соединений в молекулярном (растворы) или кристаллическом (твердые тела) состоянии. Нихолм [4] указывает, что химию комплексных соединений следует рассматривать как некоторый подход к неорганической химии, а не просто как один из ее разделов и что в связи с этим она должна быть полезной для понимания как гомогенного, так и гетерогенного катализа. Нас интересует динамика обратимых изменений координационного числа и степени окисления центрального атома, и мы [c.15]

    Естественно, что теория кристаллического поля, исходящая из ионной модели, требует видоизменения при рассмотрении комплексов, в которых имеется заметная доля ковалентной связи. Когда эта доля сравнительно невелика, используется теория прля лигандов, по которой наличие ковалентной связи учитывается введением определенных поправок в расчеты, проводимые методами теории кристаллического поля. При рассмотрении комплексных соединений со значительной долей ковалентной связи применяется метод молекулярных орбиталей, учитывающий, так же как и теория кристаллического поля, особенности симметрии атомных орби талей (такой метод часто также называют теорией поля-лигандов)  [c.121]

    Молекулярные орбитали в комплексных соединениях. Пс скольку теория кристаллического поля рассматривает центральную частицу комплекса как ион, ее результаты нельзя считать удовлетворительными, если связь комплексообразователя с лигандами далека от ионной. О неточности ионной модели свидетельствует и спектрохимический ряд. В этом ряду, например, ион СМ-предшествует иону р-, однако ион Р" меньше иона СЫ- и на основании электростатики следовало бы ожидать большего воздей-. ствия на центральный ион ионов Р , чем СЫ . [c.127]

    Наиболее строгое объяснение природы связи в комплексных соединениях достигается применением метода молекулярных орбиталей. Этот метод значительно сложнее теории кристаллического поля расчет энергии связи в комплексных соединениях по методу МО требует использования мощных вычислительных машин. По теории кристаллического поля расчеты несравненно проще, и ею нередко пользуются при рассмотрении объектов, к которым она не вполне применима, для получения ориентировочных оценок. Для комплекса волновая функция молекулярной орбитали фмо представляет собой линейную комбинацию, состоящую из волновых функций орбитали центрального атома металла фм и групповой орбитали лигандов 2сфь (линейная комбинация определенных орбиталей лигандов)  [c.127]

    При нагревании раствора идет обратная реакция, и окраска исчезает. При действии N0 на губчатое железо при высоком давлении ббразуется feтpaнитpил железа Ре(N0)4 (черное кристаллическое Вещество). Известны нитрилы Ки и Сг. Другие комплексные соединения, содержащие N0, рассмотрены в разделах, посвященных химии /-элементов. [c.406]

    Координационными или комплексными называют соединения, содержащие центральный атом или ион и группу молекул или ионов, его окружающих и связанных с ним (лигандов). Число лигандов, связанных с центральным атомом (ионом), называют координационным числом иона. Оно зависит как от электронной структуры, так и от соотношения между радиусами центрального атома (иона) и лигандов. Координационное число центрального атома (иона) обычно превышает его валентность, понимаемую как формальный положительный заряд на атоме. Высокая устойчивость многих комплексных соединений указываает, что химическая связь в них не отличается по своей природе от химической связи в обычных ионных или ковалентных соединениях. В большинстве координационных соединений центром является ион переходного металла (Т , Со , Сг " и др.), а лигандами — ионы или полярные молекулы (обладающие к тому же неподеленной парой электронов.) Именно поэтому электростатические представления легли в основу теории комплексных соединений, так называемой теории кристаллического поля, учитывающей также квантовомеханические особенности строения электронной оболочки центрального иона (Бете, Ван Флек). [c.120]

    Электронная оболочка центрального иона рассматривается на основе квантовомеханической теории. Влияние электрического поля, создаваемого лигандами ( кристаллического поля), приводит к расщеплению уровня энергии (терма) внешних электронов центрального иона. Расщепление терма мало влияет на полную энергию комплексного соединения, но оказывает существенное влияние на многие его свойства магнитные, оптические, структурные, термодинамические и кинетические. Эффект расщепления терма зависит не только от числа лигандов, но и от их расположения, т. е. симметрии поля. [c.121]

    Таким образом, теория кристаллического поля объясняет, что ноны большинства комплексных соединений окрашены. Становится также понятным, почему в водном растворе ионы Си+ бесцветны, тогда как ионы Си + окрашены гидратированный (комплексный) ион Си+ имеет конфигурацию Здесь заполнены все орбитали и поэтому переходы с одной -орбитали на другую невозможны. У гидратированного (комплексного) иона Си + ( ) одна -орбиталь свободна. По той же причине бесцветны имеющие электронную конфигурацию ионы А +, 2п +, Сс1 + и Hg +. Когда электронная конфигурация центрального иона содержит больше одного -электрона поверх замкнутой оболочки, картина возможных энергетических уровней и их расщепленне в поле лигандов заметно услои<няется. Существенную роль в этом случае играет взаимодействие -электронов между собой. Это взаимодействие может быть трех видов межэлектронное, спин-орбитальное и электронное с кристаллическим полем. В зависимости от соотношения между ними различают 1) слабое поле, когда взаимодействие электронов с кристаллическим полем меньше межэлектронного и спин-орбиталь-ного 2) среднее поле, когда взаимодействие электронов с кристаллическим полем меньше межэлектронного, но больше спин-орби-тального 3) сильное поле, когда взаимодействие электронов с кристаллическим полем больше как спин-орбитального, так и межэлектронного. [c.48]

    При помощи комплексов с ацетатом ртути выделены и охарактеризованы сульфиды одноградусных фракций дистиллята 200—300" С туймазинской нефти [52]. Однако сульфиды фракций, выкипавших выше 270° С, извлекались лишь на 10%. Из узких бензино-керосиновых фракций учкизилской нефти Узбекской ССР сульфиды выделяли в виде комплексных соединений с хлорной ртутью и ацетатом ртути [53]. Извлечение этим путем сульфидов из легких нефтяных фракций оказалось довольно эффективным. Изучалась возможность применения этого метода и для высших сульфидов [35, 54]. Однако с увеличением молекулярного веса способность сульфидов к комплексообразованию резко падает. С ацетатом ртути не реагировали ароматические сульфиды среднедистиллятных фракций и алифатические сульфиды, начиная с дигексилсуль-фида. Более активно взаимодействовали с ацетатом ртути гомологи тиофана они образовывали не кристаллические, а маслообразные вещества [55]. [c.120]

    Уровни содержания тяжелых металлов в почвах зависят от окислительно-восстановительных и кислотно-основных свойств последних вод-но-теплового режима и геохимического фона территории. Обычно с увеличением кислотности почв подвижность элементов возрастает. Так, при pH < 7,7 ионная форма цинка в почве представлена гексааква-ионом [2п(Н20)бР, тогда как при pH > 9,1 отмечается существование 2п(ОН)2 или [2п(ОН)4р (191 . Исследования показали, что тяжелые металлы в почвах содержатся в водорастворимой, ионообменной и непрочно адсорбированной формах. Водорастворимые формы, как правило, представлены хлоридами, нитратами, сульфатами и органическими комплексными соединениями, которые могут составлять до 99% от общего количества растворимых форм. Кроме того, ионы тяжелых металлов могут бьггь связаны с минералами как часть кристаллической решетки. Так, значительная доля цинка в почве представлена в виде изоморфных соединений в слюдах, обманках и других минералах. Следует отмстить, что кадмий не образует собственных минералов, а присутствует в них в виде примесей. Его особенностью является также то, что он практически не связывается гумусовыми веществами почв. Особенно высокие концентрации тяжелых металлов в почвах могут наблюдаться в районах расположения рудников и автомагистралей. [c.108]

    Эта стадия проводится, как правило, при комнатной температуре и интенсивном перемешивании. В бояьшигетвс случаев реакция сопровождается окрашиванием раствора, что может служить первичным признаком образования комплексного соединения. Согласно теории кристаллического поля [16] в металлах, обладающих незаполненным <1-подуровнем, при затрате некоторой энергии электрон на одной из с1 -орбиталей может возбуждаться и переходить на ( -орбиталь. При обратном переходе из возбужденного в нормальное состояние происходит испускание света с длиной волны, соответствующей указанной энергии возбуждения, что и обуславливает окраску комплекса. [c.61]

    Для объяснения образования и свойств комплексных соединений в настоящее время применяются метод валентных связей (МВС), теория кристаллического поля (ТКП) и метод момкулярных орбиталей (ММО). [c.115]

    На основе теории кристаллического поля удается объяснить не только магнитные свойства комплексных соединений, но и их специфическую окраску. Так, в комплексе [Т1(Н20)б] нон имеет один -электрон (электронная конфигурация д ). В нормальном (невозбужденном) состоянии этот электрон находится на одной из -орбиталей, но при затрате некоторой энергии (Д = 238 кДж/моль) может возбуждаться и переходить на .-орбиталь. Длина волны света, поглощаемого при этом пер>еходе и соответствующего указанной энергии, равна 500 нм это и обусловливает фиолетовую окраску комплекса [Т1(Н20)б] . При тгисом рассмотрении становится понятным, почему комплексы, образованные ионами Си" ", Ag , и как правило, бес- [c.359]


Смотреть страницы где упоминается термин Комплексные соединения кристаллические: [c.97]    [c.598]    [c.58]    [c.134]    [c.134]    [c.302]    [c.210]    [c.132]    [c.287]   
Кристаллизация в химической промышленности (1979) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Соединения кристаллические



© 2025 chem21.info Реклама на сайте